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Abstract— In wireless networks mutual interference impairs
the quality of received signals and might even prevent the correct
reception of messages. It is therefore of paramount importance to
dispose of power control and scheduling algorithms, coordinating
the transmission of communication requests. We propose a new
measure disturbance in order to comprise the intrinsic difficulty
of finding a short schedule for a problem instance. Previously
known approaches suffer from extremely bad performance in
certain network scenarios even if disturbance is low. To overcome
this problem, we present a novel scheduling algorithm for which
we give analytical worst-case guarantees on its performance.
Compared to previously known solutions, the algorithm achieves
a speed up, which can be exponential in the size of the network.

I. INTRODUCTION

In the past, the networking community has been remarkably
successful in designing protocol standards, such as TCP or
IP, many of which have even survived the unexpected and
tremendous growth of the Internet. Most of these protocols
have in common that they were developed using heuristic (rule
of thumb) reasoning, and evaluated through complex simula-
tions. While so far, this approach has worked well, we feel
that wireless networks are challenging the heuristics/simulation
paradigm.

Considering the specific characteristics of wireless net-
works, designing efficient and reliable wireless protocols is
challenging. In order to be credible, one has to consider
various difficulties which arise in practice, such as complex
wireless channel models, genuine traffic patterns, or strenuous
environmental influences. These intricate modeling issues have
often prevented researchers from thoroughly analyzing their
algorithms and protocols, resorting instead to simulation as
the seemingly only feasible method.

On the other hand, it is clear that simulation is problematic,
as one can never cover all possible scenarios. What if a
heuristic works well in most (simulated) scenarios but is
inferior in some other classes of scenarios? What if these
devastating classes are important or even critical in practice?
In view of these potential problems, it is not surprising that
several researchers in the wireless networking community
have recently started questioning the relevance of simulations.
In contrast, analytic worst-case analysis has the advantage
to include all possible cases, and offers strict performance
guarantees.

In this paper we study a fundamental problem in wireless
networking, which is prototypical for the heuristics/simulation

dilemma. Specifically, we consider the following spatial reuse
instance, captured by the following well-known scheduling
problem: Given a set of transmission requests, how do we
schedule these requests such that concurrent transmissions
do not cause a level of interference preventing the correct
reception of messages and that the total time needed to
successfully schedule all requests is minimized.

If we consider omnidirectional antennae, every sender
causes interference to every receiver, depending on the prop-
agation attenuation of the sender signal. In order to decode a
signal the signal-to-interference-plus-noise-ratio (SINR) has
to be above a threshold that depends on the given hardware.
However, even an optimal power control algorithm cannot
guarantee acceptable SINR levels for all links concurrently
because, in general, only a subset of all links can be sched-
uled in parallel. It is therefore unavoidable to postpone the
transmission of some communication requests to subsequent
time slots. As short schedules maximize network throughput,
the ultimate aim of any scheduling protocol is hence to find a
schedule of minimum (or at least close to minimal) length.

Scheduling in wireless networks being of utmost theoretical
and practical importance, it is not surprising that numerous
heuristics are known for this problem. In this paper, we
prove that for certain problem instances all these heuristics
perform poorly (Section V). In addition we present a new
scheduling algorithm called LDS that exhibits explicit worst-
case guarantees (Section IV). We prove that on a class of
scenarios our algorithm performs exponentially better than all
the previous heuristics we are aware of. In particular, LDS
schedules n transmission requests in O(log2 n) time whereas
previous heuristics require Ω(n) time.

II. RELATED WORK AND EXISTING PROTOCOLS

A wide range of models and various classes of proto-
cols have been suggested in order to solve the problem of
scheduling and power control. One line of research uses a
graph representation of a wireless network, modeling interfer-
ence by some (often binary) graph property. Assuming equal
transmission powers for all sending nodes, for instance, the
set of “interference-edges” contains pairs of nodes within a
certain distance to each other, thus modeling interference as
a local measure. Graph-based scheduling algorithms usually
employ an implicit or explicit coloring strategy, which neglects
the aggregated interference of nodes located further away.



More importantly, as shown in [14], graph-based scheduling
algorithms are too conservative as they do not tap the full
potential of spatial reuse. Overlapping links, for instance, are
not scheduled simultaneously in a graph-based scheduling
algorithm although this is feasible in practice [14]. The perfor-
mance of graph-based algorithms is examined in [10] and [2]
along with a demonstration that such simplistic graph-based
approaches are inferior to algorithms in more realistic SINR
models.

As we argue in detail in Section V, algorithms explicitly
defined for the SINR model can broadly be classified into
three categories. One approach is to assign the same power to
all transmitting nodes. In [13] it is shown that protocols with
such uniform power assignment can result in long schedules.
In the same paper it is proved that the second intuitive
procedure, adjusting the power proportionally to the so-called
“energy-metric”, can lead to long schedules as well.

More sophisticated methods are based on results from [1],
where Aein shows how to determine the maximum achiev-
able SINR∗ in polynomial time for satellite communications
system. These results being directly applicable to wireless
networks, it is possible to find an optimal power assignment
efficiently. However, the problem is that SINR∗ may be too
low to guarantee correct reception at all receivers. That implies
that our problem of partitioning the set of communication
requests into time slots meeting the required SINR criteria
remains unresolved. A brute force approach for finding the
optimal schedule attempts to find for each time slot the largest
set of remaining links which can be scheduled simultaneously
by checking for each subset of links whether it allows a
sufficiently high SINR. As there are 2n subsets, however, the
required time complexity grows exponentially with the number
of links.

