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Abstract

The ability to use a 2D map to navigate a complex 3D envi-
ronment is quite remarkable, and even difficult for many hu-
mans. Localization and navigation is also an important prob-
lem in domains such as robotics, and has recently become a
focus of the deep reinforcement learning community. In this
paper we teach a reinforcement learning agent to read a map
in order to find the shortest way out of a random maze it has
never seen before. Our system combines several state-of-the-
art methods such as A3C and incorporates novel elements
such as a recurrent localization cell. Our agent learns to lo-
calize itself based on 3D first person images and an approx-
imate orientation angle. The agent generalizes well to bigger
mazes, showing that it learned useful localization and naviga-
tion capabilities.

1 Introduction
One of the main success factors of human evolution is our
ability to craft and use complex tools. Not only did this
ability give us a motivation for social interaction by teach-
ing others how to use different tools, it also enhanced our
thinking capabilities, since we had to understand ever more
complex tools. Take a map as an example; a map helps us
navigate places we have never seen before. However, we
first need to learn how to read it, i.e., we need to asso-
ciate the content of a two-dimensional map with our three-
dimensional surroundings. With algorithms becoming in-
creasingly capable of learning complex relations, a way to
make machines intelligent is to teach them how to use al-
ready existing tools. In this paper, we teach a machine how
to read a map with deep reinforcement learning.

The agent wakes up in a maze. The agent’s view is an im-
age: the maze rendered from the agent’s perspective, like a
dungeon in a first person video game. This rendered image
is provided by the DeepMind Lab environment (Beattie et
al. 2016). The agent can be controlled by a human, or as
in our case, by a complex deep reinforcement learning ar-
chitecture.1 The agent can move (forward, backward, left,
right) and rotate (left, right), and its view image will change
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1Our code can be found here: https://github.com/
OliverRichter/map-reader.git

accordingly. In addition, the agent gets to see a map of the
maze, also an image, as can be seen in Figure 1. One loca-
tion on the map is marked with an “X” - the agent’s target.
The crux is that the agent does not know where on the map it
currently is. Several locations on the map might correspond
well with the current view. Thus the agent needs to move
around to learn its position and then move to the target, as
illustrated in Figures 6 and 8. We do equip the agent with an
approximate orientation angle, i.e., the agent roughly knows
the direction it is moving or looking. In the map, up is always
north. During training the agent learns which approximate
orientation corresponds to north.

A complex multi-stage task, such as navigating a maze
with the help of a map, can be naturally decomposed into
several subtasks: (i) The agent needs to observe its 3D en-
vironment and compare it to the map to determine its most
likely position. (ii) The agent needs to understand the map,
or in our case associate symbols on the map with rewards
and thereby gain an understanding of what a wall is, what
navigable space is, and what the target is. (iii) Finally the
agents needs to learn how to follow a plan in order to reach
the target.

Our contribution is as follows: We present a novel modu-
lar reinforcement learning architecture that consists of a re-
active agent and several intermediate subtask modules. Each
of these modules is designed to solve a specific subtask. The
modules themselves can contain neural networks or alter-
natively implement exact algorithms or heuristics. Our pre-
sented agent is capable of finding the target in random mazes
roughly three times the size of the largest mazes it has seen
during training.

Further contributions include:

• The Recurrent Localization Cell that outputs a location
probability distribution based on an estimated stream of
visible local maps.

• A simple mapping module that creates a visible local 2D
map from 3D RGB input. The mapping module is robust,
even if the agent’s compass is inaccurate.

2 Related Work
Reinforcement learning in relation to AI has been stud-
ied since the 1950’s (Minsky 1954). Important early work
on reinforcement learning includes the temporal difference



learning method by Sutton (1984; 1988), which is the ba-
sis for actor-critic algorithms (Barto, Sutton, and Anderson
1983) and Q-learning techniques (Watkins 1989; Watkins
and Dayan 1992). First works using artificial neural net-
works for reinforcement learning include (Williams 1992)
and (Gullapalli 1990). For an in-depth overview of rein-
forcement learning we refer the interested readers to (Kael-
bling, Littman, and Moore 1996), (Sutton and Barto 1998)
and (Szepesvári 2010).

