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Abstract— It is well-known that TCP performs poorly in the
presence of packet losses happening for reasons other than
Internet congestion. One increasingly important source of such
errors are wireless links. In this paper, networks are studied
where the congestion—and thus the bandwidth available to a
host—varies over time, and where in addition packets are lost at
random. First, we propose a network comprising both dynamically
varying congestion and random errors. Second, our model is
extended with network calculus concepts in order to study bursty
changes of congestion. Finally, we present the transfer protocol
TCP “Wichita” (TCPW) which achieves a provable worst-case
performance in this environment.

I. INTRODUCTION

TCP is the prevailing transport protocol of the Internet. It
features a variety of properties such as reliable data transport or
flow and congestion control. Particularly, the TCP congestion
control mechanism is seen as a cornerstone of the functionality
of todays Internet, as it restricts hosts to transmit their data
with the maximum rate that can be handled by the Internet
backbone.

The approach taken by TCP is to have each sender limit
the transmission rate as a function of the perceived network
congestion: If there is little congestion on the path between the
sender and the destination, the sending rate will be increased,
and vice versa.

In order to control the transmission rate, TCP employs a
window-based scheme. Thereby, each sender maintains a send
buffer called the congestion window. Basically, this window
contains the packets which have already been sent, but which
have not yet been acknowledged by the receiver. Therefore, the
size of this window indirectly limits the sending rate: Roughly,
at the beginning of every round trip time (RTT), the sender can
send a window full of packets into the connection. At the end
of the RTT, the sender receives the acknowledgements (ACKs)
and can fill the window with new data.

In order to avoid congestion, a TCP sender seeks to change
the window’s size—and thus the sending rate—according to
the presently available bandwidth. However, the only feedback
a sender gets about the current state of the Internet is the
number of packet losses it experiences, and hence it is clear
that the size of the congestion window can only approximately
reflect the current bandwidth. Most TCP versions work as
follows: As long as no packets are lost, the window is increased
multiplicatively up to a certain threshold, after which it is

increased linearly. On the other hand, if a packet is lost, the
sending window is cut in half. This so-called Additive Increase
- Multiplicative Decrease (AIMD) strategy has proved to be
an effective means to prevent congestion collapses as they
happened in the 1980s [3]: If routers start dropping packets,
the different senders reduce their sending rates multiplicatively
and alleviate the load in a collaborative manner.

However, the Internet has undergone many changes over the
last 10 years, both in terms of its size and of its composition.
Of prime importance is the evolution of wireless networking
technology, which has led to a large number of mobile Internet
users. A crucial difference between wireline and wireless
networks is the presence of random wireless losses in the latter.
Specifically, the effective bit error rates in wireless networks
are significantly higher than in wireline networks: e.g., due to
higher cochannel interference, host mobility, multipath fading,
or disconnections because of coverage limitations, etc. [28]

The higher packet error rates in wireless networks inherently
lower the performance experienced by connections traversing
such networks. Unfortunately, however, they cause an even
more severe degradation in the throughput of connections
using TCP as the transport protocol: TCP does not have any
mechanisms to differentiate between congestion-induced and
other losses. Consequently, when a TCP sender experiences
wireless losses, it wrongly interprets such losses as congestion
losses, and cuts down its window and thus the throughput of
the connection.

In this paper, we introduce a network model which comprises
both congestion and random losses. Thereby, the bandwidth
available to a host changes over time, for instance due to the
dynamic bandwidth demand of other hosts. We will assume
a conservative perspective and consider worst-case changes of
the available bandwidth. In particular, we apply concepts of
network calculus [19] and allow for bursty dynamics. More-
over, in our model, packets are lost at random due to wireless
links, or due to intermittent faults in hardware elements (e.g.,
Ethernet, FDDI adapters, etc.) or incorrect handling of arriving
packets by routers. We then look at a single TCP sender and
investigate algorithms which achieve a provable throughput in
this environment.

The rest of this paper is organized as follows. Related
work is reviewed in Section II. In Section III, we describe
the model and introduce our definitions. Section IV presents



and analyzes our transfer protocol TCP Wichita (TCPW). We
extend our model in Section V and allow for bursty changes of
congestion. The average-case performance of TCPW is studied
by simulation in Section VI. Finally, the paper is concluded in
Section VII.

