
Symmetric Clock Synchronization in Sensor Networks

Philipp Sommer
Computer Engineering and

Networks Laboratory
ETH Zurich

8092 Zurich, Switzerland

sommer@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and

Networks Laboratory
ETH Zurich

8092 Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract
In this paper we argue that achieving symmetric errors

is the key to an improved understanding of clock synchro-
nization. We present a clock synchronization algorithm
with drift compensation that implements this symmetric er-
ror paradigm. The performance of the algorithm is evaluated
by measurements in an indoor testbed using the TinyNode
hardware platform. We show that the remaining error is sym-
metric and in the range of the clock granularity.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design

General Terms
Algorithms, Experimentation, Performance, Measure-

ments

Keywords
Sensor Networks, Time Synchronization, Clock Drift,

Symmetric Error, Energy Efficiency

1 Introduction
Clock synchronization is a major building block in wire-

less sensor networks. On the one hand, accurate clock syn-
chronization is important for time-critical data fusion tasks.
Only with accurately synchronized clocks one may get a
global picture of an event that is sensed by several nodes.
A prototypical application is the distributed sensing of an
audio signal where precisely synchronized clocks may even
empower the sensor network to guesstimate the position of
an event, e.g. [11]. On the other hand, and maybe even
more importantly, clock synchronization plays a major role
in energy efficiency. State-of-the art energy-efficient sen-
sor network protocols, e.g. [2], have advanced duty cycling
schemes. Nodes are only awake during sensing and commu-
nication, if two nodes plan to communicate they will estab-

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
REALWSN’08,April 1, 2008, Glasgow, United Kingdom.
Copyright 2008 ACM 978-1-60558-123-1/08/0004 ...$5.00

lish a rendezvous scheme. The better the clock synchroniza-
tion, the less energy is wasted in the necessary guard times
to not miss the rendezvous point.

We believe that clock synchronization deserves more re-
search, despite the rich body of existing work, and despite
the well-accepted protocols that are often taught in sensor
network lectures, e.g. RBS [5] and TPSN [6]. Existing ad-
vanced clock synchronization protocols try to approximate
the clock drifts using various heuristics. In this paper we ask
ourselves the question: When should one be satisfied with
a clock synchronization algorithm? Can one argue about
the optimality of a clock synchronization algorithm? To-
wards this goal we treat clock synchronization like a guess-
ing game: We try to synchronize our clock with a reference
clock by exchanging messages. Naturally both our clock and
the reference clock may experience offset and drift, changing
over time. When sensing an event, our clock essentially asks
itself: Which timestamp would the reference clock report?
Clearly, because no hardware is perfect we cannot hope to
perfectly answer that question. Instead, we try to answer it
as well as possible, such that errors are minimized, which
turns out to be the same as that positive and negative errors
are in an equilibrium. In the paper we will argue that this
approach leads to the best possible clock synchronization.

Unfortunately, clock synchronization algorithms are
tested on hardware providing different clock granularity
which makes it difficult to fairly compare results. A small
variance in the synchronization error can be more important
than a very small average error, e.g. when one wants to re-
duce the necessary guard times in duty cycling schemes. We
argue that an evaluation of an algorithm should include both
the error in absolute time and in relation to the clock granu-
larity of the employed hardware system.

2 Related Work
Time synchronization has been studied extensively for

distributed systems. Traditional time synchronization algo-
rithms like NTP [8] are due to their nature not well suited
for sensor network applications. GPS enabled devices pro-
vide an accurate time synchronization to UTC but are costly,
energy consuming and limited to outdoor applications.

As research in sensor networks evolved during the last
years, many different approaches for time synchronization
were proposed ([9], [13], [10], [3], [7]). Due to space re-
strictions, we only compare to the most known time synchro-

nization protocols for wireless sensor networks: Reference
Broadcast Synchronization (RBS) [5] and Timing-sync Pro-
tocol for Sensor Networks (TPSN) [6].

RBS exploits the broadcast nature of the physical channel
to synchronize a set of receivers with one another. The times-
tamp of the reception of a broadcast message is recorded at
each node and these timestamps are exchanged to calculate
relative clock offsets between nodes. The RBS algorithm
achieves a synchronization error of 11µs when running on
Berkeley Motes. Given the 2µs resolution of the hardware
clock, this corresponds to an average error of 5.5 clock ticks.