The current deep learning boom was started by, among
other contributions, the backpropagation algorithm (Rumel-
hart et al. 1988) and advances in computing power and GPU
frameworks. However, deep learning could not be applied
effectively to reinforcement learning until recently. Mnih et
al. (2015) introduced the Deep-Q-Network (DQN) that uses
experience replay and target networks to stabilize the learn-
ing process. Since then, several extensions to the DQN ar-
chitecture have been proposed, such as the Double Deep-
Q-Network (DDQN) (van Hasselt, Guez, and Silver 2016)
and the dueling network architecture (Wang et al. 2016).
These networks are based on using replay buffers to stabilize
learning, such as prioritized experience replay (Schaul et al.
2015). The state-of-the-art A3C (Mnih et al. 2016) relies on
asynchronous actor-learners to stabilize learning. In our sys-
tem, we use A3C learning on a modified network architec-
ture to train our reactive agent and the localization module
in an on-policy manner. We also make use of (prioritized)
replay buffers to train our agent off policy.

A major challenge in reinforcement learning are environ-
ments with delayed or sparse rewards. An agent that never
gets a reward can never learn good behavior. Thus Jaderberg
et al. (2016) and Mirowski et al. (2016) introduced auxiliary
tasks that let the agent learn based on intermediate intrin-
sic pseudo-rewards, such as predicting the depth from a 3D
RGB image, while simultaneously trying to solve the main
task, e.g., finding the exit in a 3D maze. The policies learned
by the auxiliary tasks are not directly used by the agent, but
solely serve the purpose of helping the agent learn better
representations which improves its performance on the main
task. The idea of auxiliary tasks is inspired by prior work
on temporal abstractions, such as options (Sutton, Precup,
and Singh 1999), whose focus was on learning temporal ab-
stractions to improve high-level learning and planning. In
our work we introduce a modularized architecture that in-
corporates intermediate subtasks, such as localization, local
map estimation and global map interpretation. In contrast
to (Jaderberg et al. 2016), our reactive agent directly uses
the outputs of these modules to solve the main task. Note
that we use an auxiliary task inside our localization module
to improve the local map estimation. Kulkarni et al. (2016)
introduced a hierarchical version of the DQN to tackle the
challenge of delayed and sparse rewards. Their system oper-
ates at different temporal scales and allows the definition of
goals using entity relations. The policy is learned in such a
way to reach these goals. We use a similar approach to make
our agent follow a plan, such as, “go north”.

Mapping and localization has been extensively studied in
the domain of robotics (Thrun, Burgard, and Fox 2005).
A robot creates a map of the environment from sensory

input (e.g., sonar or LIDAR) and then uses this map to
plan a path through the environment. Subsequent works
have combined these approaches with computer vision tech-
niques (Fuentes-Pacheco, Ascencio, and Rendón-Mancha
2015) that use RGB(-D) images as input. Machine learning
techniques have been used to solve mapping and planning
separately, and later also tackled the joint mapping and plan-
ning problem (Elfes 1989). Instead of separating mapping
and planning phases, reinforcement learning methods aimed
at directly learning good policies for robotic tasks, e.g., for
learning human-like motor skills (Peters and Schaal 2008).

Recent advances in deep reinforcement learning have
spawned impressive work in the area of mapping and lo-
calization. The UNREAL agent (Jaderberg et al. 2016) uses
auxiliary tasks and a replay buffer to learn how to navi-
gate a 3D maze. Mirowski et al. (2016) came up with an
agent that uses different auxiliary tasks in an online man-
ner to understand if navigation capabilities manifest as a bi-
product of solving a reinforcement learning problem. Zhu
et al. (2017) tackled the problems of generalization across
tasks and data inefficiency. They use a realistic 3D environ-
ment with physics engine to gather training data efficiently.
Their model is capable of navigating to a visually specified
target. In contrast to other approaches, they use a memory-
less feed-forward model instead of recurrent models. Gupta
et al. (2017) simulated a robot that navigates through a real
3D environment. They focus on the architectural problem of
learning mapping and planning in a joint manner, such that
the two phases can profit from knowing each other’s needs.
Their agent is capable of creating an internal 2D represen-
tation of the local 3D environment, similar to our local vis-
ible map. In our work a global map is given, and the agent
learns to interpret and read that map to reach a certain tar-
get location. Thus, our agent is capable of following com-
plicated long range trajectories in an approximately shortest
path manner. Furthermore, their system is trained in a fully
supervised manner, whereas our agent is trained with rein-
forcement learning. Bhatti et al. (2016) augment the stan-
dard DQN with semantic maps in the VizDoom (Kempka et
al. 2016) environment. These semantic maps are constructed
from 3D RGB-D input, and they employ techniques such
as standard computer vision based object recognition and
SLAM. They showed that this results in better learned poli-
cies. The task of their agent is to eliminate as many oppo-
nents as possible before dying. In contrast, our agent needs
to escape from a complex maze. Furthermore, our environ-
ments are designed to provide as little semantic information
as possible to make the task more difficult for the agent; our
agent needs to construct its local visible map based purely
on the shape of its surroundings.