II. RELATED WORK

TCP lies at the heart of today’s Internet, and still many
aspects of TCP are subject to active research, e.g. [1], [2], [10],
[11], [12], [13], [16], [22]. Unfortunately, we can only review
some of these contributions. For an overview of TCP, we refer
the reader to [17], or—for a more technical introduction—to
[27].

With the increasing number of mobile and wireless devices
populating the Internet, researchers have started studying the
impact of wireless networking technologies on the different
layers of the protocol stack, including physical, data-link,
medium-access, network, transport, and application layers [14],
[20], [21], [23], [26], [29].

One of the first papers to address TCP performance under
random losses is due to Lakshman and Madhow [18]. The
authors investigate a model where each packet is lost indepen-
dently with probability q. It is shown that—even in the absence
of congestion and if the available bandwidth is infinite—the
TCP’s throughput is roughly limited by 1/

√
q.

Many solutions have been proposed in literature to improve
TCP’s performance over wireless links. For a good overview
on the topic, see [5][24][28]. These approaches fall into three
categories [28]: Link layer approaches which enhance TCP’s
performance without requiring any change at the transport
layer (e.g., the snoop protocol [6]); indirect approaches which
also mask the characteristics of the wireless portion of the
connection, but split the TCP connection at the base station
(e.g., I-TCP [4]); and end-to-end approaches which require
changes of the protocol stack at both the sender and the receiver
(e.g., WTCP [26]).

Our approach is different from the papers mentioned above
as we study an explicit network model. Our model is based
on the work by Karp et al. [15] who investigate several opti-
mization problems for Internet congestion. We also consider an
enhancement of this model: in [25], a novel model inspired by
network calculus concepts [19] for the congestion’s dynamics
has been introduced which allows for bursty changes of the
available bandwidth. We extend the wireline approaches of [15]
and [25] by taking random losses into account besides dynamic
congestion, seeking to shed light on the wireless case.

III. MODEL

In this paper, it is assumed that the routers in the Internet
drop packets when the congestion increases, and that some
additional packets are lost at random for other reasons, for
instance due to a high bit error rate on certain wireless links.
For such a network, we consider the problem of regulating the
sending rate of a unicast flow from one host to another such
that the throughput is maximized.

First, consider the following static model where the band-
width available to a flow is constant, and where a host aims at

choosing its sending rate x in such a way that its throughput
is maximized. If there was only a constant loss probability
(independently of the sending rate), the best policy would
clearly be to send at the highest possible rate given the host’s
hardware resources and network connection. However, if we
assume the losses due to congestion to increase with the host’s
sending rate, this may no longer be the best solution, but there
may be one or more optimal operation points. Let f be a
function that defines, for each sending rate x, a corresponding
packet loss probability f(x). Then, if the loss probability
increases monotonically— i.e., the second derivative of f is
positive: ∀x : δ2f(x)/δ2x > 0—there is exactly one optimal
operation point. It is easy to devise transport protocols that find
such a point quickly by probing different sending rates; for
example, one could make use of Brent’s algorithm [9] which
has a logarithmic execution time.

Henceforth, however, only dynamic models are considered
where the bandwidth changes over time. This paper assumes
that the bandwidth available to the flow fluctuates according
to the varying requirements for bandwidth of other competing
flows rather than on the flow considered. Thus, in our model,
the dynamics of the congestion is given externally. Addition-
ally, there are random packet losses in the network because of
wireless links.

We consider a synchronous model where time is divided
into an infinite number of rounds. The duration of a round is
approximately given by the round-trip-time (RTT) between the
sending and the receiving host of the flow. At the beginning of
each round, the sender transmits all the data in the sending
window. By the end of the round, the sender has got the
acknowledgments (ACKs) from the receiver and can detect
whether there have been any packet losses. Based on this
information, it will then increase or reduce the size of its
sending window, which determines the sending rate of the next
round. Recall that the sender is not able to distinguish whether
packets have been lost because of congestion or because of
wireless errors.

