
Oblivious Gradient Clock Synchronization

Thomas Locher and Roger Wattenhofer

Computer Engineering and Networks Laboratory (TIK),
ETH Zurich, 8092 Zurich, Switzerland

{lochert, wattenhofer}@tik.ee.ethz.ch

Abstract. We study the gradient clock synchronization (GCS) problem,
in which the worst-case clock skew between neighboring nodes has to be
minimized. In particular, we consider oblivious clock synchronization al-
gorithms which base their decision on how to adapt the clock solely on
the most accurate timing information received from each neighbor. For
several intuitive clock synchronization algorithms, which attempt to min-
imize the skew at all times, we show that the clock skew between neigh-
boring nodes can be significantly larger than the proven lower bound of
Ω(log D

log log D
), where D denotes the diameter of the network. All of these

natural algorithms belong to the class of oblivious clock synchronization
algorithms. Additionally, we present an oblivious algorithm with a worst-
case skew of O(d +

√
D) between any two nodes at distance d.

Key words: Distributed algorithms, synchronization protocols, asyn-
chronous computation.

1 Introduction

Due to the rapidly growing popularity of distributed systems, such as the In-
ternet or wireless networks, and the sizable amount of applications running on
those systems, the classical problem of synchronizing distributed clocks has fur-
ther gained in importance in the last few years. The objective of a distributed
clock synchronization algorithm is to ensure that all participating nodes in the
system acquire a common notion of time. In a distributed system, nodes can
accomplish this goal by perpetually sending messages containing information
about the current clock value to the neighboring nodes.

Nodes are equipped with a hardware clock with bounded drift. According to
the current hardware clock value and the messages received from all neighboring
nodes, a logical clock value is computed. The skew between the logical clocks
is to be minimized. Previous work has focused primarily on minimizing the
clock skew between any two nodes in the system, while inducing a moderate
message overhead. Hence, the goal of past work was to ensure that clocks are
well synchronized globally. The resilience of these algorithms in the presence of
node and network failures is another aspect of distributed clock synchronization
that has been studied extensively.

For several distributed applications, such as TDMA, it is mandatory that the
clocks between any node and all nodes in its vicinity do not deviate considerably

from each other. This so called gradient property for clock synchronization was
introduced in [2]. The gradient property requires that nodes that are close by
have to be closely synchronized, whereas the skew between clocks of faraway
nodes is allowed to be larger.

The main question is what bound on the skew between nearby nodes can be
achieved by any clock synchronization algorithm. It can be shown that the skew
between two nodes at distance d cannot be synchronized better than Ω(d) by
using simple indistinguishability type arguments. Surprisingly, the skew between
two neighboring nodes, i.e. nodes at distance 1, cannot be guaranteed to be con-
stant. The lower bound on the worst-case clock skew proven in [2] is Ω(log D

log log D),
where D is the diameter of the network.

This lower bound holds even if all nodes have full knowledge of the complete
message history. However, for practical algorithms it is reasonable to assume
that nodes cannot store the entire history of messages ever received. As time
progresses, nodes will be forced to delete outdated information. We study clock
synchronization in a restricted model in which each node is only allowed to store
the largest clock value ever received from each neighbor. It is natural to restrict
the stored information to these values because any algorithm attempting to min-
imize the skew at all times will set the clock in accordance with these clock values
only, due to the lack of information about the message delays and the progress
each node might have made in the meantime. Since these algorithms are un-
aware of the communication process and determine the local clock strictly by
considering the largest clock values received from all neighboring nodes, we call
these algorithms oblivious. Studying oblivious algorithms has a long tradition
in distributed computing and computer science in general. Oblivious algorithms
are examined for various reasons, one being that they can give valuable insights
into problems that are hard to tackle in the general case. A more practical reason
is that they are normally easier to realize in hardware. Another motivation to
explore oblivious algorithms is that several oblivious algorithms perform well in
their respective domains, for example routing or sorting algorithms. It is there-
fore worthwhile to determine the effect of obliviousness on clock synchronization.

Several fundamentally different strategies can be employed in order to min-
imize the skew at all times. As nodes must generally strive to catch up with
the faster nodes, nodes can minimize the skew to the fastest node1 by setting
the clock to the largest clock value. A different approach is to minimize the
skew to all neighbors at all times. A third method that is worth investigating
is minimizing the skew to the slowest node. If every node waits under certain
circumstances for the slower nodes to catch up, the skew might be kept within
reasonable bounds. We will study algorithms devoted to each of these objectives
and show that all of them fail to provide a low bound on the worst-case skew
between neighbors.

