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1 Introduction

Networks are at the core of many scientific areas, be it social sciences (where networks for instance

model human relations), logistics (e.g. traffic), or electrical engineering (e.g. circuits). Distributed

computing is the area that studies the power and limitations of distributed algorithms and com-

putation in networks. Due to the major role that the Internet plays today, models targeted at

understanding the fundamental properties of networks focus mainly on “Internet-capable” devices.

The standard model in distributed computing is the so called message passing model, where nodes

may exchange large messages with their neighbors, and perform arbitrary local computations.

Some networks though, are not truthfully represented by the classical message passing model.

For example, wireless networks such as ad hoc or sensor networks, whose research has blossomed in

the last decade, require some adaptations of the message passing model so that it meets the limited

capabilities of the underlying wireless devices more precisely. More recently, there is a trend to

apply distributed computing methods, and in particular, the message passing model, to networks of

sub-microprocessor devices, for instance networks of biological cells, or even nano-scale mechanical

devices. However, the suitability of the message passing model to these types of networks is far

from being certain: do tiny bio/nano nodes “compute” and/or “communicate” essentially the same

as a computer? Since such nodes will be fundamentally more limited than silicon-based devices, we

believe that there is a need for a network model, where nodes are by design below the computation

and communication capabilities of Turing machines.

Networked finite state machines. In this paper, we take a radically different approach: Instead

of imposing additional restrictions on the existing models for networks of computer-like devices,

we introduce an entirely new model, referred to as networked finite state machines (nFSM), that

depicts a network of randomized finite state machines progressing in asynchronous steps (refer to

Section 2 for a formal description). Under the nFSM model, nodes communicate by transmitting

messages belonging to some finite alphabet Σ such that a message σ ∈ Σ transmitted by node u is
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delivered to its neighbors (the same σ to all neighbors) in an asynchronous fashion; each neighbor

v of u has a port corresponding to u in which the last message delivered from u is stored.

The access of node v to its ports is limited: each state q in the state set Q of the FSM is

associated with some letter σ = σ(q) ∈ Σ; if node v resides in state q at some step of the execution,

then the next state and the message transmitted by v at this step are determined by q and by the

number ]σ of occurrences of σ in v’s ports. The crux of the model is that ]σ is calculated according

to the one-two-many1 principle: the node can only count up to some predetermined bounding

parameter b ∈ Z>0 and any value of ]σ larger than b cannot be distinguished from b.

In particular, the nFSM model satisfies the following requirements, that we believe, make it

more applicable to the study of networks consisting of weaker devices such as those mentioned

above.

(R1) The model is applicable to arbitrary network topologies.

(R2) All nodes run the same protocol executed by an FSM.

(R3) The network operates within an asynchronous environment, with node activation patterns

independent of the message delivery pattern.

(R4) All features of the FSM (specifically, the state set Q, message alphabet Σ, and bounding

parameter b) are of constant size independent of any parameter of the network (including the

degree of the node executing the FSM).

The last requirement is perhaps the most interesting one as it implies that a node cannot count

beyond some predetermined constant. This comes in contrast to many distributed algorithms

operating under the message passing model that strongly rely on the ability of a node to count up

to some parameter of the network (or a function thereof).

Our results. Our investigation of the new model begins by designing an nFSM synchronizer that

practically allows the protocol designer to assume a fully synchronous environment. Subsequently,

we show that the computational power of a network operating under the nFSM model is essentially

equivalent to that of a randomized Turing machine with linear space bound (cf. linear bounded

automata). In comparison, the computational power of a network operating under the message

passing model is trivially equivalent to that of a (general) Turing machine, therefore there exists

distributed problems that can be solved (theoretically) under the message passing model in constant

time and cannot be solved under the nFSM model at all.

Nevertheless, we show that some of the most important and extensively studied problems in

distributed computing admit efficient — namely, with run-time polylogarithmic in the number

n of nodes — protocols operating under the nFSM model. Specifically, a maximal independent

set (MIS) can be computed in arbitrary graphs in time O(log2 n); trees can be 3-colored in time

1 The one-two-many theory states that some small isolated cultures (e.g., the Piraha tribe of the Amazon [9]) did

not develop a counting system that goes beyond 2. This is reflected in their languages that include words for “1”,

“2”, and “many” that stands for any number larger than 2.
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O(log n) (without any predetermined edge orientation); and a maximal matching can be computed

in arbitrary graphs in time O(log2 n) (this requires a small unavoidable modification of the nFSM

model).