Basically, this setting can be regarded as a game: The con-
gestion changes are controlled by an adversary ADV which, in
every round t, selects the available bandwidth ut. The task of
a transfer protocol ALG is to decide the rate xt with which to
send in round t such that the throughput is maximal. Thereby,
ALG has no knowledge about ut and not even about the old
values us for s < t. All it knows is its own sending rates xs

for all s < t, and whether there have been packet losses in
these rounds.

In order to evaluate the performance of a transfer protocol
in such a game, cost or gain functions are needed. The cost
function used in this paper is described next. If in round t,
ALG sends with a rate xt, and if there are no losses, we say
that the gain of ALG in round t is xt. That is, ALG has a
gain xt if there is no congestion in round t and if there are no
random errors.

We now look at the two sources for packet losses in more
detail. If in round t the available bandwidth is smaller than the
sending rate of the transfer protocol, i.e., ut < xt, ALG cannot
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transmit its packets due to congestion and the gain is 0 in round
t. Moreover, with probability p, a channel is unavailable to the
flow in a round t regardless of the sending rate xt, and ALG
cannot increase its gain either. Thus, we have

gainALG(xt, ut) :=

{
xt, if xt ≤ ut and no random error
0, otherwise

At first sight, this cost function seems to be quite severe: For
instance, there is no gain at all in congested rounds and all data
is lost. Although there would be many reasonable alternative
cost functions, this solution takes into account that a transfer
protocol usually has to start a retransmission mechanism after
a time-out and therefore experiences a certain overhead. Note
that our cost function also incorporates an opportunity cost:
If a transfer protocol conservatively chooses too low sending
rates, i.e., xt << ut, the gain is small as well. The goal of
ALG is therefore to use sending rates xt which are always
close to, but never above ut.

Observe that with the model described so far, in the worst
case, no algorithm ALG can achieve a positive gain: After
ALG has decided about its rate xt, a powerful clairvoyant
adversary can always choose the available bandwidth to be
slightly smaller than this rate, i.e., ut = xt − ε for some
arbitrary small ε > 0. Thus, the sender suffers congestion
in every round and the total gain of ALG is 0. However,
since congestion is determined by the policies of the competing
flows, and since the flows normally do not change their rates
too abruptly, also congestion does not change too drastically
from one moment to the other. Therefore, it is reasonable to
assume certain constraints on the bandwidth’s dynamics. In
our case, we assume that the bandwidth can only increase by
a certain percentage per round; we do not need any bound
for the bandwidth’s decrease. Formally, the adversary ADV is
allowed to choose ut+1 from the interval [0, ut ·µ]. In Section
V, we will extend this model with bursts.

Having defined the gain of a transfer protocol ALG and
the worst-case congestion changes controlled by ADV , it is
possible to evaluate ALG’s performance formally. However,
quantifying the gain by an absolute number itself does not
provide many insights. The approach taken here is to compare
ALG’s gain to the gain the best transfer protocol OPT would
have achieved for the same input. Thereby, OPT knows the
available bandwidth in advance, i.e., it can always choose xt :=
ut which clearly yields the optimal throughput. Hence, OPT is
inherently more powerful than ALG: While ALG is an online
algorithm and has to select xt without the knowledge of us for
s ≥ t (and only based on binary feedbacks about us for s < t),
OPT can solve the optimization problem offline. Concretely,
OPT only experiences random losses, but no opportunity or
congestion costs, and thus its gain in round t is given by

gainOPT (xt, ut) :=

{
ut, if there is no random error
0, otherwise

To quantify ALG’s performance, we consider the compet-
itive ratio [8], i.e., the worst-case ratio (over all possible
executions) of the total gain achieved by OPT divided by the

Fig. 1. Sample sequence: The available bandwidth ut changes over time in
a limited manner. The goal of ALG is to choose xt slightly smaller than ut.
The first round is a success (u0 = x0), and ALG increases its sending rate.
In the next round however, there is no gain due to congestion. In rounds 4
and 5 there are random errors, and the transfer protocol shown in the figure
wrongfully reduces its sending rate although the potential bandwidth is large.

total gain of ALG (cf Definition 1). The objective of ALG is
to minimize this ratio.