However, these observations enable us to devise an oblivious algorithm with a
worst-case skew of O(d+

√
D) between any two nodes at distance d, if the nodes

1 The nodes with the currently largest and smallest logical clock values are called the
fastest and the slowest node, respectively.

are aware of the diameter D of the network and adjust their clock synchronization
mechanism accordingly. To the best of our knowledge, it is the first gradient
clock synchronization algorithm guaranteeing a worst-case skew of o(D) between
neighboring nodes.

After briefly summarizing related work on clock synchronization in Section 2,
we formally specify the model used in this paper in Section 3. Subsequently, we
propose gradient clock synchronization algorithms which minimize the skew to
the neighboring nodes according to the aforementioned strategies and analyze
their behavior in specific executions. This is the subject of Section 4. In Section 5,
the O(d +

√
D)-GCS algorithm is presented and analyzed.

2 Related Work

The fundamental problem of clock synchronization has been studied extensively
and many theoretical results have been published. Srikanth and Toueg [7] pre-
sented a clock synchronization algorithm which minimizes the maximum skew
between any pair of nodes, given the hardware clock drift. In every possible exe-
cution, their algorithm ensures that the skew between any two nodes is at most
Θ(D), which is asymptotically optimal. However, their algorithm also incurs a
skew of Θ(D) between neighboring nodes in the worst case.

While there has been a lot of research on bounds for the skew and the com-
munication costs [3, 5, 6] and also on the capability of clock synchronization al-
gorithms to cope with both node and network failures [7], the gradient property
has not been studied until the remarkable work by Fan and Lynch [2].

An algorithm A is said to be an f -GCS algorithm, if for all nodes i and j
the clock skew between node i and j is at most f(di,j) at all times, where di,j

denotes the distance between node i and j.
Fan and Lynch prove that there is an execution after which the skew between

two neighboring nodes is at least Ω(log D
log log D), independent of the chosen algo-

rithm. They consider a linear network of n nodes, thus D = n − 1. Their proof
relies on the fact that a node cannot increase its clock too quickly, i.e. by more
than O(f(1)) in O(1) time, otherwise it would violate the gradient property in
a different execution that is indistinguishable from the original execution. The
skew between all neighbors among k nodes can be increased by O(1) in O(k)
time, which can be shown using again an indistinguishability type argument. In
their execution, they build up a constant skew c1 in time O(n) between all n
nodes. In the next step, the execution continues to run for O(n

f(1)) time, which
means that the average skew during this time can only be reduced by a constant
c2 between each pair of neighboring nodes. The parameters can be chosen such
that c1 > c2 and thus the skew is still larger than before this round. During
the same time span, the skew between neighbors of a set of O(n

f(1)) nodes can
again be increased by a constant. This procedure can be repeated recursively
logf(1) n times and since n = D − 1 and f(1) ∈ Ω(logf(1) n), it follows that
f(1) ∈ Ω(log D

log log D). Meier and Thiele [4] showed that this bound also holds for a

different model in which the delay of each message is 0, but the communication
frequency is bounded.

An open problem for gradient clock synchronization is whether this lower
bound is tight or whether an algorithm cannot even reach this bound asymp-
totically. We will show that many natural clock synchronization algorithms do
not even come close to this bound. In the context of clock synchronization for
wireless networks, Fan et al. show that when nodes occasionally receive a mes-
sage informing them of the correct real time using a GPS service, the skew
between any two nodes can be bounded by a small constant ε > 0 “some of the
time” [1]. Thus, this algorithm only satisfies a weakened version of the gradient
property. We show that there is a general gradient clock synchronization algo-
rithm for which it holds that the skew between nodes at distance d is bounded
by O(d+

√
D) at all times. This is the first non-trivial upper bound for gradient

clock synchronization.

3 Model

We consider an arbitrary graph G = (V, E), V = {1, . . . , n}, where |V | = n and
E ⊆ V × V . Any node i can communicate with any node j to which node i is
directly connected, i.e. {i, j} ∈ E. These nodes are referred to as the neighboring
nodes or neighbors of node i. Let Ni denote the set of all neighboring nodes of
node i. The communication between neighboring nodes is reliable, but messages
can have variables delays in the range [0, 1]. The distance between nodes i and
j is defined as the length of the shortest path between those two nodes. The
diameter D of G is the maximum distance between any two nodes.