Related work. As mentioned above, the message passing model is the gold standard when it

comes to understanding distributed algorithms. Several variants exist for this model, differing

mainly in the bounds imposed on the message size and the level of synchronization. Perhaps the

most popular message passing variants are the fully synchronous local and congest models [10, 13],

assuming that in each round, a node can send messages to its neighbors (different messages to

different neighbors), receive and interpret the messages sent to it from its neighbors, and perform

arbitrary local computation2 determining, in particular, the messages sent in the next round. The

difference between the two variants is cast in the size of the communicated messages: the local

model does not impose any restrictions on the message size, hence it can be used for the purpose of

establishing general lower bounds, whereas the congest model is more information-theoretic, with a

(typically logarithmic) bound on the message size. Indeed, most theoretical literature dealing with

distributed algorithms relies on one of these two models.

As the congest model still allows for sending different messages to different neighbors in each

round, it was too powerful for many settings. Instead, with the proliferation of wireless networks,

new more restrictive message passing models appeared such as the radio network model [5]. In

radio networks, nodes still operate in synchronous rounds, where in each round a node may choose

to transmit a message or stay silent. A transmitted message is received by all neighbors in the

network if the neighbors do not experience interference by concurrently transmitting nodes in their

own neighborhood. There are several variants, e.g. whether nodes do have collision detection, or

not.

Since the radio network model is still too powerful for some wireless settings, more restrictive

models were suggested. One such example is the beeping model [7, 6], where in each round a node

can either beep or stay silent, and a silent node can only distinguish between the case in which

no node in its neighborhood beeps and the case in which at least one node beeps. Inspired by a

biological process that occurs during the development of the nervous system of a fly, [2] developed a

distributed MIS algorithm that essentially works under the beeping model; this was later improved

[1]. Note that the beeping model resembles our nFSM model in the sense that the “beeping rule”

can be viewed as counting under the one-two-many principle with bounding parameter b = 1.

However, it is much stronger in other perspectives: (i) the beeping model assumes synchronous

communication and does not seem to have a natural asynchronous variant, thus it does not satisfy

requirement (R3); and (ii) the local computation is performed by a Turing machine whose memory

2 It is important to point out that even though the local and congest models allow for arbitrary local computation,

the proposed algorithms hardly ever assume anything that cannot be computed in time polynomial in the size of the

information received thus far; the rare exceptions are typically clearly mentioned in the text.
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is allowed to grow with the network (this is crucial for the algorithms of [2, 1]), thus it does not

satisfy requirements (R2) and (R4). The assumption that each node executes a FSM is especially

relevant in the biological setting as demonstrated by [3].

Our nFSM model is partially inspired by the extensively studied cellular automaton model

[12, 8, 14] that captures a network of FSMs, arranged in a grid topology (or other highly regular

topology), where the transition of each node depends on its current state and the states of its

neighbors. Still, the nFSM model differs from the cellular automaton model in many aspects; in

particular, the latter model is not applicable for non-regular network topologies, in contrast to

requirement (R1), and to the most part, it also does not support asynchronous environments (at

least not as asynchrony is grasped in the current paper), in contrast to requirement (R3).

Another model that resembles the nFSM model that of communicating automata [4]. This

model also assumes that each node in the network operates a FSM in an asynchronous manner,

however the steps of the FSMs are message driven: for each state q of node v and for each message

m that node v may receive from an adjacent node u while residing in state q, the transition function

of v should have an entry characterized by the 3-tuple (q, u,m) that determines its next move. As

such, different nodes would typically operate different FSMs, hence the model does not satisfy

requirement (R2), and the size of the FSM operated by node v inherently depends on the degree

of v, hence it does not satisfy requirement (R4). Moreover, the node activation pattern is driven

by the incoming messages, so it also does not satisfy requirement (R3).