Definition 1 (Competitive Ratio ρ): An algorithm ALG is
ρ-competitive compared to an optimal offline algorithm OPT
if for all input sequences I , it holds that

gainOPT (I) ≤ ρ · gainALG(I) + k

where k is a constant independent of the input.
In the following, we assume that there is no loss in round
0 and x0 = u0. Figure 1 depicts an example: The available
bandwidth changes multiplicatively over time, and ALG can
increase its gain only if xt ≤ ut (e.g., in round 1 where
x0 = u0). Moreover, there are random errors once in a while,
for example in rounds 4 and 5. The algorithm shown in the
figure decreases its sending rate in rounds 5 and 6, since it has
wrongfully interpreted the losses as congestion losses.

Before concluding this section, we introduce some defini-
tions. In the following, we will distinguish between good and
bad rounds.

Definition 2 (Good and Bad Rounds): Rounds where the
probing rate xt is smaller or equal the available bandwidth
ut are called good rounds. A round t where xt > ut is called
a bad round.
Moreover, we will refer to rounds where random losses happen
as loss rounds.

Definition 3 (Loss Rounds): Rounds where neither ALG
nor OPT can transmit any data because of random errors are
called loss rounds.
Note that by our definitions, ALG may not be able to transmit
any data in good rounds, because there are random losses.
However, in such a round OPT cannot increase its gain either.
This motivates the definition of successful and non-successful
rounds.

Definition 4 (Successful/Non-successful Rounds): Good
rounds where there are no losses are called successful, all
other rounds are called non-successful.
Thus, successful rounds are exactly those rounds where ALG
successfully transmits data and hence increases its gain.
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IV. A COMPETITIVE TCP

Having introduced the model, we now present and analyze
our transfer algorithm TCP Wichita, short TCPW.1 Basically,
the idea of TCPW is to compensate wrongful rate reductions
due to random errors by increasing the rate more after success-
ful rounds. TCPW is described in Algorithm 1.

Algorithm 1 TCP Wichita (TCPW)
1: (* Round t *)
2: if round t− 1 successful then
3: xt := 2µ2 · xt−1;
4: else
5: xt := xt−1/2;
6: end if

The sending rate of TCPW in round t solely depends on
the binary feedback as to whether the previous round was
successful or not. Moreover, TCPW cuts the sending window in
half after a loss. This is similar to many existing TCP versions.
However, after successful rounds, TCPW increases the sending
rate also multiplicatively. This increase is larger than µ—the
maximal change factor of the available bandwidth—in order to
compensate wrong reductions in the past.

So how does TCPW’s perform in the dynamic network intro-
duced in Section III? First, we compute the missed bandwidth
in rounds where the sending rate of TCPW is too high, i.e.,
higher than the available bandwidth (case xt > ut).

Lemma 4.1: In the bad rounds, the gain of an optimal
transfer protocol OPT is at most a factor 4µ2 larger than the
gain TCPW achieves in the good rounds, i.e.,

gainOPT (bad) ≤ 4µ2 · gainTCPW (good).
Proof: First, assume that there are no loss rounds, i.e.,

good rounds are also successful rounds, and vice versa. After
having shown that the claim holds in this case, we will tackle
the general case.

Consider the last good round t before a sequence of bad
rounds t, t + 1, ..., t + τ for some (maybe infinite) τ > 0.
We have xt ≤ ut, and by the definition of TCPW, xt+1 =
2µ2xt > ut+1, xt+2 = xt+1/2 = µ2xt > ut+2, xt+3 =
xt+2/2 = µ2/2xt > ut+3, etc.

Thus, OPT has to reduce its sending rate geometrically, and
the gain in a sequence of bad rounds after a good round t is
limited by a factor 4µ2 times the last successful transmission
of TCPW:

2µ2xt ·
∞∑

i=0

2−i = 4µ2xt.

It remains to study the case of random losses. We consider
the last good and successful round t before a sequence of non-
successful rounds t+1, t+2, ..., t+ τ for some τ > 0. TCPW
does not distinguish errors due to congestion from random
errors and reduces the probing rate geometrically as observed
above. But OPT can never send with a rate larger than xi for

1The W in Wichita stands for wireless. Moreover, in the tradition of TCP
names, Wichita is also a city (in Kansas, USA).