Consequently, many computationally efficient methods for
postponing the transmission of links according to some (“link
removal”) heuristics have been devised. The first among them
is presented by Zander [21]. He proposes an algorithm called
SRA, which removes nodes from the current time slot by a
stepwise approximation criterion. In [20] Zander devises an
improved algorithm called LISRA that requires less knowledge
of the network and the SINR for each time slot converges
to SINR∗ in a distributed fashion. Subsequently, several
improvements on this convergence procedure have been pro-
posed, e.g. [9], [8]. The idea of Lee et al. [12] is to postpone
links which either have a high level of interference at the
receiver or links of which the sender causes much interference
to other receivers. The distributed algorithm proposed by Wang
et al. [19] eliminates links which cause most interference in
order to allow the remaining links to reach an acceptable
SINR level. Most recently, Brar et al. [4] present a scheduling
method that is based on a greedy assignment of weighted
colors.

All the above polynomial-time algorithms have one crucial
drawback: The authors provide no worst-case analysis on
their performance and all assumptions on their algorithm’s
quality are based on simulations and—in the case of [4]—

analysis of randomly deployed networks. In Section V, we
show that these link removal heuristics have a bad worst-
case performance, creating schedules which are exponentially
longer than necessary for certain networks.

The same limitation holds for the influential algorithm for
next neighbor transmissions and power control by ElBatt and
Ephremides [6]. They combine two heuristics to produce a
short schedule and the corresponding power assignment. First
a set of valid links is selected by greedily choosing nodes such
that no node is receiving and transmitting in the same slot
(to avoid self-interference) and no sender is situated within
a certain range of an already selected receiving node. In a
second phase, Zander’s LISRA algorithm is applied to these
links. As it is possible to construct scenarios, where all links
together form a valid set, the worst case behavior of LISRA
carries over to the algorithm of [6] as well (see Section V).

Recently, polynomial-time algorithms with provable guar-
antees in physical model environments for specific network
topologies were proposed and analyzed in [13], [15]. In this
paper, we improve on these algorithms and give strict worst-
case guarantees even in scenarios in which no efficient bounds
have been derived.

The problem of scheduling broadcast requests has been
studied by Ephremides and Truong [7]. They show that in a
generalized, non-geometric model, finding an optimal schedule
is NP-complete, if no interference is tolerated. Other aspects
of scheduling and power control are studied for instance in [3],
[5], [16], [17], [18].

III. MODEL

In this paper, we are interested in devising scheduling
protocols that exhibit a provably good performance even in
non-uniformly distributed networks. We therefore consider the
network to consist of a set of n nodes X = {x1, . . . , xn}
that are arbitrarily (possibly even worst-case) located in the
Euclidean plane. The Euclidean distance between two nodes
xi, xj ∈ X , is denoted by d(xi, xj). For simplicity and
without loss of generality, we assume that the minimal distance
between any two nodes is 1.

A communication request λi from a sender si ∈ X to a
receiver ri ∈ X is represented as a directed link (si, ri) with
length di = d(si, ri).

A. The Physical SINR Model

A crucial aspect when studying scheduling in wireless
networks is to use an appropriate model. In the past, re-
searchers have studied a wide range of communication models,
ranging from complex channel models to simplistic graph-
based protocol models. A standard model that is realistic,
but also concise enough to allow for stringent reasoning and
proofs is the Physical Signal-to-Interference-plus-Noise-Ratio
(SINR) model [11]. In this model, the successful reception
of a transmission depends on the received signal strength, the
interference caused by nodes transmitting simultaneously, and
the ambient noise level.



The received power Pr(si) of a signal transmitted by sender
si at an intended receiver ri is

Pr(si) = P (si) · g(si, ri),

where P (si) is the transmission power of si and g(si, ri) is
the propagation attenuation (link gain) modeled as g(si, ri) =
d(si, ri)−α . The path-loss exponent α is a constant between 2
and 6, whose exact value depends on external conditions of the
medium (humidity, obstacles, . . . ), as well as the exact sender-
receiver distance. As common, we assume that α > 2 [11].

Given a request λi = (si, ri), we use the notation Ir(sj) =
Pr(sj) for any other sender sj concurrent to si, in order to
emphasize that the signal power transmitted by sj is perceived
at ri as interference. The total interference Ir experienced by a
receiver ri is the sum of the interference power values created
by all nodes in the network transmitting simultaneously (ex-
cept the intending sender si), that is, Ir :=

∑
sj∈X\{si} Ir(sj).

Finally, let N denote the ambient noise power level. Then, ri

receives si’s transmission if and only if

SINR(i) =
Pr(si)

N +
∑

j �=i Ir(sj)
(1)

=
P (si)g(si, ri)

N +
∑

j �=i P (sj)g(sj , ri)

=
P (si)

d(si,ri)α

N +
∑

j �=i
P (sj)

d(sj ,ri)α

≥ β,

where β is the minimum SINR required for a successful
message reception.

In our analysis we often use the gain matrix G = [g(si, rj)]
and its normalized correspondent Z = [ g(si,rj)

g(si,ri)
].

B. Problem Formulation

The aim of a scheduling and power control algorithm is to
generate a sequence of power assignment vectors, such that the
SINR level is above a threshold β at every intended receiver
and all links are scheduled successfully at least once.

More formally, let Λ be a set of communication requests
λi. Pt denotes the power assignment vector, where Pt(si)
determines the transmission power of sender si in time slot t.
A schedule is represented by S = (P1, . . . , PT ). As in [11],
it is assumed without loss of generality that transmissions are
slotted into synchronized slots of equal length.

Let Lt be the set of all successfully scheduled links in
time slot t. The goal is that after as few time slots as
possible the union of all sets Lt equals the set of requests Λ.
The scheduling complexity defined in [13] is a measure that
captures the amount of time required by a scheduling protocol
to schedule requests in the Physical SINR model.