Structure of the paper. A formal exposition of the nFSM model is provided in Section 2. In

Section 3, we design a synchronizer for the nFSM model and then show how multiple letter queries

can be implemented. The characterization of the computational power of a network under the

nFSM model and the nFSM algorithms for MIS, tree coloring, and maximal matching are deferred

to the full version of the paper.

2 Model

Throughout, we assume a network represented by a finite undirected graph G = (V,E). Under the

networked finite state machines (nFSM) model, each node v ∈ V runs a protocol depicted by the

8-tuple

Π = 〈Q,QI , QO,Σ, σ0, b, λ, δ〉 ,

where

• Q is a finite set of states;

• QI ⊆ Q is the subset of input states;
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• QO ⊆ Q is the subset of output states;

• Σ is a finite communication alphabet ;

• σ0 ∈ Σ is the initial letter ;

• b ∈ Z>0 is a bounding parameter ; let B = {0, 1, . . . , b− 1, b≥} be a set of b+ 1 distinguishable

symbols;

• λ : Q→ Σ assigns a query letter σ ∈ Σ to every state q ∈ Q; and

• δ : Q×B → 2Q×(Σ∪{ε}) is the transition function.

It is important to point out that protocol Π is oblivious to the graph G. In fact, the number of

states in Q, the size of the alphabet Σ, and the bounding parameter b are all assumed to be universal

constants, independent of any parameter of the graph G. In particular, the protocol executed by

node v ∈ V does not depend on the degree of v in G. We now turn to describe the semantics of

the nFSM model.

Communication. Node v communicates with its adjacent nodes in G by transmitting messages.

A transmitted message consists of a single letter σ ∈ Σ and it is assumed that this letter is delivered

to all neighbors u of v. Each neighbor u has a port ψu(v) (a different port for every adjacent node

v) in which the last message σ received from v is stored. At the beginning of the execution, all

ports store the initial letter σ0. It will be convenient to consider the case in which v does not

transmit any message (and hence does not affect the corresponding ports of the adjacent nodes) as

a transmission of the special symbol ε.

Execution. The execution of node v progresses in discrete steps indexed by the positive integers.

At each step t ∈ Z>0, v resides in some state q ∈ Q. Let λ(q) = σ ∈ Σ be the query letter that

λ assigns to state q and let ]σ be the number of occurrences of σ in v’s ports at step t. Then, the

pair (q′, σ′) of state q′ ∈ Q in which v resides at step t+ 1 and message σ′ ∈ Σ∪{ε} transmitted by

v at step t (recall that ε indicates that no message is transmitted) is chosen uniformly at random

among the pairs in

δ(q, fb(]σ)) ⊆ Q× (Σ ∪ {ε}) ,

where fb : Z≥0 → B is defined as

fb(]σ) =

{
]σ if 0 ≤ ]σ ≤ b− 1 ;

b≥ otherwise .

Informally, this can be thought of as if v queries its ports for occurrences of σ and “learns” the exact

value of ]σ as long as it is smaller than the bounding parameter b; otherwise, v merely “learns”

that ]σ ≥ b which is indicated by the symbol b≥.
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Input and output. Initially (at step 1), each node resides in some of the input states in QI .

The choice of the initial state of node v ∈ V reflects the input passed to v at the beginning of the

execution. This allows our model to cope with distributed problems in which different nodes get

different input symbols. When dealing with problems in which the nodes do not get any initial

input (such as the graph theoretic problems addressed in this paper), we shall assume that QI

contains a single initial state.

We say that the (global) execution of the protocol is in a ready configuration if all nodes reside

in output states of QO. If this is the case, then the output of node v ∈ V is determined by the

output state q ∈ QO in which v resides.

Asynchrony. The nodes are assumed to operate in an asynchronous environment. This asyn-

chrony has two facets: First, for the sake of convenience, we assume that the actual application

of the transition function in each step t ∈ Z>0 of node v ∈ V is instantaneous (namely, lasts zero

time) and occurs at the end of the step;3 the length of step t of node v, denoted Lv,t, is defined as

the time difference between the application of the transition function at step t− 1 and that of step

t. It is assumed that Lv,t is finite, but apart from that, we do not make any further assumptions

on this length, that is, the step length Lv,t is determined by the adversary independently of all

other step lengths Lv′,t′ . In particular, we do not assume any synchronization between the steps of

different nodes whatsoever.