3 Architecture
Many complex tasks can be divided into easier intermediate
tasks which when all solved individually solve the complex
task. We use this principle and apply it to neural network ar-
chitecture design. In this section we first introduce our con-
cept of modular intermediate tasks, and then discuss how
we implement the modular tasks in our map reading archi-
tecture.
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Figure 1: Architecture overview and interplay between the
four modules. α̂ is the discretized angle, at−1 is the last ac-
tion taken, rt−1 is the last reward received, {ploci }Ni=1 is the
estimated location probability distribution over the N pos-
sible discrete locations, H loc is the entropy of the estimated
location probability distribution, STTD is the short term tar-
get direction suggested by the map interpretation network, V
is the estimated state value and π is the policy output from
which the next action at is sampled.

3.1 Modular Intermediate Tasks
An intermediate task module can be any information pro-
cessing unit that takes as input either sensory input and/or
the output of other modules. A module is defined and de-
signed after the intermediate task it solves and can consist
of trainable and hard coded parts. Since we are dealing with
neural networks, the output and therefore the input of a mod-
ule can be erroneous. Each module adjusts its trainable pa-
rameters to reduce its error independent of other modules.
We achieve this by stopping error back-propagation on mod-
ule boundaries. Note that this separation has some advan-
tages and drawbacks:

• Each module performance can be evaluated and debugged
individually.

• Small intermediate subtask modules have short credit as-
signment paths, which reduces the problem of exploding
and vanishing gradients during back-propagation.

• Modules cannot adjust their output to fit the input needs of
the next module. This has to be achieved through interface
design, i.e., intermediate task specification.

Our neural network architecture consists of four mod-
ules, each dedicated to a specific subtask. We first give an
overview of the interplay between the modules before de-
scribing them in detail in the following sections. The archi-
tecture overview is sketched in Figure 1.

The first module is the visible local map network; it takes
the raw visual input from the 3D environment and creates for
each frame a two dimensional map excerpt of the currently
visible surroundings. The second module, the recurrent lo-
calization cell, takes the stream of visible local map excerpts
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Figure 2: The visible local map network: The RGB pixel
input is passed through two convolutional neural network
(CNN) layers and a fully connected (FC) layer before be-
ing concatenated to the discretized angle α̂ and further pro-
cessed by fully connected layers and a gating operation.

and integrates it into a local map estimation. This local map
estimation is compared to the global map to get a probabil-
ity distribution over the discretized possible locations. The
third module is called map interpretation network; it learns
to interpret the global map and outputs a short term target
direction for the estimated position. The last module is a re-
active agent that learns to follow the estimated short term
target direction to ultimately find the exit of the maze.

We allow our agent to have access to a discretized angle
α̂ describing the direction it is facing, comparable to a robot
having access to a compass. Furthermore, we do not limit
ourself to completely unsupervised learning and allow the
agent to use a discretized version of its actual position during
training. This could be implemented as a robot training on
the network with the help of a GPS signal. The robot could
train as long as the accuracy of the GPS signal is below a
certain threshold and act on the trained network as soon as
the GPS signal gets inaccurate or totally lost. We leave such
a practical implementation of our algorithm to future work
and focus here on the algorithmic structure itself.

We now describe each module architecture individually
before we discuss their joint training in Section 3.6. If not
specified otherwise, we use rectified linear unit activations
after each layer.

3.2 Visible Local Map Network
The visible local map network preprocesses the raw visual
RGB input from the environment through two convolutional
neural network layers followed by a fully connected layer.
We adapted this preprocessing architecture from (Jaderberg
et al. 2016). The thereby generated features are concate-
nated to a 3-hot discretized encoding α̂ of the orientation
angle α, i.e., we input the angle as n-dimensional vector
where each dimension represents a discrete state of the an-
gle, with n = 30. We set the three vector components that
represent the discrete angle values closest to the actual angle
to one while the remaining components are set to zero, e.g.
α̂ = [0 . . . 01110 . . . 0]. We used a 3-hot instead of a 1-hot
encoding to smooth the input. Note that this encoding has an
average quantization error of 6 degrees.

