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Abstract. Bitcoin does not scale, because its synchronization mecha-
nism, the blockchain, limits the maximum rate of transactions the net-
work can process. However, using off-blockchain transactions it is possible
to create long-lived channels over which an arbitrary number of transfers
can be processed locally between two users, without any burden to the
Bitcoin network. These channels may form a network of payment service
providers (PSPs). Payments can be routed between any two users in real
time, without any confirmation delay. In this work we present a protocol
for duplex micropayment channels, which guarantees end-to-end security
and allow instant transfers, laying the foundation of the PSP network.

1 Introduction

Credit card companies process a growing number of transactions, currently more
than 10,000 per second. In contrast, Bitcoin currently handles about one trans-
action per second. Bitcoin’s turnover is growing, and ultimately Bitcoin may
become a viable payment alternative. However, can Bitcoin scale to match the
throughput of credit cards, or even an envisioned world of millions of micropay-
ments per second?

The answer to this question is astonishingly negative. In order to verify
whether a new transaction is valid, and in order to bootstrap new peers, ev-
ery peer in the Bitcoin network stores every transaction ever. The size of an
average transaction is 500 bytes, so with 1 transaction per second, every Bitcoin
peer now needs almost 20 GB of additional storage each year. A turnover of 500
transactions per second would require 10 TB of additional disk space per year,
which is at the limit for a consumer.

A bigger problem is processing power. Checking the signatures of each trans-
action (mostly because of disk seek time) takes about 5 ms, so with current
machines we cannot hope to scale beyond 200 transactions per second.

Every node in the bitcoin network is informed about every transaction, mul-
tiple times because of the fault-tolerant gossip process. Assuming a common
end-user bandwidth of 10 Mbit/s, then the rate peers can receive transactions is
limited to approximately 1,000 transactions per second. Finally, while peers may
individually be able to receive and process up to 200 transactions per second,
the synchronization mechanism underlying Bitcoin is susceptible to latency, and
does not work with transaction rates above 100 transactions per second [6].



In summary, Bitcoin in its current form will have a hard time scaling beyond
100 transactions per second, because of storage, processing, latency, and band-
width. The problem of Bitcoin is its reliance on a synchronized global state, the
replicated blockchain.

In this paper, we propose to reduce the reliance on the blockchain to further
decentralize the architecture of Bitcoin. We believe that the blockchain should
only be used to establish long lived point-to-point channels between parties over
which an arbitrary number of transfers can be performed. These transfers are
no longer Bitcoin transactions that are committed to the blockchain, instead
they rely on off-blockchain transactions that summarize any number of transfers
between two parties. The blockchain is only involved during the setup and the
closure of such a channel, while the vast majority of updates is never committed
to the blockchain.

Towards this goal we present a duplex micropayment channel protocol. Du-
plex micropayment channels are established between payment service providers
(PSPs). PSPs are the equivalent autonomous systems in the Internet, routing
transfers between end users, possibly over multiple hops, guaranteeing end-to-
end security and enabling real-time transfers. Unlike Bitcoin transactions, which
take minutes to be confirmed, transfers over our duplex micropayment channels
are final and can be accepted without further confirmations, enabling real-time
payments, and a truly scalable future Bitcoin.

2 Bitcoin

In this section we give a short overview on the basic Bitcoin protocol. Specifics
necessary for the duplex micropayment channel are discussed in detail later on.
Bitcoin is a distributed system running on a homogeneous peer-to-peer network.
Peers in the network collectively maintain a global state, known as the ledger,
which tracks bitcoins and their associations. The fundamental data unit tracked
by the network is the output, a tuple consisting of a value denominated in bitcoins
and an output script. The output script sets up a claiming condition that has
to be satisfied in order to claim the bitcoins associated with the output. The
most common case is that a signature matching an address is required. Hence,
the balance of an address is the sum of all outputs whose output scripts require
that address’ signature.

The only operation that may modify the global state is a transaction. A
transaction claims one or more previously unclaimed outputs and creates new
outputs. By providing inputs matching the output script, the creator of the
transaction proves that she is allowed to claim the output. A transaction may
redistribute the sum of values to new outputs and may set up arbitrary claiming
conditions for the outputs.