Another facet of the asynchronous environment is that a message transmitted by node v at

step t (if such a message is transmitted) is assumed to reach the port ψu(v) of an adjacent node

u after a finite time delay, denoted Dv,t,u. We assume that if v transmits message σ1 ∈ Σ at

step t1 and message σ2 ∈ Σ at step t2 > t1, then σ1 reaches u before σ2 does. Apart from this

“FIFO” assumption, we do not make any other assumptions in the context of the delays Dv,t,u. In

particular, this means that under certain circumstances, the adversary may overwrite message σ1

with message σ2 in port ψu(v) of u so that u will never “know” that message σ1 was transmitted.4

Consequently, a policy of the adversary is captured by: (1) the length Lv,t of step t of node v

for every v ∈ V and t ∈ Z>0; and (2) the delay Dv,t,u of the delivery of the transmission of node

v at step t to an adjacent node u for every v ∈ V , t ∈ Z>0, and u ∈ N (v).5 Assuming that the

adversary is oblivious to the random coin tosses of the nodes, an adversarial policy is depicted by

infinite sequences of Lv,t and Dv,t,u parameters.

3 This assumption can be lifted at the cost of a more complicated definition of the adversarial policy described

soon.
4 Often, much stronger assumptions are made in the literature. For example, a common assumption for asyn-

chronous environments is that the port of node u corresponding to the adjacent node v is implemented by a buffer

so that messages cannot be “lost”. We do not make any such assumption for our nFSM model.
5 We use the standard notation N (v) for the neighborhood of node v in G, namely, the subset of nodes adjacent

to v.
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For further information on asynchronous environments, we point the reader to one of the stan-

dard textbooks [13, 11].

Correctness and run-time measures. A protocol Π for problem P is said to be correct under

the nFSM model if for every instance of P and for every adversarial policy, Π reaches a ready

configuration within finite time with probability 1, and for every ready configuration reached by Π

with positive probability, the output of the nodes is a valid solution to P . Given a correct protocol

Π, the complexity measure that interests us in the current paper is the run-time of Π defined as

follows.

Consider some instance I of problem P . Given an adversarial policy A and a sequence (actually

an n-tuple of sequences) R of random coin tosses that lead to a ready configuration within finite

time, the run-time TΠ(I,R,A) of Π on I with respect to R and A is defined as the (possibly

fractional) number of time units6 that pass from the beginning of the execution until the first time

the protocol reaches a ready configuration, where a time unit is defined to be the maximum among

all step length parameters Lv,t and delivery delay parameters Dv,t,u appearing in A before the ready

configuration is reached. The run-time TΠ(I,R) of Π on I with respect to R is then defined to

be TΠ(I,R) = supATΠ(I,R,A). Following the standard procedure in this regard, we say that the

run-time of a correct protocol Π for problem P is f(n) if the run-time of Π on any n-node instance

of P is at most f(n) on expectation and with high probability.

3 More convenient models

3.1 Implementing a synchronizer

As described in Section 2, the nFSM model assumes an asynchronous environment. Nevertheless,

it will be convenient to extend the nFSM model to synchronous environments. One natural such

extension augments the model described in Section 2 with the following two synchronization prop-

erties for every two adjacent nodes u, v ∈ V and for every t ∈ Z>0:

(S1) when node u is at step t, node v is at step t− 1, t, or t+ 1; and

(S2) at the end of step t + 1 of u, port ψu(v) stores the message transmitted by v at step t of v’s

execution (or the last message transmitted by v prior to step t if v does not transmit any message

at step t).

Note that properties (S1) and (S2) are sufficient to guarantee a valid execution of any protocol

designed to operate in a fully synchronous environment, namely, in an environment in which the

steps of all nodes are synchronized with the ticks — a.k.a. rounds — of some global clock. There-

fore, for protocols operating under a synchronous environment, we shall often refer to the steps of

6 Note that time units are defined solely for the purpose of the analysis. Under an asynchronous environment, the

nodes have no notion of time and in particular, they cannot measure a single time unit.
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the execution as rounds.