The discretized angle and preprocessed visual features are
passed through a fully connected layer to get an intermediate
representation from which two things are estimated:
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Figure 3: Sketch of the information flow in the recurrent lo-
calization cell. The last egomotion estimation st−1, the dis-
cretized angle α̂, the last action at−1 and reward rt−1 are
passed through two fully connected (FC) layers and com-
bined with a two dimensional convolution between the for-
mer local map estimation LMest

t−1 and the current visible lo-
cal map input to get the new egomotion estimation st. This
egomotion estimation is used to shift the previously esti-
mated local map LMest

t−1 and the previous map feedback lo-
cal map LMmfb

t−1 . A weighted and clipped combination of
these local map estimations, LMest+mfb

t−1 , is convolved with
the full map to get the estimated location probability dis-
tribution {ploci }Ni=1. Recurrent connections are marked by
empty arrows.

1. A reconstruction of the map excerpt that corresponds to
the current visual input

2. The current field of view, which is used to gate the esti-
mated map excerpt such that only estimates which lie in
the line of sight make it into the visible local map. This
gating is crucial to reduce noise in the visible local map
output.

See Figure 2 for a sketch of the visible local map network
architecture.

3.3 Recurrent Localization Cell
Moving around in the environment, the agent generates a
stream of visible local map excerpts like the output in Fig-
ure 2 or the visible local map input Ṽ in Figure 3. The recur-
rent localization cell then builds an egocentric local map out
of this stream and compares it to the actual map to estimate

the current position. The agent has to predict its egomotion
to shift the egocentric estimated local map accordingly. We
refer to Figure 3 for a sketch of the architecture described
hereafter.

Let M be the current map, Ṽ the output of the visible lo-
cal map network, α̂ the discretized 3-hot encoded orientation
angle, at−1 the 1-hot encoded last action taken, rt−1 the ex-
trinsic reward received by taking action at−1, LMest

t the es-
timated local map at time step t, LMmfb

t the map feedback
local map at time step t, LMest+mfb

t the estimated local
map with map feedback at time step t, st the estimated nec-
essary shifting (or estimated egomotion) at time step t and
{ploci }Ni=1 the discrete estimated location probability distri-
bution. Then we can describe the functionality of the recur-
rent localization cell by the following equations:

st = softmax(f(st−1, α̂, at−1, rt−1) + LMest
t−1 ∗ Ṽ )

LMest
t =

[
LMest

t−1 ∗ st + Ṽ
]+0.5

−0.5

LMest+mfb
t =

[
LMest

t + λ · LMmfb
t−1 ∗ st

]+0.5

−0.5

{ploci }Ni=1 = softmax
(
m ∗ LMest+mfb

t

)
LMmfb

t =

N∑
i=1

pi · g(m, i)

Here, f(·) is a two layer feed forward neural network,
∗ denotes a two dimensional discrete convolution with
stride one in both dimensions, [·]+0.5

−0.5 denotes a clipping to
[−0.5,+0.5], λ is a trainable map feedback parameter and
g(m, i) extracts from the map m the local map around loca-
tion i.

3.4 Map Interpretation Network
The goal of the map interpretation network is to find reward-
ing locations on the map and construct a plan to get to these
locations. We achieve this in three stages: First, the network
passes the map through two convolutional layers followed
by a rectified linear unit activation to create a 3-channel re-
ward map. The channels are trained (as discussed in Sec-
tion 3.6) to represent wall locations, navigable locations and
target locations respectively. This reward map is then area
averaged, rectified and passed to a parameter free 2D short-
est path planning module which outputs for each of the dis-
crete locations on the map a distribution over {North, East,
South, West}, i.e., a short term target direction (STTD),
as well as a measure of distance to the nearest target loca-
tion. This plan is then multiplied with the estimated location
probability distribution to get the smooth STTD and target
distance of the currently estimated location. Note that plan-
ning for each possible location and querying the plan with
the full location probability distribution helps to resolve the
exploitation-exploration dilemma of the reactive agent:
• An uncertain location probability distribution close to the

uniform distribution will result in an uncertain STTD dis-
tribution over {North, East, South, West}, thereby encour-
aging exploration.