Each node i ∈ V is equipped with a hardware clock Hi(·) whose value at
time t is Hi(t) :=

∫ t

0
hi(τ)dτ , where hi(τ) is the hardware clock rate of node i

at time τ . For all nodes i ∈ V and all times t, it holds that hi(t) ∈ [L,U], where
0 < L < U . The degree of synchronization that can be achieved is related to
the maximum message delay. It is therefore reasonable to assume that a fast
processor can increase its clock by at least 1, if it takes up to 1 time before a
message arrives, therefore we assume U ≥ 1.

In addition to the hardware clock, each node i further has a logical clock
Li(·). As long as no new messages arrive, the logical clock value increases at the
rate of the hardware clock. This implies that all nodes steadily make progress.
A clock synchronization algorithm A : L × Ψ → L specifies how the logical
clock Li(t) of node i at time t is adapted according to the current value of the
logical clock and the message history Ψi(t) of node i at time t. The algorithms
are reactive in that they perform this update on the logical clock whenever a
message from a neighboring node arrives. Let L̃j(t) denote the maximum logical
clock value ever received from neighboring node j.2 For every algorithm A it

2 Note that this might not be the last message received from node j, as the commu-
nication network does not necessarily satisfy the FIFO condition.

must hold that

∀i∀t : Li(t) ≤ A(Li(t), Ψi(t)) ≤ max
j∈Ni

L̃j(t).

As the logical clock is not allowed to run backwards, the algorithm can either
increase the logical clock or leave it at the current value. Moreover, the algorithm
can set the logical clock at most to the maximum logical clock value it has ever
received. If a node i set its logical clock to a value exceeding any value it has
ever received from a neighbor, a neighboring node j could potentially increase
its logical clock value even more, based on the new clock value of node i etc.
resulting in a large clock skew between some nodes. We further assume that the
adaptation of the logical clock through A requires 0 time.

As mentioned before, we focus on the class of oblivious clock synchronization
algorithms. Nodes only store the reduced history Ψ̃i(t) := {L̃j(t)}j∈Ni , i.e. the
largest clock values received from each neighboring node is stored. Whenever
a message is received, these values are updated and, subsequently, the logical
clock is computed according to a function on Ψ̃i(t). Naturally, the old logical
clock value also has to be considered, since clocks can only make progress. In
case the computed value does not exceed the old logical clock value, the logical
clock simply remains unchanged, otherwise the logical clock is updated and the
new logical clock value is broadcast immediately to all neighbors.

An execution is a tuple E = (M,R), where M : T ×V ×V → [0, 1] defines the
message delays and the integrable function R : T × V → [L,U] determines the
hardware clock rates of each node. Hence M(t, i, j) specifies how long it takes
for the message sent by node i at real time t to arrive at j and hi(t) := R(t, i).

For any gradient clock synchronization algorithm, the goal is to ensure a
small logical clock skew between neighboring nodes, i.e. a gradient clock syn-
chronization algorithm strives to minimize maxi,j∈Ni,t |Li(t) − Lj(t)| over all
possible executions E for every graph G. In the following section, we present
natural clock synchronization algorithms and bounds on the induced worst-case
skew.

4 Algorithms and Bounds

Throughout this section, we consider the graph Glist consisting of a linear list
of n nodes, i.e. |V | = n and Elist = {{1, 2}, {2, 3}, . . . , {n − 1, n}}. This simple
graph is suitable to show that there are executions for all presented algorithms
leading to a large skew between neighboring nodes.

Initially, all logical clock values are 0. We assume that, at real time 0, node n
sends a start message to its neighbor and starts its logical clock. Every node that
receives a start message for the first time also starts its clock and broadcasts the
start message. For the purpose of synchronization, each node regularly informs
all neighbors about its current logical clock value. In particular, we assume that
every node transmits a message containing its ID and its logical clock value to
all neighboring nodes when its logical clock reaches an integer value or when the

logical clock is updated due to a received message. If a node has not yet received
a message from a certain neighbor, it assumes that this neighbor’s logical clock
is still at 0.

Note that this initialization process is used for the sake of simplicity. The
same bounds also hold asymptotically for other start-up procedures. By proving
that the proposed algorithms incur a large skew among neighboring nodes in
Glist using the stated initialization process, we can conclude that they are poor
gradient clock synchronization algorithms in general.