Our goal in this section is to show that every nFSM protocol Π = 〈Q,QI , QO,Σ, σ0, b, λ, δ〉
designed to operate in a synchronous environment can be simulated in an asynchronous environment

by a protocol Π̂ with a constant multiplicative run-time overhead. The procedure in charge of this

simulation is referred to as a synchronizer.

Overview. Round t ∈ Z>0 of node v ∈ V under Π is simulated by O(1) contiguous steps under

Π̂; the collection of these steps is referred to as v’s simulation phase of round t. Protocol Π̂ is

designed so that v maintains the value of t (mod 3), referred to as the trinarity of round t, which

is also encoded in the message transmitted by v at the end of round t.7 The main principle behind

our synchronizer is that node v will not move to the simulation phase of round t+ 1 while its ports

still contain messages sent in a round whose trinarity is t− 1 (mod 3).

Under Π, the decisions made by node v at round t should be based on the messages transmitted

by all neighbors u of v at round t− 1. However, during v’s simulation phase of round t, port ψv(u)

may contain messages transmitted at round t − 1 or at round t under Π. The latter case is prob-

lematic since the message transmitted by u in the simulation phase of round t−1 is overwritten by

that transmitted in the simulation phase of round t. To avoid this obstacle, a message transmitted

by node u under Π̂ at the end of the simulation phase of round t also encodes the message that u

transmitted under Π at round t− 1.

So, if v resides in a state whose query letter is σ ∈ Σ at round t under Π, then under Π̂, v should

query for all Σ′-letters encoding a transmission of σ at round t − 1. Since there are several such

letters, a carefully designed feature should be used so that Π̂ accounts for their combined number.

Protocol Π̂. Let

Π̂ =
〈
Q̂, Q̂I , Q̂O, Σ̂, σ̂0, b, λ̂, δ̂

〉
.

Consider node v ∈ V and round t ∈ Z>0. As the name implies, node v’s simulation phase of round

t under Π̂, denoted φv(t), corresponds to round t of Π. Protocol Π̂ is designed so that at every

step in φv(t) other than the last one, v does not transmit any message (indicated by transmitting

ε), and at the last step of the simulation phase, v always transmits some message σ̂ ∈ Σ̂, denoted

Mv(t).

The alphabet Σ̂ is defined to be

Σ′ = (Σ ∪ {ε})× (Σ ∪ {ε})× {0, 1, 2} .

The semantics of the message Mv(t) = (σ, σ′, j) sent by node v at the last step of the simulation

phase φv(t) is that: v transmits σ ∈ Σ ∪ {ε} at round t − 1 under Π; v transmits σ′ ∈ Σ ∪ {ε} at

round t under Π; and j = t (mod 3). Following that logic, we set σ̂0 = (ε, σ0, 0).

7 Note that maintaining the value of t (mod 2) is insufficient for the sake of reaching synchronization.
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The state set Q̂ of Π̂ is defined to be

Q̂ =

⋃
q∈Q

(Pq ∪ Sq)

× {0, 1, 2} ,
where Pq × {j} and Sq × {j}, q ∈ Q, j ∈ {0, 1, 2}, are referred to as the pausing and simulating

features, respectively, whose role will be clarified soon. Suppose that v resides in state q ∈ Q at

step t under Π and that j = t (mod 3). Then, throughout φv(t), node v resides in some state in

(Pq ∪ Sq) × {j}. In particular, in the first steps of the simulation phase, v resides in states of the

pausing feature Pq×{j}, and then at some stage it switches to the simulating feature Sq×{j} and

remains in its states until the end of the simulation phase.

The pausing feature. For the simulation phase of round t, we denote the letters in (Σ∪ {ε})×
(Σ ∪ {ε}) × {j − 2} as dirty and the letters in (Σ ∪ {ε}) × (Σ ∪ {ε}) × {j − 1, j} as clean.8 The

purpose of the pausing feature Pq×{j} is to pause the execution of v until its ports do not contain

any dirty letter. This is carried out by including in Pq × {j} a state pσ,σ′ for every σ, σ′ ∈ Σ ∪ {ε};
the query letter of pσ,σ′ is (the dirty letter) λ̂(pσ,σ′) = (σ, σ′, j − 2) and the transition function δ̂ is

designed so that v moves to the next (according to some fixed order) state in the feature Pq × {j}
if and only if there are no ports storing the query letter.