• A location probability distribution over locations with
similar STTD will accumulate these similarities and re-
sult in a clear STTD for the agent, even though the loca-
tion might still be unclear (exploitation).

3.5 Reactive Agent and Intrinsic Reward
As mentioned, the reactive agent faces two partially con-
tradicting goals: following the STTD (exploitation) and im-
proving the localization by generating information rich vi-
sual input (exploration), e.g., no excessive staring at walls.
The agent learns this trade off through reinforcement learn-
ing, i.e., by maximizing the expected sum of rewards. The
rewards we provide here are extrinsic rewards from the en-
vironment (negative reward for running into walls, positive
reward for finding the target) as well as intrinsic rewards
linked to the short term goal inputs of the reactive agent.
These short term goal inputs are the STTD distribution over
{North, East, South, West} and the measure of distance to
the nearest target location from the map interpretation net-
work as well as the normalized entropy H loc of the discrete
location probability distribution {ploci }Ni=1. H loc represents
a measure of location uncertainty which is linked to the need
for exploration.

The intrinsic reward consists of two parts to encourage
both exploration and exploitation. The exploration intrinsic
reward Iexplort in each timestep t is the difference in location
probability distribution entropy to the previous timestep:

Iexplort = H loc
t−1 −H loc

t

Note that this reward is positive if and only if the loca-
tion probability distribution entropy decreases, i.e., when the
agent gets more certain about its position.

The exploitation intrinsic reward should be a measure
of how well the egomotion of the agent aligns with the
STTD. For this we calculate an approximate two dimen-
sional egomotion vector ~et from the egomotion proba-
bility distribution estimation st. Similarly we calculate
a STTD vector ~dt−1 from the STTD distribution over
{North,East, South,West} of the previous timestep. We
calculate the exploitation intrinsic reward Iexploitt as dot
product between the two vectors:

Iexploitt = ~et
T · ~dt−1

Note that this reward is positive if and only if the angle
difference between the two vectors is no bigger than 90 de-
grees, i.e., if the estimated egomotion was in the same direc-
tion as suggested by the STTD in the timestep before.

As input to the reactive agent we concatenate the dis-
cretized 3-hot angle α̂, the last extrinsic reward and the loca-
tion probability distribution entropy H loc to the STTD dis-
tribution and the estimated target distance. The agent itself is
a simple feed-forward network consisting of two fully con-
nected layers with rectified linear unit activation followed by
a fully connected layer for the policy and a fully connected
layer for the estimated state value respectively. The agents
next action is sampled from the softmax-distribution over
the policy outputs.

3.6 Training Losses
To train our agent, we use a combination of on-policy losses,
where the data is generated from rollouts in the environment,
and off-policy losses, where we sample the data from a re-
play memory. More specifically, the total loss is the sum of
the four module specific losses:

1. Lvlm, the off-policy visible local map loss
2. Lloc, the on-policy localization loss
3. Lrm, the off-policy reward map loss and
4. La, the on-policy reactive agents acting loss
We train our agent as asynchronous advantage actor critic,
or A3C, with additional losses; similar to DeepMind’s UN-
REAL agent (Jaderberg et al. 2016):

In each training iteration, every thread rolls out up to 20
steps in the environment and accumulates the localization
loss Lloc and acting loss La. For each step, an experience
frame is pushed to an experience history buffer of fixed
length. Each experience frame contains all inputs the net-
work requires as well as the current discretized true posi-
tion. From this experience history, frames are sampled and
inputs replayed through the network to calculate the visible
local map loss Lvlm and the reward map loss Lrm. We now
describe each loss in more detail.