Definition 3.1: The scheduling problem for Λ is to find
a schedule S of minimal length T such that the union of
all successfully transmitted links

⋃T (S)
t=1 Lt equals Λ. An

algorithm’s scheduling complexity is the length of the schedule
generated.

The scheduling complexity of a protocol reflects the pro-
tocol’s quality. Ideally, a wireless scheduling protocol should

achieve a good (close to optimal) scheduling complexity in
all networks and for arbitrary communication requests. Un-
derstanding the scheduling complexity of different protocols
in arbitrary networks is therefore of fundamental practical and
theoretical interest in wireless networking.

C. The Disturbance

Since we study arbitrary, possibly worst-case network and
request settings, we introduce a formal measure that captures
the intrinsic difficulty of scheduling a given set of communi-
cation requests.

For a given set of communication requests Λ and some
constant ρ ≥ 1, we define the ρ-disturbance as the maximal
number of senders (receivers) that are in close physical prox-
imity (depending on the parameter ρ) of any sender (receiver).
Consider disks Si and Ri of radius di/ρ around sender si and
receiver ri, respectively. Formally, the ρ-disturbance of a link
λi is the larger of either the number of senders in Si or the
number of receivers in Ri. The ρ-disturbance of Λ is then the
maximum ρ-disturbance of any link λi ∈ Λ.

Definition 3.2: Given a set of requests Λ. The ρ-
disturbance, denoted as χρ of Λ is defined as

χρ := max
λi∈Λ

χρ(λi),

where the disturbance χρ(λi) for request λi is the maximum
of |{rj | d(rj , ri) ≤ di/ρ}| and |{sj | d(sj , si) ≤ di/ρ}|.

As it turns out, the disturbance of a set of requests in-
deed captures the fundamental difficulty of scheduling these
requests. Solving problem instances with low disturbance effi-
ciently is very important in practice since in realistic networks
one always tries to prevent situations with many receivers
clustered in the same area. Section IV presents LDS, a
scheduling protocol that achieves a provably fast performance
for all networks and requests that have low disturbance. On
the other hand, we prove in Section V that currently known
scheduling protocols may perform highly sub-optimally even
in instances with low disturbance. In fact, the number of time
slots required by any such protocol may be exponentially
higher than the optimum.

IV. EFFICIENT SCHEDULING PROTOCOL

In this section, we propose a novel scheduling protocol,
called the Low-Disturbance Scheduling Protocol (LDS), which
achieves provable performance guarantees even in worst-case
networks. In particular, given a network and a set of commu-
nication requests, LDS computes a schedule whose length is
within a polylogarithmic factor of the network’s disturbance.

A. LDS Protocol

The protocol consists of three parts: a pre-processing step,
the main scheduling-loop, and a test-subroutine that deter-
mines whether a link is to be scheduled in a given time slot.

The purpose of the pre-processing phase is to assign two
values τ(i) and γ(i) to every request λi. The value γ(i)
is an integer values between 1 and �log(3nβ) + ρ log α�.
The idea is that only requests with the same γ(i) values



are considered for scheduling in the same iteration of the
main scheduling-loop (Lines 2 and 3 of the main scheduling-
loop). The second assigned value, τ(i), further partitions the
requests. In particular, it holds that the length of all requests
that have the same γ(i) and τ(i) differ by at most a factor
two. On the other hand, we show in Lemma 4.4 that if two
requests λi and λj satisfy τ(i) < τ(j), then the length of λi,
di, is at least by a factor 1

2 (3nβρα)τ(j)−τ(i) longer than dj .
Generally speaking, the assignment of τ(i) ensures that the
smaller the value τ(i) assigned to a requests λi, the longer
the corresponding communication link, and vice versa.

In summary, the pre-processing phase partitions the set of
requests in such a way that two requests λi and λj that are
assigned the same γ(i) have either almost equal length (if,
τ(i) = τ(j)) or very different length. This partition will turn
out to be crucial in the actual scheduling process, which takes
part in the subsequent main scheduling-loop.

Each for-loop iteration of the main scheduling-loop sched-
ules the set of requests having the same γ(i) values, denoted
by Fk. As long as not all requests of Fk have been successfully
scheduled, the algorithm considers the remaining requests in
Fk in decreasing order of their length di. Specifically, the
algorithm checks for each request whether it can safely be
scheduled alongside the longer links that have already been
selected. If a request is chosen to be scheduled in time slot t,
it is added to Lt, otherwise it remains in Fk.

The decision whether a request λi is selected for scheduling
or not takes place in the allowed(λi,Lt) subroutine. For
each (longer) request λj ∈ Lt that has already been chosen
to be scheduled in time slot t, the subroutine checks three
conditions. Only if none of them is violated, λi is added to
Lt. Notice, however, that the selection-criteria are significantly
more complex than the simple “reuse-distance” argument that
has been used in previous work (e.g. [6]). In particular, the
second criterion states that λi is scheduled only if for all
longer requests λj ∈ Lt, it holds that di ·(3nβρα)

τ(i)−τ(j)+1
α >

d(si, rj) if τ(i) > τ(j). That is, the distance that must be
maintained between the sender si of λi and the receiver of rj

of some λj ∈ Lt depends on the relative values of τ(i) and
τ(j) assigned in the pre-processing phase.

The definition of the three selection-criteria guarantees that
all simultaneously transmitted requests in a single time slot are
received successfully by the intended receivers. Additionally,
the subsequent analysis section shows that all requests can be
scheduled efficiently even in worst-case networks.

B. Analysis

In this section, we prove that the LDS protocol is both
correct (i.e., all requests scheduled during the protocol’s ex-
ecution are received successfully at the intended receivers)
and fast. Specifically, we prove that every set of requests
can be scheduled efficiently even in worst-case networks
provided that the ρ-disturbance of the requests is small. As
we show in Section V, this distinguishes the LDS protocol
from all existing protocols, that may perform badly even if
the disturbance is small.