We argue that the pausing feature guarantees synchronization property (S1). For the sake of

the analysis, it is convenient to assume the existence of a fully synchronous simulation phase of

a virtual round 0; upon completion of this simulation phase (at the beginning of the execution),

every node v ∈ V transmits the message Mv(0) = σ̂0. We are now ready to establish the following

lemma.

Lemma 3.1. For every t ∈ Z>0, v ∈ V , and u ∈ N (v), when v completes the pausing feature of

φv(t), port ψv(u) stores either Mu(t− 1) or Mu(t).

Proof. By induction on t. The base case of round t = 0 holds by our assumption that φv(0)

and φu(0) are fully synchronous. Assume by induction that the assertion holds for round t − 1.

Applying the inductive hypothesis to both u and v, we conclude that (1) when v completes the

pausing feature of φv(t − 1), port ψv(u) stores either Mu(t − 2) or Mu(t − 1); and (2) when u

completes the pausing feature of φu(t− 1), port ψu(v) stores either Mv(t− 2) or Mv(t− 1).

Let τu and τv denote the times at which u and v complete the pausing feature of φu(t) and

φv(t), respectively. Since v cannot complete the pausing feature of φv(t) while Mu(t − 2) is still

stored in ψv(u), it follows that at time τv, port ψv(u) stores the message Mu(t′) for some t′ ≥ t− 1.

Our goal in the remainder of this proof is to show that t′ ≤ t. If τv < τu, then t′ must be exactly

t− 1, which concludes the inductive step for that case.

8 Throughout this section, arithmetic involving the parameter j is done modulo 3.
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So, assume that τv > τu and Suppose by contradiction that t′ ≥ t + 1. Using the same line of

arguments as in the previous paragraph, we conclude that at time τu, port ψu(v) stores the message

Mv(t− 1). Node u cannot complete the pausing feature of φu(t+ 1) while Mv(t− 1) is still stored

in ψu(v), hence v must have transmitted Mv(t) before u completed the pausing feature of φu(t+1).

But this means that v completed the pausing feature of φv(t) before u could have transmitted

Mu(t+ 1), in contradiction to the assumption that ψv(u) stores Mu(t′) for some t′ ≥ t+ 1 at time

τv. The assertion follows.

Consider two adjacent nodes u, v ∈ V . If node u is at round t− 1 when an adjacent node v is

at round t + 1, then v completed the pausing feature of φv(t) before u transmitted Mu(t − 1), in

contradiction to Lemma 3.1. Therefore, our synchronizer satisfies synchronization property (S1).

Furthermore, a similar argument shows that between the time v completed the pausing feature of

φv(t) and the time v completed the simulation phase φv(t) itself, the content of ψv(u) may change

from Mu(t − 1) to Mu(t) (if it was not already Mu(t)), but it will not store Mu(t′) for any t′ > t.

This fact is crucial for the implementation of the simulation feature.

The simulation feature. Upon completion of the pausing feature Pq × {j}, v moves on to the

simulation feature Sq × {j}. The purpose of this feature is to perform the actual simulation of

round t in v, namely, to determine the state (of Q) dominating the simulation phase of the next

round and the message transmitted when moving from the simulation phase of the current round

to that of the next round.

To see how this works out, suppose that λ(q) = σ ∈ Σ. We would have wanted node v to

count (up to the bounding parameter b) the number of occurrences of Σ̂-letters in its ports that

correspond to the transmission of σ at round t− 1 under Π, that is, the number of occurrences of

letters in Γt−1 ∪ Γt, where

Γt−1 =
{(
σ′, σ, j − 1

)
| σ′ ∈ Σ ∪ {ε}

}
and Γt =

{(
σ, σ′, j

)
| σ′ ∈ Σ ∪ {ε}

}
.

More formally, the application of the transition function δ̂ at the end of the simulation phase φv(t)

should be based on fb(
∑

γ∈Γt−1∪Γt
]γ), where ]γ stands for the number of occurrences of the letter

γ in the ports of v at the end of φv(t).