4.1 Minimizing the Skew to the Fastest Neighbor

A straightforward algorithm, denoted Amax, always sets the logical clock to
the largest clock value ever received, if this value exceeds the current logical
clock value. More formally, the logical clock value of node i is set to the value
max(Li(t), maxj∈Ni L̃j(t)), if it receives a message at time t. Thus, the skew to
the fastest node is minimized by simply adopting the maximum clock value. It
has been pointed out in [2] that Amax potentially incurs a large skew between
neighboring nodes, due to the fact that a skew of Θ(n) between node 1 and n
cannot be avoided and a fast message, i.e. a message that is transmitted with
0 delay, which is forwarded along the chain causes a skew of Θ(n) between two
neighboring nodes. We will now briefly dwell on this simple algorithm in order
to introduce our notation. The following execution E = (M,R) induces a skew
of Θ(n) = Θ(D) between the nodes 1 and 2:

M(t, i, j) :=
{

0 if t ≥ n − 1, j 	= 1
1 else

and ∀t∀i : R(t, i) := 1− εi, where εn = 0 and εi > 0 for all i ∈ {1, . . . , n− 1}.3 It
holds that Lj(n− 1) = n− 1 for all j ∈ {2, . . . , n}, as the logical clock of node n
has reached n− 1 and this value is forwarded along the chain with a delay of 0.
Since node 1 receives the start message at time n−1, its logical clock is still at 0
and thus the skew between node 1 and 2 is Θ(n). Note that this effect does not
occur due to the fact that node 1 has merely received its start message. If there
was no fast message, the logical clock of node i at time t ∈ IN, where t > n − 1,
would be Li(t) = t − (n − i). Setting the message delay to 0, except between
nodes 1 and 2, at this point in time would still incur a skew of Θ(n) between
nodes 1 and 2.

Before the fast message is sent, the clock value of node i at time n − 1 is
i− 1. If each node allowed a slack of 1 between the clock of the fastest node and
its own, the fast message would not alter any clock values. By setting the logical
clock to max(Li(t), maxj∈Ni L̃i(t) − γ) for a particular γ > 0, it seems that the
effect a fast message has in Amax can be avoided. Unfortunately, this is not the
case. Let R(t, n) := U and R(t, i) := L for all i 	= n. The message delays are

3 Node n is the fastest node and therefore sets the pace for the other nodes. The clock
rates can be viewed as relative rates compared to the clock rate of the fastest node.

M(t, i, j) := 0 for all i, j 	= 1 and t ≥ ϑ for a specific time ϑ, and M(t, i, j) := 1
otherwise. In this scenario, it holds that limt→∞ Li(t) − Li(t − 1) = U , as all
nodes are paced by the fastest node. If node i receives the value x from node
i + 1, i sets its logical clock to x − γ. In this time, node i + 1 has increased its
clock by U , therefore limt→∞ Li+1(t) − Li(t) = U + γ for all i ∈ {1, . . . , n − 1}.
Assume that at time ϑ, this stabilization has occurred and that Ln(ϑ) = x. The
message delay at this time is reduced to 0 and thus node n − 1 can increase its
clock to x − γ. The skew between n − 1 and n − 2 is then 2U + γ, therefore
node n − 2 can increase its clock by 2U . In general, node n − i will increase
its logical clock by iU and thus the skew between node 1 and 2 at time ϑ is
(n − 2)U ∈ Θ(n). Hence, this variation of Amax does not reduce the worst-case
skew between neighboring nodes asymptotically.

As it is not an effective strategy to strictly minimize the skew to the fastest
node, we will analyze the effect of taking the values L̃j(t) from all neighbors j
into account.

4.2 Minimizing the Skew to All Neighbors

We will now consider the algorithm that sets the logical clock to the average
value of all the neighbors’ clock values in an attempt to minimize the clock skew
to all neighbors at all times, i.e. node i sets its logical clock to the value

Li(t) := max(Li(t),
1

|Ni|
∑
j∈Ni

L̃j(t))

upon receiving a message from a neighbor at time t. We call this algorithm Aavg.
In a very simple execution, the skew in Glist can become very large. The

execution Enice = (Mnice,Rnice) is defined as follows. ∀t∀i∀j : Mnice(t, i, j) := 1
and ∀t∀i : Rnice(t, i) = 1−εi, where again εn = 0 and εi > 0 for all i ∈ {1, . . . , n−
1}. Since the hardware clock rates never change, the message delays are the
same at any point in time and identical between any two neighboring nodes,
one might assume that the skew between neighbors cannot become exceedingly
large. Surprisingly, this is not true, as we will prove now.

Lemma 1. Let Aavg be the clock synchronization algorithm in use. When exe-
cuting Enice, it holds that ∀t∀i ∈ {2, . . . , n} : Li(t)−Li−1(t) ≤ 2i−3, independent
of the choices of εi > 0.

Proof. First, we define ΔLi(t) := Li(t)−Li(t−1). It holds that ∀i∀t : ΔLi(t) ≤
1, as the average speed is upper bounded by the maximum hardware clock rate,
which is 1 in this particular execution. It immediately follows that Li(t + k) ≤
Li(t) + k.