Algorithm 1 The LDS Protocol for requests Λ

Pre-processing phase:
1: τcur := 1; γcur := 1; last := d1;
2: Consider all requests λi ∈ Λ in decreasing order of di:
3: for each λi ∈ Λ do
4: if last/di ≥ 2 then
5: if γcur < �log(3nβ) + ρ log α� then
6: γcur := γcur + 1;
7: else
8: γcur := 1; τcur := τcur + 1;
9: end

10: last := di;
11: end
12: γ(i) := γcur; τ(i) := τcur;
13: end
Main scheduling-loop:

1: Define constant ν such that ν := 4N ;
2: t := 1;
3: for k = 1 to �log(3nβ) + ρ log α� do
4: Let Fk be the set of all requests λi with γ(i) = k.
5: while not all requests in Fk have been scheduled do
6: Lt := ∅;
7: Consider all λi ∈ Fk in decreasing order of di:
8: if allowed(λi, Lt) then
9: Lt := Lt ∪ {λi}; Fk := Fk \ {λi}

10: end if
11: Schedule all λi ∈ Et in time slot t, assigning si

a transmission power of Pi = ν · dα
i · (3nβρα)τ(i);

12: t := t + 1;
13: end while
14: end for

allowed(λi,Lt)

1: Define constant µ such that µ := 4 α

√
120β(α−1)

α−2 ;
2: for each λj ∈ Lt do
3: δij := τ(i) − τ(j);
4: if τ(i) = τ(j) and µ · di > d(si, sj)
5: or τ(i) > τ(j) and di · (3nβρα)

δij+1
α > d(si, rj)

6: or τ(i) > τ(j) and dj/ρ > d(sj , ri)
7: then return false
8: end for
9: return true

We begin with two simple lemmas that bound the amount
of interference created by simultaneously scheduled senders
sj at an intended received ri.

Lemma 4.1: Let λi and λj be two requests with τ(i) �=
τ(j) the protocol selects for the same time slot. The inter-
ference at ri created by sj is at most Ir(sj) ≤ ν · ρατ(i) ·
(3nβ)τ(i)−1, where ν = 4N .

Proof: We distinguish two cases, depending on the
relative values of τ(i) and τ(j).
a) τ(i) < τ(j): In this case, we know that di > dj by the
definition of Line 6 in the main scheduling-loop. Hence, by



the time λj is added to Lt by the allowed(
i,Lt) subroutine,
λi is already in Lt. Because allowed(
i,Lt) evaluated to

true, the distance d(sj , ri) is at least di ·(3nβρα)
δij+1

α , where
δij := τ(i)−τ(j). Hence the interference of sj at ri is at most

Ir(sj) =
Pj

d(sj , ri)α
≤ ν · dα

j · (3nβρα)τ(j)

dα
j · (3nβρα)δij+1

= ν · (3nβρα)τ(i)−1,

which is smaller than the upper-bound claimed in the lemma.
b) τ(i) > τ(j): In this case, it holds that di < dj . Because
both links have been selected by the protocol, it follows that
d(sj , ri) ≥ dj/ρ. Furthermore, it holds that τ(i) ≥ τ(j) + 1,
thus the maximum amount of interference that can be caused
by sj at ri is

Ir(sj) =
Pj

d(sj , ri)α
≤ ν · dα

j · (3nβρα)τ(j)

(dj/ρ)α

= ν · ρα(τ(j)+1) · (3nβ)τ(j)

≤ ν · ρατ(i) · (3nβ)τ(i)−1.

The next lemma bounds the total interference created by all
nodes transmitting simultaneously for which τ(i) = τ(j).

Lemma 4.2: Given a request λi, the total interference I0
r at

ri created by all senders sj transmitting simultaneously for
which τ(i) = τ(j) is at most I0

r ≤ ν
4βτ(i)−1(3nρα)τ(i).

Proof: By the pre-processing phase, it holds that if both
τ(i) = τ(j) and γ(i) = γ(j), then dj

2 ≤ di ≤ 2dj is satisfied.
Thus, all requests have roughly the same lengths and we can
bound the total interference using a standard area argument.
Specifically, by Line 3 of the allowed(λi,Lt) subroutine,
λi and λj being scheduled in the same time slot implies
that µ · di > d(si, sj), where µ := 4 α

√
120β(α − 1)/α − 2.

Now, consider all concurrently transmitting nodes sj for which
τ(i) = τ(j) and consider disks Dj of radius µdi

4 centered
at each such sender. Because of the required spatial reuse
distance and the fact that the length of two requests differs
by at most a factor two, it holds that d(sj , sj′) > µdi

2 and
hence, disks Dj do not overlap. The area of each such disk is
A(Di) ≥ (µdi

4 )2π.
Consider rings Rk of width µdi around ri, consisting of all

senders sj transmitting simultaneously for which τ(i) = τ(j)
and kµ

2 di ≤ d(sj , ri) ≤ (k+1)µ
2 di. Notice that by the first

condition of the subroutine, R1 must be empty. Consider a
ring Rk and the transmitters contained in it. All corresponding
disks Di must be entirely located in an “extended” ring R∗

k

of area

A(R∗
k) =

[(
(k + 1)µdi

2
+

µdi

2

)2

−
(

kµdi

2
− µdi

2

)2
]

π

=
3(2k + 1)

4
µ2d2

i π.