Fig. 2. In the first good round, the competitive ratio of TCPW is at most
2µ. In general, TCPW catches up by a factor of at least 2µ with probability
1− p, and loses a factor of at most 2µ with probability p.

i ∈ [t+1, t+τ ], because in non-successful good rounds, it also
experiences the random loss, and in bad rounds its sending rate
is upper bounded by xi for i ∈ [t + 1, t + τ ].

The study of the competitive ratio of good rounds is more
involved. By our definition, the sending rate of TCPW is lower
than the available bandwidth in these rounds. Moreover, TCPW
reduces its sending rate even further after loss rounds, because
it assumes the loss to be due to congestion.

By modeling the situation as a Markov chain (for an in-
troduction, cf [7]), it can be seen that if the random loss
probability is sufficiently small compared to the bandwidth
changes, the expected competitive ratio in good rounds is small
as well, i.e., TCPW sends at rates that are almost as high as
the optimal sending rate.

Lemma 4.2: If µ ≤ 1−p
4p , the expected gain of TCPW in

good rounds is at most a factor 4µ smaller than the expected
gain of an optimal offline algorithm OPT , i.e.,

E[gainOPT (good)] ≤ 4µ · E[gainTCPW (good)].

Proof: Consider the first good round t after a sequence of
bad rounds. Since xt−1 > ut−1, xt = xt−1/2, and ut ≤ µut−1,
the competitive ratio is at most 2µ in round t. However, with
probability p, round t is non-successful, and TCPW cuts its
sending rate in half while the actual bandwidth increases by
a factor of at most µ, yielding a new potential competitive
ratio of 4µ2. On the other hand, if there is no random loss,
TCPW catches up by a factor of at least 2µ, and the competitive
ratio is 1 (or round t + 1 is bad). Now consider round t + 1
and assume that there was a random loss in round t, i.e., the
TCPW’s sending rate is at most a factor 4µ2 smaller than the
one of OPT . With probability p, there is yet another random
loss, and the competitive ratio in round t + 2 can be as large
as 8µ3. However, with probability 1− p, TCPW catches up by
a factor of at least 2µ since the available bandwidth increases
at most by a factor µ per round. And so on.

Thus, a competitive ratio of good rounds can be modeled
with the infinite, 1-dimensional Markov chain shown in Figure
2: With probability p, TCPW loses a factor of at most 2µ in
each round compared to the real bandwidth, and catches up by
a factor at least 2µ with probability 1− p.

Let us refer to the states in the Markov chain of Figure 2—
from left to right—as s0, s1, etc., and let π(si) be the steady-
state probability of state si. We have p ·π(s0) = (1−p) ·π(s1),
and hence π(s1) = p/(1−p) ·π(s0), p ·π(s1) = (1−p) ·π(s2)
and hence π(s2) = p/(1 − p) · π(s1) = p2/(1 − p)2 · π(s0),
etc. By induction, it follows that, for i > 0,

π(si) =
(

p

1− p

)i

· π(s0)
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Fig. 3. Markov chain of a modified TCPW.

Using the fact that the steady-state probabilities must sum up
to 1, it is possible to compute π(s0):

π(s0)
∞∑

i=0

(
p

1− p

)i
!= 1 ⇒ π(s0) =

2p− 1
p− 1

.

Knowing the probability distribution, the expected competi-
tive ratio in the good rounds becomes

E[ρgood] ≤
∞∑

i=0

π(si)(2µ)i+1 = 2µπ(s0) ·
∞∑

i=0

(
2µp

1− p

)i

.

As stated in the lemma, we assume that µ ≤ 1−p
4p , and the

claim follows.
Lemma 4.2 requires that µ and p adhere to a certain

constraint, that is, if the random loss probability p is large,
the bandwidth can only change by small factors µ. Although it
is possible to alleviate this restriction by using other algorithms
than TCPW, it is clear that p and µ must always be correlated
in some way. Moreover, the performance of such alternative
transfer protocols—which can be analyzed with the same tech-
niques as introduced for TCPW—can be significantly worse
than TCPW. For example, the Markov chain of a modified
TCPW which increases its bandwidth by a factor of 4µ2 after
successful rounds but which still halves the window size is
depicted in Figure 3. The constraints for µ and p are slacker
in this case, but the competitive ratio is worse.

Finally, we can combine Lemmata 4.1 and 4.2, and get the
following theorem.