We have that L1(t) = L2(t − 1), as node 2 is the only neighbor of node
1. If node 1 is informed about a higher value, it can increase its logical clock
immediately to this value. Since ΔL2(t) ≤ 1 for all t, it follows that L2(t) −
L1(t) ≤ 1 for all t. Assume that it holds for all t and all j ≤ i that Lj(t) −

Lj−1(t) ≤ 2j − 3. We will now prove a bound on the skew between node i and
i + 1. For t = 0, it is trivially true that Li+1(t) − Li(t) ≤ 2(i + 1) − 3. Assume
that it holds for all t′ ≤ t. For t + 1, we have that

Li(t + 1) ≥ Li+1(t) + Li−1(t)
2

≥ Li+1(t) + Li(t) − (2i − 3)
2

≥ Li+1(t) + Li(t + 1) − 1 − (2i − 3)
2

≥ Li+1(t + 1) − (2(i + 1) − 3).

The first inequality holds because the logical clock value is always at least the
average value of its neighbors. The second inequality follows by induction and
the third and fourth inequalities hold because ΔLi(t) ≤ 1.
�

Lemma 1 shows that the skew between any two nodes is bounded, when
executing Enice. In order to prove that the skew can in fact become large, we
need another lemma.

Lemma 2. ∀i ∈ {1, . . . , n} : limt→∞ ΔLi(t) = 1.

Proof. Assume that ΔLn−1(t) does not converge to 1. In this case, either there
is an ε > 0 such that for all t it holds that ΔLn−1(t) ≤ 1−ε or ΔLn−1(t) = 1 only
for some t. By definition of Enice, ΔLn(t) is always 1. If there is such an ε > 0,
this would imply that limt→∞ Ln(t)−Ln−1(t) = ∞, which is a contradiction to
Lemma 1. If for some t we have ΔLn−1(t) = 1, but the value never converges
to 1, there is an unbounded number of times t′ where ΔLn−1(t′) < 1, which
also implies that limt→∞ Ln(t) − Ln−1(t) = ∞, again a contradiction. Hence,
limt→∞ ΔLn−1(t) = 1 and, applying the same argument to the other nodes, it
follows inductively that limt→∞ ΔLi(t) = 1 for all nodes i ∈ {1, . . . , n}.
�

We are now in the position to prove the following theorem.

Theorem 1. Let Aavg be the clock synchronization algorithm in use. When ex-
ecuting Enice, the largest skew between neighbors in Glist is 2n − 3 ∈ Θ(n).

Proof. In particular, we show that limt→∞ Li(t) − Li−1(t) = 2i − 3 for all
i ∈ {2, . . . , n}. Since L1(t) = L2(t − 1), it holds that limt→∞ L2(t) − L1(t) =
limt→∞ ΔL1(t+1) = 1, according to Lemma 2. We assume now that limt→∞ Lj(t)−
Lj−1(t) = 2j−3 for all j ≤ i. Lemma 4.2 states that limt→∞ Li+1(t)−Li(t) = Q
for a constant Q which is upper bounded by 2(i + 1) − 3, due to Lemma 1. If
Q < 2(i + 1) − 3, we get that

lim
t→∞Li(t) = lim

t→∞
Li−1(t − 1) + Li+1(t − 1)

2

= lim
t→∞

2Li(t − 1) − (2i − 3) + Q
2

and thus limt→∞ ΔLi(t) < 1, a contradiction to Lemma 2.
�

Note that the skew between node 1 and n is Θ(n2), which is worse than the
tight upper bound of Θ(n) skew between any two nodes for Amax. This execution
shows that the neighboring node with the fastest clock must have a weight larger
than the weight of all other neighbors together. To see this, consider a k-ary tree
where the root is the fastest node. The skew between neighboring nodes will
also be large when executing Enice if all k children together have a weight that
is at least the weight of the parent node, as this is equivalent to performing this
execution on the linear list where the weight of the higher indexed node, i.e. the
faster node, is not larger than the weight of the lower indexed node. We proved
that in this case the skew is Θ(D) between neighboring nodes.

4.3 Minimizing the Skew to the Slowest Neighbor

In this section, we present a different approach which actively tries to bound the
skew between neighbors. As proven in [2], a constant bound between neighboring
nodes cannot be maintained. However, introducing a constant bound might still
result in a significantly improved worst-case behavior.