In order to apply a transaction to the replicas of the ledger, the transaction
is flooded in the network. When a node in the network receives a transaction the
node first verifies the signatures of the transaction and, if valid, the transaction
is applied to the local replica. For each input the script is executed with the



input from the claiming transaction. If all scripts return true, the outputs were
not claimed by a previous transaction, and the sum of new output values is
smaller than the sum of claimed output values the transaction is valid. Due to
the distributed nature of the system, the order in which transactions are applied
is not identical across peers, and peers may disagree about the validity of a
transaction, e.g., if two or more transactions attempt to claim the same output,
the validity depends on the order they are seen by the peers.

Bitcoin eventually resolves inconsistencies by electing one peer as leader,
which may then impose its changes to other peers, by sending a block containing
all transactions it accepted since the last block. Each block contains a reference
to its predecessor, incrementally building the blockchain, a shared history of all
transactions that were applied. Transactions that are included in a block of the
blockchain are said to be committed or confirmed. Leader election happens only
rarely at random intervals; on expectation conflicts are resolved every 10 minutes.
This is on purpose in order to minimize collisions in which multiple contradicting
blocks are broadcast. However, it also introduces a long delay until a transaction
is confirmed.

3 Building Blocks

In the following the concepts and sub-protocols used in this work are described
in more detail.

3.1 Bitcoin Contracts

Off-blockchain transaction protocols are an example of cryptocurrency contracts.
Contracts allow business logic to be encoded in Bitcoin transactions which mu-
tually guarantee that an agreed upon action is performed. The blockchain acts
as conflict mediator should a party fail to honor an agreement.

In this work we concentrate on off-blockchain transaction protocols. Further-
more we limit the description to two parties, A and B, i.e., the two ends of the
duplex micropayment channel. We denote the effective balances in the protocols
or sub-protocols as σA and σB . Since the balances may change we denote the
balances after update i as σA,i and σB,i.

The main concern with off-blockchain transactions is to ensure that no party
may renege on the agreement, possibly stealing funds from the other party. While
on-blockchain transactions ascertain that a transaction has been committed be-
fore starting the next trade, a contract may last a long time and all parties
have to ensure that they cannot be defrauded. A protocol is required in order
to achieve mutual assurance that the latest update to the agreement is the one
that will eventually be committed, and thus to invalidate any previous agree-
ments. That is, each update creates a new set of transactions that supersede the
previous update. At any time only one set of transactions may be released to
Bitcoin and will be confirmed.



The protocol has to be carefully designed to avoid any possibility for fraud.
Fraudulent behavior of a party may result in funds being stolen and funds being
inaccessible either temporarily or permanently. Our protocol guarantees that
funds are eventually refunded.

We assume that a suitable solution for transaction malleability [7] has been
implemented [1,15]. Since transactions refer to the outputs they spend by the
hash of the transaction which created the output, any change causing the hash
to change will unlink the transactions. The protocols in this work use chains of
transactions with multiple signatures. Since ECDSA signatures are inherently
malleable, anyone with the ability to re-sign a transaction may invalidate sub-
sequent transactions. If deterministic and non-malleable signature schemes are
used instead, all of our presented schemes can still be implemented securely, al-
though they will become more complex. Most of the solutions aim to normalize
transaction hashes by removing the signatures before hashing. This also enables
the creation of transactions that spend outputs created by a transaction that is
partially signed.

3.2 Timelocks and Invalidation

Bitcoin provides a mechanism to makes transactions invalid until some time in
the future: timelocks. In addition to the validity conditions mentioned in the
Section 2, a transaction may specify a locktime: the earliest time, expressed in
either a Unix timestamp or a blockchain height, at which it may be included in
a block and therefore be confirmed.

Peers in the network discard transactions with future timelocks. Any block
including the transaction, that appears at a lower height or before the specified
time, is deemed invalid. Timelocks can be used to replace or supersede transac-
tions: a transaction with timelock T can be superseded by another transaction,
spending some of the same outputs, with timelock T ′ < T and ensuring that
the superseding transaction is broadcast to the network before the superseded
transaction becomes valid.

Timelocks are transitive, i.e., a transaction spending an output created by
a timelocked transaction will only be valid once the timelocked transaction is
committed. Hence a transaction spending timelocked outputs has an effective
timelock matching the maximum timelock of any transaction it depends on.