The distance of a sender sj in Rk from ri has a lower bound
of kµ

2 di. Furthermore, each such sender transmits at a power
at most ν · (2di)α · (3nβρα)τ(i). Using the fact that the disks

Di do not overlap, we can bound the interference at ri from
nodes in ring Rk by

I0
r (Rk) ≤ A(R∗

k)
A(Di)

· ν(3βnρα)τ(i) · (2di)α

(kµ
2 di)α

<
12(2k + 1)ν(3βnρα)τ(i) · 22α

(kµ)α

≤ 30ν(3βnρα)τ(i) · 22α

kα−1µα
,

where the last inequality follows because only rings where
k ≥ 2 need to be considered. Summing up the interference
generated by all rings results in a total interference of

I0
r <

∞∑
k=1

I0
r (Rk) ≤ 30ν(3βnρα)τ(i) · 22α

µα

∞∑
k=1

1
kα−1

<
30ν(3βnρα)τ(i) · 22α

µα
· α − 1
α − 2

<
ν

4
βτ(i)−1(3nρα)τ(i),

where the second-to-last inequality follows from a bound on
Riemann’s zeta-function and the last one from plugging in the
definition of µ. This concludes the proof.

Using the previous two lemmas, it can now be shown that
every message scheduled for transmission by the algorithm
can be decoded successfully by the intended receiver.

Theorem 4.3: The schedule computed by the protocol al-
lows all requests to be successfully received by the intended
receiver.

Proof: Using Lemmas 4.1 and 4.2, we bound the total
interference Ir created by concurrent senders as

Ir ≤ ν

4
βτ(i)−1(3nρα)τ(i) +

∑
sj :τ(i) �=τ(j)

νρατ(i)(3nβ)τ(i)−1

≤ (ν/4 + ν/3) (3nρα)τ(i)βτ(i)−1.

The theorem follows from verifying that the resulting SINR
is sufficiently high and by noting that every request is sched-
uled for transmission exactly once by the algorithm.

SINR(ri) ≥ ν · (3nβρα)τ(i)

N +
(

ν
3 + ν

4

)
(3nρα)τ(i)βτ(i)−1

> β.

So far, we have proven that the produced schedule is
correct in the sense that all messages are actually received
successfully. It now remains to show that the schedule is
short and includes all requests. For this reason, we bound the
number of time slots required to schedule all requests that have
the same γ(i) value. That is, we bound the amount of time
used for one iteration of the for-loop in the main scheduling-
loop. We begin with two simple lemmas.

Lemma 4.4: Consider two requests λi and λj with γ(i) =
γ(j). If τ(i) ≥ τ(j) it holds that

dj ≥ 1/2(3nβρα)τ(i)−τ(j) · di.
Proof: If two requests λi and λj have the same γ

value but different τ values, γ(i) has been increased at least



(τ(i)− τ(j))�log(3nβ) + ρ log α� times since processing λj .
The reason is that γ(i) must be increased exactly �log(3nβ)+
ρ log α� times (and reset to 0 once) in order to reach γ(i) =
γ(j) for the next higher value of τ . Due to Line 4, each but
one such increase implies a halving of the length dj . Hence,

dj ≥ di · 2(τ(i)−τ(j))(log(3nβ)+ρ log α) ≥ di · (3nβρα)τ(i)−τ(j).

Lemma 4.5: In any disk D of radius R, there can be at
most χρ receivers ri of requests λi with length di ≥ 2ρR.

Proof: If di ≥ 2ρR for all λi, the disk of radius di/ρ
around each receiver fully covers D. The claim now follows
from the definition of χρ.

In order to bound the number of time slots required to
schedule all requests in the same iteration of the main loop,
we define the notion of blocking requests.

Definition 4.1: λj is a blocking request for λi if γ(i) =
γ(j), dj ≥ di, and allowed(λi,Lt) evaluates to false if
λj ∈ Lt. Bi denotes the set of blocking requests of λi.

Consequently, blocking requests λj ∈ Bi are those requests
that can “block” a request λi from being scheduled in a given
time slot. Because each such blocking request can prevent λi

from being scheduled only in a single time slot (when it is
scheduled itself), it holds that λi is scheduled in time slot
|Bi|+1 or earlier of the for-loop iteration when requests with
γ(i) are scheduled. We distinguish three kinds of blocking
requests, depending on which of the three conditions in the
allowed(λi,Lt) subroutine is responsible for the blocking,
and we bound the number of blocking requests in each
category independently.

Lemma 4.6: Let B1
i be the set of blocking requests λj ∈ Bi

with τ(i) = τ(j) and µdi > d(si, sj). For all λi it holds that
|B1

i | ≤ 4ρ2(µ + 2)2χρ.
Proof: From τ(i) = τ(j), it follows by Lemma 4.4 that

di ≤ dj ≤ 2di for all λj ∈ B1
i . By Lemma 4.5, we know

that there can be at most χρ receivers of blocking requests
with length at least di in any disk of radius di/(2ρ). Because
µdi > d(si, sj) holds for any blocking request in B1

i , any
receiver corresponding to a blocking request must be located
inside a disk of radius (µ + 2)di centered at si. Thus,

|B1
i | ≤ χρ · π(µ + 2)2d2

i
1

(2ρ)2 πd2
i

= 4ρ2(µ + 2)2χρ.

The next lemma is key to our worst-case result and bounds
the number of blocking requests that prevent a shorter request
by the second condition of the allowed(λi,Lt) subroutine.

Lemma 4.7: Let B2
i be the set of blocking requests λj ∈ Bi

with τ(i) > τ(j) and di · (3nβρα)δij+1/α > d(si, rj). For all
λi it holds that |B2

i | ≤ 16 log(n + 1)χρ.
Proof: First we show that for any integer ϕ ≥ −1, there

can be O(χρ) different blocking requests λj ∈ B2
i (ϕ) where

(3nβρα)αϕ · di < d(si, rj) ≤ (3nβρα)αϕ+1 · di.