The algorithm Abound increases the logical clock proactively to the maximum
value of all neighbors as long as the clock skew between its own logical clock and
the clock of any of its neighbors does not exceed a predefined constant bound
B. Once the skew between node i and a neighbor j is at least B according
to the state information about node j, i.e. Li(t) − L̃j(t) ≥ B, node i does not
increase its logical clock due to an external message again until node j has caught
up.4 Abound is immune to both the execution Enice and also the execution that
incurred a large clock skew when Amax is used. Nevertheless, Abound is not better
asymptotically in the worst case. The idea behind the adversarial schedule for
this specific algorithm is the following. Using fast messages, a chain of nodes
within the graph is constructed such that the skew between all neighboring
nodes in this chain is B, creating a chain of dependency. Consequently, each
node has to wait for his slower neighbor to catch up, resulting in long waiting
times before the logical clocks can again be increased.

The execution Efast = (Mfast,Rfast), given the constant bound B, is defined
as follows. We set

Mfast(t, i, j) :=
{

0 if t = n − 1, j 	= 1
1 else.

Let ı̂ := n−1
B �+1. The hardware clock rates are ∀t∀i 	= ı̂+1 : Rfast(t, i) := 1−εi,

where again εn = 0 and εi > 0 for all i ∈ {1, . . . , n− 1}. ∀t < n− 1 : Rfast(t, ı̂ +
1) := 1− ε̂ı+1, ∀t ≥ n− 1 : Rfast(t, ı̂ + 1) := 1. Thus, the hardware clock of node
ı̂ + 1 is sped up at time n − 1.

Note that the delay of messages is 0 at time n − 1, unless they are sent to
node 1. As local computation requires 0 time in this asynchronous computation
model, some nodes can potentially communicate an unbounded number of times,
while other nodes wait for the arrival of some particular messages. As far as clock
4 Note that node i still makes progress at the rate of its hardware clock.

synchronization is concerned, this entails that the clock values of nodes whose
communication links have a delay of 0 at a specific time t will stabilize according
to the clock synchronization algorithm in use. Such a stabilization always occurs
independent of the clock synchronization algorithm, since logical clocks can only
make progress, but the logical clock values cannot exceed the maximum clock
value. This characteristic of asynchronous communication is exploited in the
execution Efast.

Lemma 3. Let ϑ := n + n−1
B � − κ, 0 < κ < 1. When executing Efast, param-

eterized by B, the skew between nodes ı̂ := n−1
B � + 1 and ı̂ + 1 at time ϑ is at

least
(
n−1

B � + 1 − κ
)
ε̂ı.

Proof. For any μ < 1 and i ≥ 2, we have Li(n−2+μ) = i−2+μεi. Node 1 does
not start its logical clock before time n − 1. At time n − 1, all communication
between the nodes i ∈ {2, . . . , n} requires 0 time. Note that we do not need
to specify which messages are handled first. The outcome of this stabilization
process solely depends on the clock synchronization algorithm. In this case, after
the clocks have stabilized, it holds that

Li(n − 1) :=
{

(i − 1)B i ∈ {1, . . . , ı̂}
n − 1 else

as node 1 can increase its logical clock to B and consequently, node 2 can raise
its clock to 2B etc. At this point, the clock rate of node ı̂ + 1 is set to 1, which
means that Lı̂+1(τ) = τ for all τ ≥ n − 1. Node 1 receives the message that the
logical clock of node 2 is already at B at time n and subsequently increases its
own clock to this value. In general, node j has to wait until time n+ j−1 before
it can increase its logical clock by B. Accordingly, node ı̂ has to wait until time
n + n−1

B � > ϑ before it can increase its logical clock by B.
Since Lı̂(n−1) ≤ n−1, we have that Lı̂(ϑ) ≤ n−1+(1− ε̂ı)(1−κ+ n−1

B �).
Hence |Lı̂+1(ϑ) − Lı̂(ϑ)| ≥ ε̂ı

(
n−1

B � + 1 − κ
)
.
�

The following theorem is immediate from Lemma 3.

Theorem 2. Let Abound be the clock synchronization algorithm in use. When
executing Efast, the skew between neighbors in Glist can be at least n ε̂ı

B−(ε̂ı
B +1) ∈

Θ(n).

�

It is a strong assumption that some nodes can communicate an unbounded
number of times while other nodes are not making any progress. If only a constant
number of communication rounds were possible, the skew would be constant in
this execution. However, the result is quite counterintuitive, as one might assume
that the more and the faster nodes can communicate, the better clocks can be
synchronized in general.