In order to update the contract, e.g., to increase the value one party will
receive in the end, it is necessary to invalidate or replace transactions during the
execution, ensuring that only the latest update is valid. Throughout the protocol
two invalidation techniques are used:

– Replace by timelock : both parties hold fully signed transactions, with differ-
ent bitcoin allocations, of which only one may be committed. All transac-
tions have a timelock in the future. Only the transaction with the smallest
timelock will eventually be committed, i.e., it is released before any other
transaction becomes valid.
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Fig. 1: Setup creating a multisig output of value σA + σB from two outputs
of value σA and σB . The refund transaction is timelocked and only valid after
T=100. The sequence of transaction exchanges detailed on the right ensures the
security of the setup. Subscripts represent the signatures by A and B or a � if a
signature is missing.

– Replace by incentive: one party has multiple fully signed transactions, with
different values transferred to it, of which only one may be committed. The
party will commit the transaction transferring the highest amount to it.

In order to guarantee that replace by timelock is secure the difference be-
tween timelocks that supersede each other has to be at least ∆T . Due to the
confirmation rate of Bitcoin we chose ∆T to be 1 hour. To simplify the notation
we express timelocks as multiples of ∆T and use offsets such that the protocol
starts at T = 0.

3.3 Shared Accounts

When an output can be claimed by providing a single signature it is called a
singlesig output. In contrast the script of multisig outputs specifies a set of n
public keys and requires m-of-n (with m ≤ n) valid signatures from distinct
matching public keys from that set in order to be valid.

In the 2-of-2 case two parties, A and B, have to sign transactions spending
the output. This is akin to a shared account where any transaction spending
the common funds must be signed off by both parties. If both A and B have
supplied σA respectively σB bitcoins to a multisig output, the output’s value is
σA +σB . Of this total value we say that A effectively owns σA and B effectively
owns σB , despite both signatures being required to spend the output.

Once a multisig output has been created and committed to the blockchain,
A and B are guaranteed that the funds of the output may not be spent by either
of the parties without both agreeing. As such the creation of a multisignature
output is often used in order to setup a contract.

In order to securely create a shared account (multisig output) two trans-
actions are needed: a setup transaction and a refund transaction. The setup
transaction claims some funds from singlesig outputs owned by A and B, and
creates the multisig output. The refund transaction ensures that the funds are



eventually refunded should one party disappear and not provide the necessary
signatures to spend the multisig output.

Figure 1 shows the setup of a shared account coordinated by A. First B sends
a list o of outputs it desires to add to the shared account, for a total value of
σB bitcoins. A creates an unsigned setup transaction that claims both o and its
own outputs, with a value of σA bitcoins, and creates a 2-of-2 multisig output
requiring signatures from both A and B to be spent. In addition it creates a
refund transaction that spends the newly created multisig output and transfers
σA to a singlesig output requiring A’s signature and σB to a singlesig output
requiring B’s signature. The refund transaction has a timelock some time in the
future, making it invalid until that time.

The protocol sequence diagram in Figure 1 shows the order in which mes-
sages are exchanged. A adds its signature to the refund transaction and sends
both the refund transaction and the unsigned setup transaction to B. Upon
receiving the transactions, B verifies that the refund transaction eventually re-
turns its funds and adds its signature to both transactions. B now has a valid
refund transaction and a partially signed setup transaction. Both transactions
are returned to A which adds the missing signature to the setup transaction,
making all transactions fully signed. The setup transaction is then released to
the Bitcoin network and committed to the blockchain. This locks the funds until
the refund returns them to the respective owners or until both parties agree on
a different division of the funds, signing another transaction that supersedes the
refund.

3.4 Simple Micropayment Channels

Simple micropayment channels, first introduced by Hearn and Spilman [9], are
contracts that can be established between two parties, a sender and a receiver.
Once a micropayment channel is established, the sender can send incremental
micropayments to the receiver. The channel has a limit determined by the sender
upon the channel’s creation. Once the limit is consumed, i.e., transferred entirely
to the receiver, the channel is closed.

The micropayment channel can be created by setting up a shared account,
as described in the previous section, between the sender and the receiver. The
sender A funds the channel with σA, whereas the receiver does not contribute,
i.e., σB is 0. We denote σA,i and σB,i to be the owned amounts after the ith
update by A and B respectively.