The TPSN algorithm builds a spanning tree of the net-
work during the level discovery phase. In the synchroniza-
tion phase of the algorithm, nodes synchronize to their par-
ent in the tree by a two-way message exchange. The au-
thors of [6] showed by simulations using Mica motes that
TPSN achieves an average single-hop synchronization error
of 16.9µs which is equal to 67.6 clock ticks given the 0.25µs
clock resolution of the hardware.

Unfortunately, the papers [5] and [6] only present plots
with absolute errors which makes it difficult to evaluate their
protocols in terms of error symmetry. Because of Figure 5
in [6] we believe that the errors in RBS and TPSN are not
symmetric.

In contrast our clock synchronization algorithm which
concentrates on achieving a symmetric error offers accuracy
in the order of asingleclock tick. Although our software im-
plementation utilizes a much slower clock source (32kHz),
the remaining synchronization error is comparable to hard-
ware platforms with finer clock granularity.

3 Implementation
This section describes a prototype implementation of

a symmetric error clock synchronization algorithm on the
TinyNode sensor platform.

3.1 Single-Hop Synchronization Algorithm
We employ the classical sender-receiver synchronization

scheme to determine the message delay and the offset rela-
tive to the reference clock. The reference node periodically
broadcasts aSyncRequest message based on the configured
synchronization interval. Upon reception of this message,
nodes wait for a random backoff time before they initiate the
synchronization process by sending aTimeSync message to
the reference node which answers with aTimeSyncAck mes-
sage. If a node has not yet received an acknowledgment
from the reference node after a specified time, it issues a
new TimeSync message. Timestamping when the message
is received or sent at the MAC layer eliminates the send,
access and receive times (see [6]). Clocks start to run out
of sync just after the synchronization point due to relative
drift of the crystal oscillators used as the clock source. De-
pending on the requirements of the application, frequent re-
synchronization is necessary to keep the accuracy of the syn-
chronization within the acceptable range. Drift compensa-
tion is indispensable to achieve high precision and low mes-
sage overhead due to re-synchronizations. Heuristics like
least squares linear regression [7] or recursive least squares
estimation [12] were proposed to compensate for clock drift.

We believe that these methods are susceptible to rounding
errors which are hard to control.

In contrast, we show that even by using a simple mov-
ing average filter a symmetric synchronization error can be
achieved. Based on the change of the clock offset during
the synchronization interval, we estimate the relative drift
to the reference clock. The weighted moving average fil-
ter smooths out the uncertainty in the measurement of the
change of the offset:
∆offsetavg(t) = α ·∆offset(t)+(1−α) ·∆offsetavg(t −1)

The current timestamp of the reference clock can be ex-
trapolated from the local timestamp using the offset deter-
mined at the most recent synchronization point and the esti-
mated relative drift.

3.2 The Tinynode Platform
The TinyNode 584 sensor platform [4] features a MSP430

low-power microcontroller, 10 kB of RAM, 512 kB external
flash memory and a XE1205 radio transceiver. The XE1205
radio module features low-power applications and offers data
rates up 152 kbit/s. The MSP430F1611 microcontroller has
two built-in 16-bit timers (Timer A and Timer B). The rate
of Timer A can be configured as a fraction of the microcon-
troller clock rate (4MHz). Since the master clock of the mi-
crocontroller is disabled when the system enters low-power
mode, Timer A cannot be used as a continuously running lo-
cal clock. Being interested in energy-efficient applications
mostly, we use Timer B as the local clock source. It is con-
nected to an external 32kHz crystal oscillator and is operat-
ing also when the system is in low-power mode. The mini-
mum clock granularity provided by Timer B is 30.5µs. Since
the 16-bit timer will overflow every two seconds, we extend
the timestamp to 32 bits using the 16 higher bits to count the
number of counter overflows.