The output Ṽ of the visible local map network is trained
to match the visible excerpt of the map V , constructed from
the discretized location and angle. In each training iteration
20 experience frames are uniformly sampled from the expe-
rience history and the visible local map loss is calculated as
the sum of L2 distances between visible local map outputs
Ṽk and targets Vk:

Lvlm =
∑
k∈S

||Ṽk − Vk||2

Here, S denotes the set of sampled frame indices.
Our localization loss Lloc is trained on the policy roll-

outs in the environment. For each step, we compare the es-
timated position to the actual position in two ways, which
results in a cross entropy location loss Lloc,xent and a dis-
tance location loss Lloc,d. The cross entropy location loss is
the cross entropy between the location probability distribu-
tion {ploci }Ni=1 and a 1-hot encoding of the actual position.
The distance loss Lloc,d is calculated at each step as the L2
distance between the actual two dimensional cell position
coordinates ~cpos and the estimated centroid of all possible
cells i weighted by their corresponding probability ploci :

Lloc,d =

∣∣∣∣∣
∣∣∣∣∣~cpos −

N∑
i=1

ploci · ~ci

∣∣∣∣∣
∣∣∣∣∣
2

In addition to training the location estimation directly we
also assign an auxiliary local map loss Lloc,lm to help with
the local map construction. We calculate the local map loss
only once per training iteration as L2 distance between the
last estimated local map LMest and the actual local map at
that point in time.

The goal of the reward map loss Lrm is to have the three
channels of the reward map represent wall locations, free
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Figure 4: Training performance of 8 actor threads that start
training on 5x5 mazes. The vertical black lines mark jumps
to larger mazes of the thread in blue.

space locations and target locations respectively. To do this,
we leverage the setting that running into a wall gives a nega-
tive extrinsic reward, moving in open space gives no extrin-
sic reward and finding the target gives a positive extrinsic
reward. Therefore the problem can be transformed into esti-
mating an extrinsic reward. Each training iteration we sam-
ple 20 frames from the experience history. This sampling is
independent from the visible local map loss sampling and
skewed to have in expectation equally many frames with
positive, negative and zero extrinsic reward. For each frame,
the frames map is passed through the convolution layers
of the map interpretation network to create the correspond-
ing reward map while the visual input and localization state
saved in the frame are fed through the network to get the
estimated location probability distribution. The reward map
loss is the cross entropy prediction error of the reward at the
estimated position.

Our reactive agent’s acting loss is equivalent to the A3C
learning described by Mnih et al. (2016). We also adapted
an action repeat of 4 and a frame rate of 15 fps. The whole
network is trained by RMSprop gradient descent with gra-
dient back propagation stopped at module boundaries, i.e.,
each module is only trained on its module specific loss.

4 Environment and Results
To evaluate our architecture we created a training and test
set of mazes with the corresponding black and white maps
in the DeepMind Lab environment. The mazes are quadratic
grid mazes with each maze cell being either a wall, an open
space, the target or the spawn position. The training set con-
sists of 100 mazes of different sizes; 20 mazes each in the
sizes 5x5, 7x7, 9x9, 11x11 and 13x13 maze cells. The test
set consists of 900 mazes; 100 in each of the sizes 5x5, 7x7,
9x9, 11x11, 13x13, 15x15, 17x17, 19x19 and 21x21. Note
that the outermost cells in the mazes are always walls, there-
fore the maximal navigable space of a 5x5 maze is 3x3 maze
cells. Thus the navigable space for the biggest test mazes is
roughly 3 times larger than for the biggest training mazes.

For the localization, we used a location cell granularity
3 times finer than the maze cells, which results in a total
of N=63x63=3969 discrete location states on the biggest
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Figure 5: All the results of the (at most 100) successful tests
for each maze size. Every single test is represented by an
“x”. The line connects the arithmetic averages of each maze
size. The distance between origin and target grows linearly
with maze size, as does the number of steps.

21x21 mazes. We train our agent starting on small mazes
and increase the maze sizes as the agent gets better. More
specifically we use 16 asynchronous agent training threads
from which we start 8 on the smallest (5x5) training mazes
while the other training threads are started 2 each on the
other sizes (7x7, 9x9, 11x11 and 13x13). This prevents the
visible local map network from overfitting on the small 5x5
mazes. The thread agents are placed into a randomly sam-
pled maze of their currently associated maze size and try to
find the exit, while counting their steps. A step is one inter-
action with the environment, i.e., sampling an action from
the agents policy π and receiving the corresponding next vi-
sual input, discretized angle and extrinsic reward from the
environment. A step is not the same as a location or maze
grid cell; as agents accelerate, there is no direct correlation
between steps and actual walked distance. We consider each
sampled maze an episode start. The episode ends success-
fully if the agent manages to find the target and the steps
needed are stored. If the agent does not find the exit in 4500
steps, the episode ends as not successful. After an episode
ends, a new episode is started, i.e., a new maze is sampled.
Note that in this setting the agent is always placed in a newly
sampled maze and not in the same maze as in (Jaderberg et
al. 2016) and (Mirowski et al. 2016).