In order to perform an incremental micropayment of value δ at time i + 1,
A creates a micropayment update transaction spending the multisig output and
transferring σA,i+1 = σA,i − δ and σB,i+1 = σB,i + δ to A and B respectively.

The update transaction is signed by A and sent to the receiver B. At this
point the receiver could add its own signature and broadcast it to the Bitcoin
network, committing it to the blockchain. However, normally the transaction
is not broadcast. Instead the receiver accepts new update transactions, which
transfer a larger amount to it. Only one of the update transactions may be
committed to the blockchain since they all spend the same output. The receiver
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Fig. 2: The structure of the payment channel consists of a single transaction
splitting the value of a multisig output among the participants. In this case A
funded the channel and may send to B and δ is the sum of increments.

is incentivized to only use the latest update as it is the one paying out the
maximum amount.

Eventually (i) all the initial funds σA,0 are transferred to B, (ii) both parties
agree on closing the channel, or (iii) the refund time from the setup is approach-
ing, triggering B to close the channel. To close the channel, B broadcasts the
last update transaction which supersedes the refund transaction.

Note that such a micropayment channel is intrinsically unidirectional, i.e.,
the amount that the receiver is assigned in update transactions must be strictly
increasing, otherwise the receiver might release an earlier update, which pays
out a higher amount.

3.5 Atomic Multiparty Opt-In

In the shared account setup protocol, great care had to be taken about the
order in which signatures were added, to avoid situations where funds could
be locked in indefinitely. Atomic multiparty opt-in is an off-blockchain protocol
that enables multiple parties to negotiate the creation of a complex structure
of transactions, built on top of existing multisig outputs, without having to
worry about the order in which the signatures are added. The structure can be
negotiated openly since parties activate, or opt in, only after it is secure.

The atomic multiparty opt-in protocol uses an opt-in transaction O which
claims a multisig output and creates a new multisig output, called the root
output. Subsequent transactions spend the root output and thus are valid only if
the opt-in transaction is valid, i.e., when all parties sign the opt-in transaction.
This also obviates any refund addresses attached to intermediate outputs, which
would be needed if each subsequent transaction were negotiated independently.

One party creates an unsigned opt-in transaction which spends a multisig
output, requiring signatures from all participants, and creates one or more root
outputs. The participants then collaborate to create the updated version of the
contract, openly sharing any necessary transactions and signatures. As soon
as all parties are content with the contract they sign the opt-in transaction,
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Fig. 3: Opt-in structure to update an existing contract. The version on top is
superseded by the lower version. Transactions attached to the root outputs on
the right are negotiated openly, with the opt-in transaction determining validity.

making it valid. The fully signed opt-in transaction is then exchanged among all
participants to ensure that all parties can enforce the decision.

The atomic multiparty opt-in can be used in two ways: (i) to initially set up
a contract starting from a multisig output owned by the participants, or (ii) to
update an existing contract by building a structure that spends the root output
of an outdated contract. In the latter case, depicted in Figure 3, it is necessary
to enforce that only the new version is valid by using a smaller timelock.

The protocol is off-blockchain as its transactions are only committed to the
blockchain if one party defects. Notice that the party signing last may unilaterally
decide whether to sign and commit or not. It is therefore advisable to use the
multiparty opt-in exclusively in idempotent updates, i.e., when the value that is
paid out to the parties does not change depending on whether or not the opt-in
is committed.

3.6 Hashed Timelock Contracts (HTLC)

Hashed Timelock Contracts, or HTLCs, are contracts that require the recipient
of a payment to reveal a secret in order to claim an output before it is refunded
to the sender. The ability of the recipient to claim the output is therefore con-
ditioned on its ability to reveal the secret.

This can be used to enable end-to-end security in a multi-hop scenario, in
which a single payment is forwarded through multiple parties. In this scenario,
B requests a payment from A and specifies the hash h(S) of a secret S, which
will be used to unlock the payment. A creates an HTLC output from a shared
account with the next hop on the path to B. The HTLC output sets up the
claiming condition as shown in Figure 4: either the next hop provides S′ s.t.
h(S) = h(S′) and a valid signature from both parties, or both parties must sign
the transaction spending the HTLC output. This procedure is repeated by each
node on the path until B is reached. B then releases S to its previous node,
claiming the HTLC output, and giving the previous node the ability to claim
the previous HTLC output. This is repeated until the secret is revealed to A,
thus completing the transfer.