By the definition of the second condition in the
allowed(λi,Lt) subroutine, each such request λj ∈ B2

i (ϕ)

must satisfy δij+1
α > αϕ, and hence δij ≥ αϕ+1. By

Lemma 4.4, we know that each such blocking request
λj ∈ B2

i (ϕ) with d(si, rj) in the range specified above must
be of length at least dj ≥ 1

2 (3nβρα)αϕ+1 · di.

It remains to show that there can be at most O(χρ)
such requests λj ∈ B2

i (ϕ). For simplicity, define K :=
(3nβρα)αϕ+1 · di. By Lemma 4.5 and the above lower bound
on dj , at most χρ receivers of requests in B2

i (ϕ) can be in any
disk of radius K

4ρ . By definition all these receivers rj must be
within distance K of si, thus that there can be at most 16ρ2χρ

blocking requests in B2
i (ϕ) by the classic area argument.

We know that for any integer ϕ > −1, there are at most
16ρ2χρ blocking requests in B2

i (ϕ). The value δij between
two requests λi and λj cannot exceed n and hence, the
furthest distance d(si, rj) of any blocking request λj can be
(3nβρα)

n+1
α di. It follows that |B2

i (ϕ)| = 0 for all ϕ > n+1
α .

Finally, because α(ϕ+1) > n+1
α for some ϕ ≥ logα(n + 1), it

follows that there are at most O(log n) many “rings”, each of
which can contain at most 16ρ2χρ blocking receivers. Hence,

|B2
i | =

∞∑
ϕ:=−1

|B2
i (ϕ)| ≤ logα(n + 1) · 16ρ2χρ.

Finally, we bound the number of blocking requests that
can block a request ri due to the third constraint in the
allowed(λi,Lt) subroutine.

Lemma 4.8: Let B3
i be the set of requests λj ∈ Bi with

τ(i) > τ(j) and dj

ρ > d(sj , ri). It holds |B3
i | ≤ 6χρ ∀λi.

Proof: Assume for contradiction that there are more
than 6χρ such blocking requests λj ∈ B3

i . For each of these
dj > di. Partition the area around ri into cones of angle
π/3. At least one of these cones must contain the senders
sj of χρ + 1 or more blocking requests. The angle of this
cone being π/3, the distance of the furthest such sender s′j to
each of the other blocking senders sj in this cone is at most
d(s′j , sj) < d(s′j , ri), and hence, d(s′j , sj) < di/ρ < d′j/ρ.
There are at least χρ + 1 senders within distance d′j/ρ of s′j ,
which contradicts χρ’s definition.

As every blocking request can block a request λi at most
once, we combine the above and prove the following theorem.

Theorem 4.9: The number of time slots required by Algo-
rithm 1 to successfully schedule all requests λi ∈ Λ is at most
O
(
χρρ

2 log n · (log n + ρ)
)
.

Proof: By Lemmas 4.6, 4.7, and 4.8, any request λi can
be blocked by at most

B1
i + B2

i + B3
i ≤ 4ρ2(µ + 2)2χρ+16ρ2 log(n + 1)χρ+6χρ

blocking requests. Thus, after at most O(χρρ
2·log n) iterations

of the while-loop, all requests having the same γ(i) value are
scheduled successfully. The theorem follows as the number of
for-loop iterations is �log(3nβ) + ρ log α�.

The next section shows that our algorithm significantly out-
performs other known scheduling protocols in many settings.



Algorithm 2 Generic Link Removal Algorithm
1: time slot t := 1;
2: while there are links to schedule do
3: compute SINR∗ and P∗ from Z;
4: while SINR∗ ≤ β do
5: remove links λk for which CON is satisfied;
6: compute SINR∗ and P∗ from new Z;
7: end while
8: schedule the links of Z in time slot t and assign P∗;
9: time slot t := t + 1;

10: compute new Z for unscheduled links;
11: end while

V. INEFFICIENCY OF EXISTING PROTOCOLS

Intuitively, the disturbance of a set of requests in a network
characterizes the difficulty of scheduling these requests in a
wireless communication environment. Therefore, an efficient
scheduling protocol should be capable of generating short
schedules in settings with low disturbance. Unfortunately, all
previously known scheduling protocols may require a linear
number of time slots in order to schedule a set of requests
even if their ρ-disturbance is as low as 1.

Existing scheduling algorithms and protocols for the SINR
model can be classified into three classes1:

• uniform power assignment: the transmission power of all
nodes is the same.

• linear power assignment: the transmission power for a
link of length di is set to a value proportional to dα

i .
Protocols analyzed using the so-called ‘energy-metric”
belong to this category.

• link removal heuristics

Recently, it has been proven in [13] that every protocol
employing a uniform or linear power assignment scheme has
a poor worst-case efficiency. In particular, any such protocol
may require a linear number of time slots even if every node
merely wants to transmit to its closest neighbor in the network.

Theorem 5.1 ([13]): Every protocol employing a uniform
or linear power assignment scheme has a worst-case schedul-
ing complexity of Ω(n) even in settings with ρ-disturbance
1.
Theorem 5.1 indicates that a large number of scheduling algo-
rithms proposed in the literature has bad worst-case behavior,
including for instance the recent algorithm in [4] for which
the authors prove guarantees in randomly deployed networks.

In contrast to these intuitive, but inefficient scheduling
schemes, link removal heuristics are much more sophisticated.
The heuristics known in the literature are all based on a generic
link removal algorithm.

The idea of these algorithms is to postpone the transmission
of a link λk from the set of the links if some condition CON
holds, until the minimal SINR level for successful reception

1Notice that protocols based on graph-models can typically be characterized
as either employing a uniform or linear power assignment scheme.

is met. Then the optimal power vector is assigned and the
procedure is repeated with the remaining links.

We scrutinize the four algorithms SRA,SMIRA,WCRP
and LISRA, which follow the execution of the generic
algorithm and differ only in the condition CON .