Theorem 4.3: The expected competitive ratio of TCP Wi-
chita (TCPW) is at most 4(µ2 + µ) if µ ≤ 1−p

4p .
Proof: According to Lemma 4.1, an optimal offline

algorithm OPT can increase its gain by a factor at most 4µ2

in the bad rounds following a successful round. The expected
competitive ratio of good rounds on the other hand is at most
4µ (Lemma 4.2). Since we assume that x0 = u0, there is
a good round before every sequence of bad rounds, and the
claim follows.

V. CONGESTION WITH BURSTS

It has been pointed out by Willinger et al. [30] that the
nature of network traffic is inherently self-similar and bursty.
In this section, we extend our framework to allow for burst-like
changes of the available bandwidth as proposed in [25].

We do not give a complete introduction to network calculus
here, but refer the interested reader to the book by Le Boudec
and Thiran [19]. However, we will quickly review the concept
of leaky-bucket arrival curves. In Section V-B, it is then
shown how these arrival curves are adapted to model bursty
congestion.

A. Leaky-Bucket Arrival Curves in Network Calculus

Network calculus introduces the notion of arrival curves
which provide some deterministic limitation to the network
traffic sent by sources. The idea is that if the data flows indeed
adhere to these limitations, it is possible to make statements
about the deterministic behavior of networks, for instance about
the queue lengths at the different routers.

Arrival curves are defined as follows. Let R be a data flow,
and R(t) the total number of bits R has sent until time t. Let
α be an increasing function defined for all times t ≥ 0. R has
an arrival curve α if and only if for all s ≤ t:

R(t)−R(s) ≤ α(t− s)

Thus, the total number of bits sent until time t by flow R
can never exceed the amount of bits sent by R until some
time s plus α(t − s). As an example, we look at a so-called
leaky bucket arrival curve which is defined as α(t) = c1t + c2

for some non-negative constants c1, c2. Figure 4 visualizes the
constraints imposed upon a flow R by such an arrival curve:
The total number of bits sent can increase by c2 at once and
with a rate c1 over time, unless there is a conflict with a
constraint from a previous round. Informally, the total number
of bits must always be less or equal the minimum constraint
that arises if the curve α is attached (or added) at all points of
R(t).

Fig. 4. Leaky bucket arrival curve: The number of bits sent by flow R must
never exceed the constraints from earlier times (dashed lines), i.e., ∀s ≤ t :
R(t) ≤ R(s) + α(t− s).

Note that such an arrival curve incorporates a limited form
of amortization: If flow R only sends a few bits for several
rounds, the constraints of earlier rounds get weaker and allow
R to send up to c2 bits at once in some later round. In this
paper, we port this property of arrival curves to the field of
congestion control.

B. Bursty Congestion Changes

How can the concepts of Section V-A be used to model
dynamic congestion? The idea is to bound the adversarial
bandwidth changes by an arrival curve. Concretely, the new
adversary ADV can again increase the available bandwidth by
a factor of µ in every round. However, it may also decide to
accumulate some power in some rounds and then make more
abrupt changes in later rounds. The goal of a transfer protocol
ALG is to compete with an optimal offline algorithm OPT
which knows all the bandwidth changes in advance.
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Fig. 5. Visualization for the case ∀t : ut+1 ≥ ut, i.e., for an adversary which
never decreases the bandwidth. The bandwidth can increase multiplicatively
in every round, but it must always adhere to the constraints imposed by the
previous rounds (dashed lines).

ADV has two parameters: A rate µ ≥ 1 and maximum burst
factor B ≥ 1. In every round, the available bandwidth ut varies
according to these parameters in a multiplicative manner. That
is, ADV selects ut+1 from the interval ut+1 ∈ [ ut

βtµ
, ut ·βt ·µ].

Hence, the available bandwidth can change by a factor of at
most βtµ, where βt is called the burst factor at time t. It is
explained next.