For each hop there is a sender HA and a receiver HB and they share a mul-
tisig output that is used for the transfer. The HTLC output is created by an
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Fig. 4: HTLC output script and structure. The first branch is a normal multisig
script while the second branch requires a secret and both signatures.

HTLC setup transaction, claiming the multisig output. During the execution of
the protocol up to three transactions are created that may claim the HTLC
output: a refund transaction, a settlement transaction, and a forfeiture trans-
action. The refund transaction is identical to the one from the shared account
setup and ensures that HA is refunded should HB not cooperate. The settlement
transaction performs the transfer from HA to HB if the latter reveals the secret.
Finally, the forfeiture transaction is used to guarantee that HA is refunded even
if the secret is eventually revealed. The last scenario is used to remove the HTLC
output before the refund becomes valid, i.e., when both parties agree to free the
funds locked in the HTLC output without performing the transfer.

The sender creates the HTLC setup transaction and all three transactions
spending the HTLC output and signs refund transaction, forfeiture transaction
and settlement transaction. The settlement transaction uses the else-branch of
the script, which uses a separate HTLC signing key for the sender. This is nec-
essary since otherwise HB could simply use the same signature in the if -branch,
since signatures are valid for both branches. The partially signed refund, for-
feiture and settlement transactions are then sent to the receiver which adds its
signature to the refund and sends it back. The sender signs the HTLC setup
transaction and sends it to the receiver, which may attempt to claim the HTLC
output unilaterally by providing its signature and the secret to the settlement
transaction.

The lifetime of the HTLC output is limited by the refund transaction’s time-
lock, and should HB want to claim it, it must release the settlement transaction
before the refund is valid. While this protocol works when committing transac-
tions directly to the blockchain, its main use is in off-blockchain transactions.

In order to be usable in off-blockchain transactions, the timelock of the refund
must be later than those in refund transactions attached to the root outputs, i.e.,
it must be guaranteed that HB indeed has time to claim the HTLC output on
the blockchain before the refund transaction becomes valid. Should the receiver
disclose the secret S to the sender, then both parties can agree on removing the
HTLC output and instead add its value to another output that directly transfers
to the receiver. On the other hand, should HB not be able to disclose S then



it may decide to forfeit the HTLC output. In this case both parties sign the
forfeiture transaction with no timelock, spending the HTLC output back to the
sender. Once the sender has a fully signed forfeiture transaction, the receiver
may not claim the HTLC output anymore since the forfeiture transaction is
valid before the settlement transaction.

The HTLC output can be attached to an existing micropayment channel, the
sender would simply send a micropayment update transaction which includes the
HTLC output of value δ.

4 Duplex Micropayment Channel

The secure setup, the micropayment channel and the hashed timelock contract
alone enable the use multi-hop micropayments with end-to-end security. However
setting up two independent micropayment channels between two peers, one for
each direction between, is fairly limited. Each channel is unidirectional and is
limited by the amount of bitcoins locked in during the setup by the sender. Once
the limit has been consumed, the channel has to be torn down and a new one
created, incurring time delay and cost of committing several transactions to the
blockchain.

While this cannot be avoided on connections at the edge of the network in
which a majority of payments flows in one direction, connections in which pay-
ments flow in both directions may take advantage from resetting their channels
once the limit is consumed. For example, consider the channels CAB from A
to B and CBA in the opposite direction, each initially funded with 1 coin. The
limit of CAB may have been consumed, and CBA has a residual of 0.5 bitcoins.
No further transfer from A to B can be performed despite A having a non-zero
balance on the CBA channel, i.e., when considering both channels the balances
are σA = 0.5 and σB = 1.5. In order to enable future transfers from A to B both
parties could agree to reset the channel, i.e., new channels C ′

AB and C ′
BA are

created and funded with 0.5 and 1.5 bitcoins respectively. Notice that in both
the depleted case and the reset case A and B own the same amount of bitcoins,
but the channel their share is bound to has changed.