SRA (Stepwise Removal Algorithm), devised by Zander
in [21], iteratively removes the link with the largest row or
column sum of Z, since these sums provide a bound on the
maximal eigenvalue, until the required SINR level is met.

CON : max{
∑

j

Zkj ,
∑

j

Zjk} is maximimal for k.

SMIRA (Stepwise Maximum Interference Removal Algo-
rithm), by Lee et al. [12], excludes links which cause or receive
the most interference when power is assigned optimally, taking
the normalized link gain matrix Z and the corresponding
optimal power vector into account.
CON : max{

∑
j �=k

PjZkj , Pk

∑
j �=k

Zjk} is maximimal for k.

Lee et al. suggest versions of this algorithm considering only
maxk(

∑
j �=k PjZkj) or maxk(Pk

∑
j �=k Zjk) in the condition

and demonstrate with simulations, that they perform worse
than SMIRA. Our analysis can be adapted easily to these cases
with the same complexity result.
WCRP is a (distributed) algorithm presented in [19]. When

adapted to our model, it first computes for each row i the value
MIMSR (maximum interference to minimum signal ratio),
defined by

MIMSR(i) = max{βG(i, j)
G(i, i)

|j �= i ∧ j not scheduled}

and removes links with MIMSR above a threshold ζ. We
present here a simplified and centralized version, which pro-
duces schedules of at most the same length as the original
algorithm. CON : MIMSR(k) > ζ.

LISRA (Limited Information Stepwise Removal Algorithm),
described in [20], postpones the transmission of the links with
the lowest SINR when all sender transmit with equal power,
to increase the probability for the remaining links to reach
the SINR threshold2. To generate schedules with LISRA we
replace Step 5 of the generic with

5a: set P = 1 and compute SINR;
5b: remove links γk for which mini SINR(i) = SINR(k);

CON : SINR(k) is minimal for k.

These algorithms have all been tested in situations with
nodes distributed uniformly at random. No worst case analysis
has been done and the authors do not give any guarantees on
their behavior. To prove our point we construct an example
where the schedules these algorithms produce are extremely
long.

2In its original version step 3 contains the execution of an iterative
distributed algorithm based on locally available information. The number of
rounds is fixed beforehand, hence the quality of the results depend on the
convergence speed of the algorithm. As we are most interested in the maximal
length of the schedules LISRA produces, we replace the algorithm in step 3
by a (centralized) eigenvalue decomposition.



Consider a scenario S with k = n
2 communication requests

where all the sender and receiver nodes are situated on a
straight line with the following distance to 0: Sender node
si = −2i, receiver node ri = 2i,∀0 < i ≤ k. We set α = 3,
the noise level N = 0 and the minimum SINR necessary
for successful transmission to β = 2. For this situation all
the algorithms described above perform poorly, namely they
schedule each link individually and require Ω(n) time slots,
even though we prove O(log n) time slots to be sufficient.
Because the 3-disturbance of the above scenario S is χ3 = 1,
our example demonstrates that these algorithms exhibit severe
worst-case problems even in networks with low disturbance.

Theorem 5.2: SRA, LISRA, SMIRA and WCRP produce
a schedule of length Ω(n) for the scenario S in which the
3-disturbance χ3 is 1.

Proof: Starting from SRA, we prove the claim for each
algorithm individually.

SRA: As we cannot schedule all links in the same slot,
we compute the column and row sums of Z to decide which
links we postpone to subsequent time slots. The sum for row

i is Ri =
∑n

j=1 z(i, j) =
∑n

j=1

(
2i+1

2j+2i

)α

, which is maximal
when i = n. Analogously the sum for column i is Ci =∑n

j=1 z(j, i) =
∑n

j=1

(
2j+1

2j+2i

)α

. This sum is largest when
i = 1, since i only appears in the denominator. Hence we
have to determine max{Rn, C1}.

The summands of C1 grow with j whereas the summands of
Rn decrease. As a consequence we can simplify the analysis
by comparing 2n+1

2n−j+1+2n to 2j+1

2j+2 .

2n+1

2n−j+1 + 2n
=

2j

1 + 2j−1
=

2j+1

2 + 2j
∀0 < j ≤ n.

Hence we know that the largest row sum is equal to the
largest column row, which causes either the shortest or the
longest link to be removed from the set of links to schedule
in the next time slot. Without loss of generality we assume
that we postpone the transmission of the shortest link.

Without the first link we have to deal with almost the same
situation, the only difference is the start of the sums with j = 2
instead of 1. Again we remove the shortest link. This game
continues until only one link is left, since two links next to
each other cannot be scheduled in the same slot.

Lemma 5.3: Two links λi and λi+1 cannot be scheduled in
the same slot.

Proof: Let λi = (−2i, 2i), λj = (−2j , 2j). We compute

Z =


 1

(
2i+1

2j+2i

)α

(
2j+1

2j+2i

)α

1


 and set j = i + 1. Now the

larger eigenvalue is

λ∗ = 1/2
(

z1,1 + z2,2 +
√

4z1,2z2,1 + (z1,1 − z2,2)2
)

= 1/2
(
1 + 1 +

(√
4 · 2i+j+2/(2i + 2j)2

)α)
j=i+1= 1 +

( √
22i+3

2i + 2i+1

)α

= 1 +

(√
8

3

)α

> 1.83.

Consequently SINR∗ = 1
λ∗−1 < 1.19, implying that the links

λi and λi+1 cannot be transmitted simultaneously.
We can derive from the above, that SRA schedules all links
individually, i.e. the length of the schedule is Ω(n).