On average, the available bandwidth changes by a factor at
most µ per round. However, there can be times of only small
changes, but consequently, the bandwidth can change by factors
larger than µ in later rounds. At the beginning, βt equals B, i.e.,
β0 = B. For t > 0, the burst factor βt is computed depending
on βt−1 and the actual bandwidth change ct−1 that took place
in round t− 1. More precisely,

βt = min{B, βt−1
µ

ct−1
}

where

ct :=

{
ut+1
ut

, if ut+1 > ut

ut

ut+1
, otherwise

This means that if the available bandwidth has changed by a
factor smaller than µ in round t, i.e., ct < µ, the burst factor
will increase multiplicatively by µ

ct
, and hence the potential

bandwidth change is larger in the next round (and vice versa if
ct > µ). In other words, the adversary is allowed to save power
for forthcoming rounds. This amortization is however limited
as βt is upper bounded by B for all rounds t. Also note that
βt ≥ 1 always holds, because ct ≤ µβt by the definition of
ADV .

Figure 5 visualizes ADV for the case ∀t : ut+1 ≥ ut, i.e., for
an ADV than only increases (but never decreases) bandwidth:
The bandwidth can rise by a factor of µB in every round,
unless it conflicts with a constraint from a previous round, i.e.,
∀t : ut ≤ mini∈{0,...,t−1}{ui ·B · µt−i}.

In the following, we investigate the performance of TCPW.
First, observe that the missed gain by TCPW in bad rounds is
still upper bounded by 4µ2 times the gain of TCPW in good
rounds (cf Lemma 4.1), because the same geometric series
argument applies. For the competitive ratio of good rounds,
the analysis is similar as well: Over-pessimistically, a Markov
chain as depicted in Figure 6 can be assumed. It follows that

Fig. 6. Markov chain for expected competitive ratio for the case of bursty
congestion changes.

Fig. 7. Competitive ratio of TCPW for random error probability 10% as a
function of µ.

the expected competitive ratio is upper bounded by 4(µ+Bµ2),
if µ ≤ 1−p

4·B·p .
Theorem 5.1: In the case of worst-case bandwidth changes

with bursts, the expected competitive ratio of TCP Wichita
(TCPW) is at most 4(µ + Bµ2) if µ ≤ 1−p

4·B·p .

VI. SIMULATION

Although the main focus of this paper is on worst-case
performance, in this section, we want to complete the picture by
giving some simulations of the average case behavior of TCPW
for random (rather than adversarial) bandwidth changes.

A. Without Congestion Bursts

In Section IV, it has been shown that TCPW achieves
an expected competitive ratio of at most 4(µ2 + µ) if the
congestion changes in a worst-case manner and without bursts,
and if µ ≤ 1−p

4·p (cf Theorem 4.3). While this throughput is
acceptable, our analysis was pessimistic in several respects.
For instance, it is not possible that there is a sequence of bad
rounds right after a good round having a high competitive ratio.

So we may ask: What is the “competitive ratio” if the
bandwidth changes randomly? In the following, we select a
change factor ct uniformly distributed from the interval ct ∈R

[1, µ]. We toss a coin and increase or decrease the bandwidth
with probability .5 by a factor ct accordingly.

In experimental studies [14], [26], packet error rates ranging
from 1% in microcell wireless networks up to 10% in macrocell
networks have been reported. Moreover, it is reasonable to
assume that the bandwidth does also change around 10% or
less per round. In Figure 7, the competitive ratio of TCPW
is shown for an error probability p = .1 as a function of the
bandwidth dynamics µ. Apparently, the ratio is near linear in
this range. Moreover, as expected, it is much smaller than the
bound given in Theorem 4.3.

In a second experiment, we study the impact of the error
probability p: Figure 8 plots the competitive ratio as a function
of p for bandwidth changes of approximately 10% per round,

6



Fig. 8. Competitive ratio of TCPW for µ = 1.1 as a function of p.

i.e., µ = 1.1: After the ratio has been almost constant in
the beginning, it increases abruptly if a certain threshold is
exceeded. This also highlights the existence of a relationship
between µ and p (e.g., µ ≤ 1−p

4p in Theorem 4.3).
If the bandwidth changes randomly and if µ and p are small,

TCPW performs better if it increases the bandwidth less after
successful rounds, for example by a factor 1.1 · µ2. In the
following, we will assume such a less aggressive version of
TCP Wichita.