In the following we describe the duplex micropayment channel protocol that
enables atomically resetting a set of channels. By doing so we enable the initial
funds to be transferred over the duplex channel an arbitrary number of times,
and hence reduce the necessity to commit to the blockchain.

A duplex micropayment channel (DMC) is established between two parties
A and B. The protocol establishes pairs of simple micropayment channels, one
for each direction between the two parties. In order to reset the channels the
protocol generates a sequence of pairs of unidirectional micropayment channels.
We use CAB,j and CBA,j to indicate the simple micropayment channels in the
jth pair of channels. Furthermore we define σX,j,i to be the amount that the
pair of micropayment channels would transfer to party X ∈ {A,B} if they were
committed to the blockchain after update i in the pair j.
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Fig. 5: A full example of the duplex micropayment channel with n = 1 and d = 3,
allowing up to 4 resets.

4.1 Structure

The fundamental structure of the DMC is the invalidation tree. The invalidation
tree is a tree in which multisig outputs are the nodes of the tree, connected
by transactions as edges. Each transaction in the tree is given a timelock, such
that there is a unique minimal timelock among all sibling transactions, i.e.,
transactions sharing the same parent output. By the replace by timelock rule,
only one path from the root of the tree is therefore first valid, i.e., the path with
the minimal timelocks for each level in the tree. Hence as long as all timelocks are
in the future, we can invalidate an entire subtree, by adding a new transaction
spending that subtree’s root output, with a smaller timelock than all existing
transactions. We define two times Tmax and Tmin in terms of locktime. All
refund transactions are set to have locktime Tmax, forcing parties to commit the
protocol’s state to the blockchain before that time in order to avoid triggering the
refunds. Tmin is the minimum timelock that is going to be used in the invalidation
tree to replace other transactions. The time from the channel creation to Tmin

is referred to as the channel’s lifetime.
The number of replacement by timelock is limited by n = (Tmax−Tmin)/∆T .

Therefore each multisig output in the invalidation tree may have at most n out-
going transactions which replace each other. Furthermore, due to the transitivity
of timelocks, the full range may not be available as adding a timelock that is
lower than one of its parent transactions has no effect: all transactions with a
lower timelock become valid simultaneously, resulting in a race condition. For
simplicity we limit the depth of the tree to d. This limits the number of trans-
actions that have to be committed to the blockchain should one party defect.

The depth d, the number of replacements in the tree n and time until funds
are refunded Tmax are parameters to the duplex micropayment channel and are
negotiated before the channel is created. Tmin can be derived from Tmax, n and
∆T , which is a system parameter.



Furthermore, knowing n and d allows the enumeration of all branches in
the tree. A branch can be represented as a string of length d, the alphabet
{Tmin, ..., Tmax} and the elements are increasing. Thus every branch has a unique
successor that directly invalidates it. This facilitates the negotiation of which
branch to select next.

The internal nodes of the invalidation tree are individual multisig outputs,
while the leafs of the tree are pairs of multisig outputs. On the leaf outputs a
pair of simple micropayment channels is built, one transferring from A to B and
the other one in the opposite direction.

Multi-hop payment flows result in HTLC outputs being attached to the sim-
ple micropayment channel matching the direction of the flow. The timelock of
the transactions spending the HTLC outputs are larger than Tmax. This ensures
that the micropayment channel creating the HTLC have been committed to the
blockchain and replace by timelock can be performed. The period between Tmax

and the last HTLC output being claimed is referred to as conflict resolution
phase.

4.2 Setup

The setup initiates the micropayment channel between two parties by locking in
the initial funds into a shared account. The shared account creation subprotocol
from Section 3.3 is used to create the multisig output. Both parties exchange a
set of singlesig outputs they would like to contribute to the channel and create
the setup transaction. The initial funds from A and B are denoted as σA,0,0 and
σB,0,0 since there were no resets and no updates yet. The refund transaction has a
timelock of Tmax. It transfers the funds back to their owners if no other agreement
is committed first. Since the setup transaction is committed in the blockchain it
is safe to build upon the multisig output. Committing the transaction may take
several minutes and the channel is not operational until it is committed.