This theorem shows that the resulting skew can be large even though a con-
stant bound has been specified. It turns out that the constant bound potentially
results in waiting times that incur a skew of much more than the specified bound.
In general, for any bound B, it holds that ∃t, i, j ∈ Ni : |Li(t) − Lj(t)| = B. If

the delay is 0 between a set of nodes in a particular execution, this results in
a chain of nodes with clock values x, x + B, x + 2B, . . . , O(D). If the length of
this chain is λ, then the worst-case skew between two neighbors can be at least
Ω(λ), because all nodes in the chain are constrained to wait for the slower node
in the chain. The length of this chain can be Θ(D

B) when the entire skew of Θ(D)
is allocated. Hence it follows that the skew between neighboring nodes can be
at least Ω(D

B). According to the bounds maintained by neighboring nodes, a
node might adapt its bound in order to adjust to this situation. Using a smaller
bound than the current bound of one of the neighbors does not help, as the chain
becomes even longer in the worst case, resulting in a larger worst-case skew. A
node might allow a skew of δB for any δ > 1, if the maximum skew between any
of its neighbors and one of this node’s neighbors has already reached B. In an
execution such as Efast, the length of the chain is at most Θ(logδ

D
B). However,

the maximum skew between neighbors is then Ω(δlogδ
D
B) = Ω(D

B), thus adapt-
ing the bounds does not improve the worst-case behavior either. Consequently,
when minimizing the skew to the slowest node while increasing the clock when-
ever possible, the worst-case skew between neighboring nodes is always at least
Ω(D

B + B) = Ω(
√

D).

5 A O(d +
√

D)-GCS Algorithm

The idea is that the knowledge of the diameter D can be exploited by setting
the bound to O(

√
D). If the algorithm can ensure that the skew between any

two nodes is always at most O(D), the skew between neighbors will be at most
O(

√
D), because nodes do not allow a larger skew than O(

√
D) and the waiting

time until they can raise their logical clocks again considerably is also bounded
by O(

√
D). The algorithm which achieves this goal is described in greater detail

in the following section.

5.1 Description of the Algorithm

As in the previous algorithms, the algorithm presented here, denoted by Aroot,
also mandates the forwarding of the clock value to all neighboring nodes when
the logical clock reaches an integer value. Apart from the diameter D, the al-
gorithm must also know an upper bound on the hardware clock rate. Usually,
the hardware clock rates will only differ slightly, therefore one could simply set
U to a realistic upper bound on the maximum clock rate, if the true bound is
unknown. Algorithm 1 depicts the steps taken upon receipt of a message from a
neighbor.

The information about the corresponding neighbor is updated if the newly
arrived message indicates progress. Subsequently, the logical clock is increased
if the slowest neighbor is not more than U

√
D + 1 behind. The logical clock is

raised at most to the maximum logical clock value of all neighbors. Any message
that does not cause a change of the logical clock is simply dropped.

if τ > L̃j(t) then
L̃j(t) := τ

end if
if maxj∈Ni(L̃j(t)) > Li(t) and minj∈Ni(L̃j(t)) + U√D + 1 > Li(t) then

Li(t) := min(maxj∈Ni(L̃j(t)), minj∈Ni(L̃j(t)) + U√D + 1)
send 〈i,Li(t)〉 to all j ∈ Ni

end if

Algorithm 1: Node i calls this procedure when a message 〈j, τ 〉 from node j with
time stamp τ is received at time t.

5.2 Analysis of the Algorithm

First, we prove that the worst-case skew between any two nodes is at most O(D),
which is asymptotically optimal. This global property is further used to derive
the gradient property of Aroot. Note that both properties hold independent of
the underlying network structure, thus the algorithm effectively bounds the skew
between neighboring nodes in arbitrary graphs.

Theorem 3 (Global Property). Let Aroot be the clock synchronization al-
gorithm in use. For all executions and for any graph, it holds that ∀i, j, t :
|Li(t) − Lj(t)| < UD + 1 ∈ O(D).

Proof. The crucial observation is that for the slowest node Aroot is identical to
Amax. Recall that the slowest node is the node with the currently lowest clock
value, and the node with the largest clock value is denoted the fastest node. After
at most D time, the slowest node starts its clock. The progress of the fastest
node is at most UD during this time, resulting in a skew not larger than UD.
Before the next message reaches the slowest node, the fastest node can increase
its logical clock by less than 1, resulting in a skew of less than UD + 1. Once
this message reaches the slowest node, the skew drops back to at most UD. The
slowest node can increase its logical clock at least at the same speed of the fastest
node, thus the skew cannot grow any further. By reducing the messages delays,
the slowest node can even catch up, as it can increase its clock earlier. If the
messages are sped up such that the skew between the slowest node and any of
its neighbors reaches U

√
D + 1, the slowest node can instantaneously raise its

logical clock by U
√

D + 1 > U , hence the skew again decreases in this case.
�
Using this bound on the global skew, we can limit the waiting time for any

node and thereby guarantee that the skew between neighbors is always at most
O(

√
D).