For each thread we calculate a moving average of steps
needed to end the episodes. Once this moving average falls
below a maze size specific threshold, the thread is trans-
ferred to train on mazes of the next bigger size. Once a
thread’s moving average of steps needed in the biggest train-
ing mazes (13x13) falls below the threshold, the thread is
stopped and its training is considered successful. Once all
threads reach this stage, the overall training is considered
successful and the agent is fully trained. We calculate the
moving average over the last 50 episodes and use 60, 100,
140, 180 and 220 steps as threshold for the maze sizes 5x5,
7x7, 9x9, 11x11 and 13x13, respectively. Figure 4 shows the
training performance of 8 actor threads. One can see that the
agents sometimes overfit their policies which results in tem-
porarily decreased performance even though the maze size
did not increase. In the end however, all threads reach good
performance.

The trained agent is tested on the 900 test set mazes, the



Maze size 5x5 7x7 9x9 11x11 13x13 15x15 17x17 19x19 21x21
Targets found 100% 100% 100% 99% 99% 98% 93% 93% 91%

Table 1: Percentage of targets found in the test mazes. Up to size 9x9 the agent always finds the target. More interestingly, the
agent is able to find more than 90% of the targets in mazes that are bigger than any maze it has seen during training.
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Figure 6: Example trajectories walked by the agent. Note
that the agent walks close to the shortest path and its contin-
uous localization and planning lets the agent find the path to
the target even after it took a wrong turn.
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Figure 7: Comparison of our agent (blue lines) to an agent
that has perfect position information and an optimal short
term target direction input (red lines). The solid lines count
all steps (turns and moves). The solid blue line is the same as
the average line of Figure 5. The dashed lines do not count
the steps in which the agent turns. The figure shows that the
overhead is mostly because of turning, as our agent needs to
“look around” to localize itself.

number of required steps per maze size are plotted in Fig-
ure 5. We stop a test after 4,500 steps, but even for the
biggest test mazes (21x21) the agent found more than 90%
of the targets within these 4,500 steps. See Table 1 for the
percentage of exits found in all maze sizes.

If the agent finds the exit it does so in almost shortest
path manner, as can be seen in Figure 6. However, the agent
needs a considerable number of steps to localize itself. To
evaluate this localization overhead, we trained an agent con-
sisting solely of the reactive agent module with access to the
perfect location and optimal short term target direction and
plotted its average performance on the test set in Figure 7.
The figure shows a large gap between the full agent and the
agent with access to the perfect position. This is due to turn-
ing actions, which the full agent performs to localize itself,

1 2 3 4

Figure 8: Four example frames to illustrate the typical be-
havior of the agent: The red line is the trace of its actual
position, while the shades of blue represent its position esti-
mate. The darker the blue, the more confident the agent is to
be in this location. Frame 1 shows the agent’s true starting
position as a red dot, frame 2 shows several similar locations
identified after a bit of turning, in frame 3 the agent starts to
understand the true location, and in frame 4 it has moved.

i.e., it continuously needs to look around to know where it is.
For the localization in the beginning of an episode, the agent
also mainly relies on turning as can be seen in four example
frames in Figure 8.

5 Conclusion
We have presented a deep reinforcement learning agent that
can localize itself on a 2D map based on observations of
its 3D surroundings. The agent manages to find the exit in
mazes with high success rate, even in mazes substantially
larger than it has ever seen during training. The agent often
finds the shortest path, showing that the agent can continu-
ously retain a good localization.

The architecture of our system is built in a modular fash-
ion. Each module deals with a subtask of the maze prob-
lem and is trained in isolation. This modularity allows for
a structured architecture design, where a complex task is
broken down into subtasks, and each subtask is then solved
by a module. Modules consist of general architectures, e.g.,
MLPs, or more task-specific networks such as our recurrent
localization cell. It is also possible to use deterministic algo-
rithm modules, such as in our shortest path planning module.
Architecture design is aided by the possibility to easily re-
place each module by ground truth values, if available, to
find sources of bad performance.

Our agent is designed for a specific task. We plan to make
our modular architecture more general and apply it to other
tasks, such as playing 3D games. Since modules can be
swapped out and arranged differently, it would be interesting
to equip an agent with many modules and let it learn which
module to use in which situation.
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