4.3 Reset

The reset process takes care of building a new branch of the invalidation tree and
setting up the micropayment channels. This includes the first branch starting
from the shared account the setup created. A reset is triggered after the initial
setup, as well as when the limit of one of the simple micropayment channels
is depleted. Assuming that the limit of A’s channel CAB,j is consumed and
therefore requires a reset. A is said to coordinate the reset: it will no longer
perform updates to its channel CAB,j and send a reset request to the B. Upon
receiving the reset request, B stops performing updates to its channel CBA,j

and sends a reset response. The reset response signals to A that B is willing to
perform the reset and that no further updates to CBA,j will be performed and
that the value transferred by the two simple micropayment channels σA,j,i and
σB,j,i will not change.

Upon receiving the reset response, A can proceed to build the next branch
ending in two multisig outputs. The values of the two multisig outputs are



σA,j+1,0 = σA,j,i and σB,j+1,0 = σB,j,i, i.e., each multisig output is virtually
owned by one party and its value represents the share the owner would get if
the current branch were to be committed. On top of the leaf multisig outputs
two new simple micropayment channels CAB,j+1 and CBA,j+1 are built with
respective refund transactions. The branch is negotiated as an instance of the
atomic multiparty opt-in protocol, with the transaction spending the existing
output from the previous branch as opt-in transaction and the remainder of the
branch as subsequent structure. A may sign the entire branch where necessary,
except the opt-in transaction, which may only be signed once B has signed the
refund transactions for the simple micropayment channels, therefore assuring
that funds will not be locked in indefinitely.

The atomic multiparty opt-in ensures that either both agree on switching to
the new branch or the old branch remains active. In both cases the same amounts
are transferred to the two parties and updates to the micropayment channels
CAB,j+1 and CBA,j+1 resume only once both parties have a fully signed opt-in
transaction.

4.4 Teardown and Commit

Eventually the duplex micropayment channel needs to be closed and the sum-
mary of the channel committed to the blockchain. The closure of the duplex
micropayment channel can be triggered by agreement or by the end to the chan-
nel’s lifetime. Either both parties agree on the summary, or they disagree and
do not collaborate. In the first case they may simply create a teardown transac-
tion, which transfers σA,j,i to A and σB,j,i to B, assuming update i is the latest
update in the current round j. The teardown transaction is not timelocked and
directly spends the multisig output created in the setup process, hence it can
be committed to the blockchain immediately. The process simply involves one
party creating the teardown transaction, both parties signing it and committing
it to the blockchain. HTLC outputs which have not been removed by agreement
can be copied over to the summary transaction such that the same timelocks
and resolution rules apply.

In the case parties do not agree on the summary of the channel, they still
have the latest branch of the invalidation tree that guarantees eventual conflict
resolution. Before the refunds become valid the branch is submitted to the Bit-
coin network and will be committed to the blockchain. Unlike the commit using
a summary transaction, which requires just a single transaction to be commit-
ted, the resolution by tree branch requires up to d + 2 transactions, hence we
limit on the depth of the tree.

4.5 Refresh

In the case two parties have an existing duplex micropayment channel its life-
time may be extended using the refresh process. Analogously to the reset sub-
protocol, both parties stop updating the existing duplex micropayment channel



by exchanging refresh request and refresh response messages, thus flushing pend-
ing changes. The parties agree on new parameters Tmax and Tmin determining
the new channel’s lifetime. One party creates an opt-in transaction creating a
new root output and a refund transaction with a timelock of Tmax transferring
σA,j,i and σB,j,i to their respective owners. Both parties then perform the atomic
multiparty opt-in protocol using the opt-in transaction and the refund as subse-
quent structure. The opt-in transaction is then published on the Bitcoin network
and committed to the blockchain, invalidating the entire invalidation tree built
on the old root output.

Special care has to be taken with HTLC outputs as these may time out
during the new channel’s lifetime. The HTLC outputs are copied over to the
opt-in transaction, and their resolution is handled on the blockchain.

The refreshed duplex micropayment channel is operational immediately, since
the opt-in transaction is guaranteed to be eventually confirmed, i.e., no party
may double-spend the old root output.

In addition funds can be removed and added during the refresh process.
Funds can be removed adding singlesig outputs to the opt-in transaction that
pay out part of a party’s balance to one of its addresses, that party’s share of
the channel is then reduced accordingly. In order to add funds to the channel,
a multisig output owned by both parties has to be created ahead of time using
the protocol in Section 3.3 so that during the refresh the outputs are committed
to the blockchain. This multisig output is then also claimed by the opt-in.