Identifying the integer b with the symbol b≥, we observe that the function fb : Z≥0 → B satisfies

fb(x+ y) = min {fb(x) + fb(y), b}

for every x, y ∈ Z≥0. A natural attempt to compute fb(
∑

γ∈Γt−1∪Γt
]γ) would include in the feature

Sq ×{j} a state sγ,i for every letter γ ∈ Γt−1 ∪Γt and integer i ∈ {0, . . . , b}; the query letter of sγ,i

would be λ̂(sγ) = γ and the transition function δ̂ would be designed so that v moves from sγ,i to

sγ′,i′ , where γ′ follows γ in some fixed order of the letters in Γt−1 ∪ Γt and i′ = min{i+ fb(]γ), b}.
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However, care must be taken with this approach since ]γ may decrease (respectively, increase)

during φv(t) for γ ∈ Γt−1 (resp., for γ ∈ Γt) due to new incoming messages. To avoid this obstacle,

we design the feature Sq × {j} so that first, it computes ϕ1 ← fb(
∑

γ∈Γt−1
]γ); next, it computes

ϕ2 ← fb(
∑

γ∈Γt
]γ); and finally, it computes “again” ϕ3 ← fb(

∑
γ∈Γt−1

]γ). If φ1 = φ3, then

the current simulation phase is over and δ̂ is applied, simulating δ(q, fb(φ1 + φ2)); otherwise, the

feature Sq × {j} is invoked from scratch. Since the value of fb(
∑

γ∈Γt−1
]γ) cannot increase during

the simulation phase, and since φ1 ≤ b, the feature Sq ×{j} is invoked at most b times throughout

the execution of the simulation phase. By induction on t, we conclude that our synchronizer satisfies

synchronization property (S2), which concludes the correctness proof of the simulation.

Accounting. It remains to show that all ingredients of protocol Π̂ are of constant size and that the

run-time of protocol Π̂ incurs at most a constant multiplicative overhead on top of that of protocol

Π. The former claim is established by following our synchronizer construction, observing that

|Σ̂| = O
(
|Σ|2

)
and |Q̂| = O

(
|Q| · (|Σ|2 + |Σ| · b)

)
(recall that the bounding parameter b remains

unchanged). For the latter claim, we need the following definition: given some node subset U ∈ V
and round t ∈ Z>0, let τ(U, t) denote the first time at which u completed simulation phase φu(t)

for all nodes u ∈ U . The following proposition can now be established.

Proposition 3.2. For every node v ∈ V and round t ∈ Z>0, the time difference τ({v}, t + 1) −
τ(N (v) ∪ {v}, t) is (up)bounded by a constant.

Proof. Since each transmitted message has a delay of at most 1 unit of time, it follows that by

time τ(N (v) ∪ {v}, t) + 1, message Mu(t) must reach ψv(u) for all u ∈ N (v). The pausing and

simulation features of φv(t+ 1) are then completed within O(|Σ|2) and O(|Σ|b) steps, respectively.

The assertion follows as each step lasts for at most 1 unit of time.

Employing Proposition 3.2, we conclude by induction on t that τ(V, t) = O(t) for every t ∈ Z>0,

hence if the execution of protocol Π requires T rounds, then the execution of protocol Π̂ is completed

within O(T ) time units.

3.2 Multiple-letter queries

Recall that according to the model presented in Section 2, each state q ∈ Q is associated with

a query letter λ(q) and the application of the transition function when node v resides in state q

is determined by fb(]σ), where ]σ is the number of occurrences of the letter σ in the ports of v.

From the perspective of the protocol designer, it is often more convenient to assume that the node

queries on multiple letters — in fact, all letters — simultaneously, namely, that the application of

the transition function is determined by the vector (fb(]σ))σ∈Σ.

Now that we may assume a synchronous environment, this stronger multiple-letter queries

11



assumption can easily be supported. Indeed, at the cost of increasing the number of states and the

run-time by constant factors, one can subdivide each round into |Σ| subrounds, dedicating each

subround to a different letter in Σ, so that at the end of the round, the state of the v indicates

fb(]σ) for every σ ∈ Σ.
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