SMIRA: The transmission of link λi is postponed if either
the interference received and the interference caused by link
λi is above a certain threshold. As the receiving node of link
1 suffers from the highest level of interference we remove it.
This situation occurs again in the next time slot, hence each
link is scheduled individually, leading to a complexity of Ω(n).

WCRP: We compute the MIMSR value for each link i.

MIMSR(i) = max
j

β · G(i, j)
L · G(i, i)

= β · max
i

(
2i+1

2i + 2j

)α

.

As MIMSR(i) cannot exceed β2α, we define ζ = 10. Hence
all links apart from the three shortest links are removed. Let us
assume for simplicity that those can be scheduled in one slot.
If we repeat this step, again the three shortest links remain
and we can conclude that this method produces a schedule of
length �n/3� ∈ Ω(n)

LISRA: The same holds for LISRA, although with a
slightly different reasoning. LISRA iteratively removes the
link which achieves the lowest SINR with equal power
distribution until β is reached. In our example, the link to be
postponed will always be the longest link. As we have seen
above, two neighboring links cannot be scheduled in the same
time slot, hence LISRA also needs Ω(n) slots.

All four algorithms produce a schedule of length Ω(n) for
this example. However, it is possible to construct a much
shorter schedule. We present a schedule that needs as few
as O(log n) time slots for the n/2 links.

Theorem 5.4: There exists a scheduling and power assign-
ment scheme which produces a schedule of length O(log n)
for scenario S for all n > 16.

Proof: Consider the schedule where every log nth link
starting with 1 is selected for transmission in slot 1, every
log nth link starting with 2 for slot 2, etc. More formally,
we schedule {λt, λt+log n, λt+2 log n, . . .} in time slot t. We
construct a power assignment P (si) such that every link
exceeds a signal-to-interference-ratio of 2.

Let us have a closer look at the set Λt containing the
links scheduled for time slot t. There are at most � n

2 log n�
links scheduled in this slot, of which we select link λi =
(−2i, 2i), the τ th

i longest link. Consider the assignment
P (si) = (2n)τi2α(i+1) to si and recall that SINR(i) =
Pr(si)/

∑
λj∈Λt\{λi} Ii(sj)

We note that the largest interference is caused by the
neighboring links λ(i−log n) and λ(i+log n). Moreover, the
interference power is cut in half for each link further away
from λi.

Claim 5.5: The following two inequalities hold:
Ii(si−j log n) > 2Ii(si−(j+1) log n) and
Ii(si+j log n) > 2Ii(si+(j+1) log n) ∀0 < j < n, n > 4.



Proof: The first inequality holds because of

Ii(si−j log n)
Ii(si−(j+1) log n)

=
P (si−j log n)g(si−j log n, ri)

P (si−(j+1) log n)g(si−(j+1) log n, ri)

=
(2n)τi+j2α(i−j log n+1)(2i + 2i−j log n)−α

(2n)τi+j+12α(i−(j+1) log n+1)(2i + 2i−(j+1) log n)−α

=
nα

2n · nα

(1 + nj+1)α

(1 + nj)α
≥ 2 ∀n ≥ 3.

The other inequality can be proved analogously.
Applying Claim 5.5 we can bound SINR(i) as follows

SINR(i)=
Pr(si)∑

λj∈Λt\{λi}Ii(sj)
≥ Pr(si)

2(Ii(si−log n)+Ii(si+log n))

=
(2n)τi2α(i+1)

2α(i+1)

2( (2n)τi+12α(i−log n+1)

(2i+2i−log n)α + (2n)τi−12α(i+log n+1)

(2i+2i+log n)α )

=
n(n + 1)α

2α(4n2 + nα)
≥ 2 ∀n > 16.

Since the above holds for all communication requests in all
slots, we have proved that this schedule allows the successful
transmission of all links in O(log n) time slots.

Let us now examine the schedule our LDS-protocol creates
for this scenario. The 3-disturbance χ3 of setting S is 1.
Consequently, we obtain a schedule of length O(log2 n) by
plugging in the value ρ = 3 into the bound of Theorem 4.9.
Notice that this is exponentially shorter than the schedules
generated by any uniform or linear power assignment protocol
as well as any of the known link removal heuristics.

Corollary 5.6: For ρ = 3, the LDS scheduling algorithm
produces a schedule of length O(log2n) for scenario S.

The LDS algorithm thus significantly outperforms existing
scheduling strategies in worst-case scenarios. Nonetheless,
the analysis of the power assignment P (·) of Theorem 5.4
demonstrates that an even better solution with complexity
O(log n) exists. Hence, the aim for future research remains
to devise algorithms, with results even closer to the optimum.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have shown that all scheduling protocols
studied so far may have an extremely suboptimal performance
in worst-case networks. In order to ameliorate this situation,
we propose the LDS scheduling algorithm. By employing a
novel power assignment scheme and reuse distance criterion,
our algorithm achieves a provably efficient performance in
any network and request setting that features low disturbance.
Thereby, we prove our solution to outperform all currently
existing scheduling protocols and algorithms by as much as
an exponential factor.

In its current state, the LDS protocol is centralized and
hence suited to be employed in static networks with known
traffic patterns only. Finding a distributed algorithm in a
manner similar to the LDS protocol is an exciting open prob-
lem. Ideally, such a distributed worst-case efficient scheduling
algorithm could lead to improved MAC-layer solutions, as

combined power control and scheduling are crucial to a
theoretical understanding of media access control problems.

In general, it can be argued that the network topologies
and request sequences found in real-world applications may
not have an explicit worst-case structure. We hope, however,
that our novel power assignment strategy in combination with
the theoretical insights gained from our worst-case analysis
will ultimately lead to a significant increase in bandwidth and
capacity beyond heuristics in real networks. Further investiga-
tion in this direction are bound to prove useful in areas such
as wireless mesh networks, sensor networks, or even cellular
networks.
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