5 Routing Payments

A channel between two payment service providers (PSPs) can be established
once; it has a lifetime of hundreds of days before it is either torn down or
refreshed. The setup requires a single transaction that is committed to the
blockchain locking in the initial funds, while the teardown requires a single
transaction committed to the blockchain. In the case the two parties do not
collaborate to close the channel, at most d transactions from the invalidation
tree and two micropayment updates have to be committed to the blockchain.
The amount of bitcoins transferred is only limited by the number of resets and
the initial funds parties contribute to the channel. A channel with n = 46 and
d = 11 results in 1.48 · 1011 resets. If such a channel is initially funded with 1
bitcoin, the channel can be used to transfer a total of 148 billion bitcoins, an
equivalent of 35.3 trillion USD at today’s exchange rate, twice the US national
debt. Notice that both n and d can be chosen arbitrarily, further extending the
amount transferable by a channel.

By adding HTLC outputs to the micropayment channels, instead of sending
the increment directly, the payment can be end-to-end secured so that the re-
cipient of a payment has to confirm reception. The final recipient communicates
the secret out of band to the sender of the payment. Each hop along the route
from the sender to the recipient will create HTLC outputs transferring the funds



only upon receiving the secret, which is only released once the final recipient is
assured that the total is transferred.

6 Related Work

Bitcoin was introduced by Nakamoto in 2008 [11] and has since enjoyed a rapid
growth both in value as in transaction volume. However, the design of Bitcoin in-
trinsically limits the rate it can process transactions. Barber et al. [4] identified
problems with data retention, which later were adopted to create the simpli-
fied payment verification, using filtering nodes for mobile clients. An analysis of
the information propagation [6] showed that the probability of blockchain forks
rapidly increases with increasing transaction rates and the eventually the net-
work is no longer able to resolve conflicts. Eyal et al. [8] further show how miners
may use the propagation delay in the network as a force multiplier.

The GHOST protocol [14] allows an increase of the block generation rate by
reusing blocks that are not in the main blockchain. Although mainly aimed at en-
abling innovation, Back et al. [2] propose dividing the single Bitcoin network into
smaller networks that can operate independently. Discoin and PeerCensus [5] de-
couple the confirmation of transactions from the block generation and guarantee
strong consistency. The slow confirmation also prevents a number of real-life uses
of Bitcoin, as fast payment can be double-spent and not be detected for some
time [3,10,13]. Our proposal enables secure end-to-end payments that do not
require being confirmation in the blockchain, hence enabling true micropayment
that clear in real-time.

Simple micropayment channels were introduced by Hearn and Spilman [9].
Finally the Lightning Network by Poon and Dryja [12], also creates a duplex
micropayment channel. However it requires exchanging keying material for each
update in the channels, which results in either massive storage or computational
requirements in order to invalidate previous transactions. In our proposal the
two channels operate independently allowing fully asynchronous operation be-
tween resets. Lightning renews the whole transaction structure on every update,
requiring synchronous updates and high bandwidth consumption. Furthermore
the Lightning protocol cannot be decomposed into smaller units that can be ana-
lyzed in isolation, making the security analysis difficult and resulting in complex
implementations.

7 Conclusion

Duplex micropayment channels solve a multitude of problems. For one they
enable near-infinite scalability for digital payments based on Bitcoin. Bitcoin
transactions are no longer used directly to transfer bitcoins from a sender to
a recipient, instead they are used to setup micropayment channels and handle
conflict resolution. The actual transfers are now handled at a higher level through
a network of payment service providers. The payments are end-to-end secure
thanks to the use of hashed timelock contracts, ensuring transfers between hops



are only performed if the intended recipient receives its payment. Unlike Bitcoin,
which requires a long confirmation process, transfers on a network of duplex
micropayment channels are secure from being reverted. Thus a payment network
using duplex micropayment channels is a far better fit for real-time scenarios,
e.g., buying a coffee, since transfers can be performed at the same speed messages
are passed in the Internet. With a network of payment service providers, Bitcoin
can support true micropayments with minimal fees at unprecedented scale, and
where the transfers clear in real-time.
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