We have compared TCP Wichita to a simplified version
of the well-known TCP Tahoe [17] (cf Algorithm 2). At the
beginning, TCP Tahoe increases its sending rate by a factor of
two (slow-start phase), but changes to linear increase after a
certain threshold (congestion avoidance phase) is met. If there
is an error, the new threshold becomes half the sending rate at
which the loss has occurred, and the sending rate is set back to
1. Figure 9 shows a sample execution for p = .1 and µ = 1.1.
Moreover, we assume that x0 = u0 and that at the beginning,
threshold := u0/2.

Algorithm 2 TCP Tahoe
1: (* Round t *)
2: if round t− 1 successful then
3: if size(window) < threshold then
4: xt := 2 · xt−1;
5: else
6: xt := xt−1 + 1;
7: end if
8: else
9: xt := 1;

10: threshold := bxt−1/2c;
11: end if

TCP Tahoe is in the congestion avoidance phase most of
the time, as the slow starts are quite short. Moreover, with
this rather high error rate of 10%, TCP Tahoe frequently
experiences errors before it reaches the available bandwidth.
TCP Wichita on the other hand reacts faster to the changes. It
does not have any linear phases, but overshoots sometimes.

Although a comparison of different TCP versions in the
average case is beyond the scope of this paper, we just give
one more simulation, namely for a simplified version of TCP
Reno [17], which is a newer—and more widely used—TCP

Fig. 9. Sample execution of TCP Wichita and TCP Tahoe for p = .1 and
µ = 1.1.

Algorithm 3 TCP Reno
1: (* Round t *)
2: if round t− 1 successful then
3: xt := xt−1 + 1;
4: else
5: xt := bxt−1/2c;
6: end if

algorithm. In contrast to TCP Tahoe, TCP Reno cancels the
slow-start phase after a triple duplicate ACK (but not after
a time-out). The idea is that the arrival of three duplicate
ACKs indicates that some packets have been received, implying
that the packets may have been lost for other reasons than
congestion. This modification is known as fast recovery, and it
is vital to improve performance in case of random errors.

In our simulation, we assume that there are no time-outs and
TCP Reno never performs a slow-start (cf Algorithm 3). Figure
10 depicts a sample execution. It can be seen that while TCP
Reno performs better than TCP Tahoe, still many losses occur
before the available bandwidth is reached.

Finally, we want to investigate the behavior of TCPW
protocols for non-multiplicative bandwidth changes. Figure
11 shows a sample execution where the bandwidth varies
according to a normal (Gauss) distribution. Thereby, the mean
is given by the current bandwidth and the standard deviation is
2. For TCPW, we again use µ = 1.1, and the error probability
is 10%. Although TCP Wichita’s sending rate is often too high,
the performance is acceptable.

B. With Congestion Bursts

Finally, in this section, we briefly look at bursty congestion
changes [25]. The following random bandwidth changes are
considered: In round t, the “adversary” selects a change factor
uniformly at random from the interval ct ∈R [1, µ] and then
increases or decreases (each with probability .5) the bandwidth
by ct. Moreover, ADV saves a factor µ/ct. In a round where
the product of these saved factors exceeds the maximum burst
B, the congestion is changes by B ·µ, and the burst factor is set

7



Fig. 10. Sample execution of TCP Wichita and TCP Reno for p = .1 and
µ = 1.1.

Fig. 11. Sample execution of TCPW for the case of a bandwidth varying
according to the normal distribution N (ut, 2), and for p = .1 and µ = 1.1.

back to 1 (cf Section V). Figure 12 shows a sample execution
for µ = 1.05, B = 1.3 and p = .05.

VII. CONCLUSION

This paper has introduced a model comprising both worst-
case bandwidth changes and lossy links. Moreover, algorithms
have been investigated which achieve provable throughputs
under this model. Our results are based on the assumption
that a single (selfish) sender strives for higher data rates.
Of course, such a behavior (e.g., the more aggressive band-
width increase)—if concurrently applied by many senders—
may threaten the stability of a system. However, this work
has focused on a scenario where the available bandwidth is
considered to be given externally, and the study of multiple
TCPW flows remains to be addressed in future work. It would
also be interesting to extend our model to incorporate aspects
such as buffers or varying round-trip-times.

Fig. 12. Behavior of TCPW and TCP Reno for bursty bandwidth changes
with µ = 1.05, B = 1.3 and p = .05.
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