Theorem 4 (Gradient Property). Let Aroot be the clock synchronization al-
gorithm in use. For all executions and for any graph, it holds that ∀i, ∀j ∈ Ni, t :
|Li(t) − Lj(t)| < 2U

√
D + 1 ∈ O(

√
D).

Proof. It is evident that the skew can only be larger than U
√

D + 1 when
nodes are forced to wait for other nodes to increase their logical clocks. Let the
skew between node i and j be U

√
D + 1 at time t. Without loss of generality,

let Li(t) = Lj(t) + U
√

D + 1. If there is a node k ∈ Nj such that Lj(t) =
Lk(t) + U

√
D + 1, node j has to wait for node k to increase its logical clock.

Node k can again have a neighbor whose logical clock is U
√

D + 1 behind etc. If
this chain of dependent nodes has length λ, it takes at most λ time steps until
node j can increase its logical clock by U

√
D + 1. The length λ is upper bounded

by the maximum skew between any two nodes divided by U
√

D + 1. Hence, using
Theorem 3, λ ≤ UD+1

U√
D+1

≤
√

D + 1, because U ≥ 1. Node i cannot increase its

logical clock by more than U
√

D + 1 during this time, as the maximum hardware
clock rate is U , and node j increases its logical clock by at least U

√
D + 1, thus

nodes can always catch up.
Before node j can raise its logical clock after

√
D + 1 time, i can increase its

logical clock by less than U
√

D + 1, thus, at all times, the skew between any two
neighbors is less than 2U

√
D + 1.
�

6 Conclusion

We have shown that aiming at achieving a minimal skew at all times naturally
translates to oblivious algorithms, due to the fact that nodes do not have any
information about the message delays and the hardware clock rates. Focusing
on the fastest nodes potentially incurs a large skew between neighbors, but the
fastest node must nevertheless have a large weight, as proven in our analyses. By
assigning a large weight to the fastest node, the clocks will converge quickly to a
large value, even if some neighboring nodes do not make any significant progress
during the same time span.

However, there is an oblivious clock synchronization algorithm with a worst-
case skew of O(d +

√
D) between any two nodes at distance d, which answers

the question whether there is an GCS algorithm with a skew of o(D) between
neighboring nodes. This algorithm further guarantees a skew of Θ(D) between
any two nodes, which is globally asymptotically optimal.

A challenging open problem is whether the bound of Θ(
√

D) skew between
neighbors is asymptotically optimal for oblivious algorithms. Additionally, it is
also worth investigating how much more knowledge, e.g. the times when mes-
sages arrived or a larger message history in general, is required in order to
substantially improve the worst-case skew. Another important aspect of clock
synchronization is the number of messages required in order to effectively bound
the skew between nodes. Analyzing the message complexity of gradient clock
synchronization algorithms is another demanding problem which has not been
studied so far.

7 Acknowledgements

We would like to thank Regina O’Dell and Thomas Moscibroda for many fruitful
discussions and all the anonymous reviewers for their constructive comments and
suggestions which helped to improve this paper.

References

1. R. Fan, I. Chakraborty, and N. Lynch. Clock Synchronization for Wireless Net-
works. In Proc. 8th International Conference on Principles of Distributed Systems
(OPODIS), pages 400–414, 2004.

2. R. Fan and N. Lynch. Gradient Clock Synchronization. In Proc. 23rd Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 320–327, New
York, NY, USA, 2004. ACM Press.

3. J. Lundelius and N. Lynch. An Upper and Lower Bound for Clock Synchronization.
Information and Control, 62(2/3):190–204, 1984.

4. L. Meier and L. Thiele. Brief Announcement: Gradient Clock Synchronization in
Sensor Networks. In Proc. 24th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), 2005.

5. R. Ostrovsky and B. Patt-Shamir. Optimal and Efficient Clock Synchronization
under Drifting Clocks. In Proceedings 18th Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 3–12, 1999.

6. B. Patt-Shamir and S. Rajsbaum. A Theory of Clock Synchronization. In Pro-
ceedings 26th Annual ACM Symposium on Theory of Computing (STOC), pages
810–819, 1994.

7. T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. J. ACM, 34(3):626–
645, 1987.