3.3 TinyOS Implementation
The implementation is done on top of the TinyOS op-

erating system [1] which offers support for the TinyN-
ode platform. However, a minor modification of the radio
stack (XE1205RadioM.nc) was necessary to insert the cur-
rent timestamp just before the packet is transmitted over the
radio. The radio stack signals an event when the radio chan-
nel is clear for transmission. Then, the event handler method
writes the current timestamp into the message payload. Right
after that, the CRC checksum of the packet is calculated
and the bytes are transferred to the 16-byte FIFO buffer of
the radio module. It is assumed that the time consumed
for the calculation of the checksum is deterministic and de-
pends on the message size. Therefore, both message types
used for the clock synchronization algorithm (TimeSync and
TimeSyncACK) have the same size.

The radio module features a pattern detector which com-
pares the received data stream with a predefined message
preamble. If the received bits match the packet preamble,
the subsequent bits are written into the 16-byte FIFO buffer.
An interrupt is generated after the first byte has been trans-
ferred into the FIFO and the current timestamp is asssigned
to the received message for further processing in the appli-
cation layer.

4 Measurements
We performed a series of measurements on a indoor

testbed with 10 TinyNode sensor nodes. Node 1 acts as the
reference node, all other nodes are configured to synchronize
their clocks periodically with the reference node. An addi-
tional node is connected through the serial port to a PC that
controls the measurement procedure and overhears the radio
traffic. At the beginning of each measurement run, all nodes
are initialized by a sequence of configuration messages.
4.1 Clock Drift

In a first approximation, clock drifts are linear. We mea-
sured the relative clock drift of the TinyNodes used in our
testbed. The current clock value of the nodes is probed us-
ing continuously broadcasted messages that act like external
events. The reception of each message is timestamped with
the local clock and written to the external flash memory. Fig-
ure 1 shows the measured offsets between the child nodes
and the reference node (Node 1).

0 100 200 300 400 500 600 700 800 900 1000
−600

−400

−200

0

200

400

600

Time (sec)

O
ffs

et
 (

tic
ks

)

Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9
Node 10

Figure 1. Relative drift with respect to Node 1. One can
see the linear principal component.

What will remain if we remove the linear principal com-
ponent from the clock drift? To get a better understanding
of possible additional components of the clock drift we per-
formed linear regression of the measured clock values. The
distribution of the errors is shown in Figure 2. This sec-
ondary component of the clock drift is remarkably symmet-
ric which motivated our approach.
4.2 Synchronization without Drift Compensa-

tion
In the next stage, we measured the performance of the

synchronization algorithm with disabled drift compensation.
The node connected to the PC continuously broadcasts mes-
sages of the typeEventMsg that act like external events.
EachEventMsg contains a sequence number to identify the
event. The inter-arrival time between subsequent events is
uniformly distributed between 10 and 24 seconds. Each node
logs the estimated timestamp of the reference node together
with the current local timestamp and the event identifier to
the external flash memory. A single measurement run con-
sists of approximately 1400 events.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Error (ticks)

R
el

at
iv

e
fr

eq
ue

nc
y

Figure 2. The distribution of errors for the best-fit line of
the measured clock drift.

Figure 3 shows the measured error for a synchroniza-
tion interval of 60 seconds. Due to the relative clock drift,
nodes start to drift apart immediately after the synchroniza-
tion point. The average synchronization error is 6.28 clock
ticks (191.54µs) since the hardware clock of Node 3 runs
slightly slower than the reference clock (see Figure 1). In
addition, there is a strong correlation in the time series ofthe
remaining error (Figure 4) since the absolute error is mono-
tonically increasing after the synchronization point due to the
relative drift.

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
el

at
iv

e
fr

eq
ue

nc
y

Synchronization error (ticks)

Figure 3. Distribution of the synchronization error be-
tween Node 3 and the reference node (without drift com-
pensation).

4.3 Synchronization with Drift Compensation
Drift compensation significantly improves the accuracy of

clock synchronization. We measured the performance of the
drift compensation mechanism proposed in Section 3 (using
α = 0.1). The pair-wise synchronization error between Node
3 and the reference node is shown in Figure 5. The aver-
age synchronization error is reduced to 0.37 ticks (11.32 µs).

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ut

oc
or

re
la

tio
n

Time (events)

Figure 4. Autocorrelation of the synchronization error
time series (Node 3, without drift compensation).

In the worst case, the clock value of the reference node is
missed by a single clock tick. The distribution of the syn-
chronization error is symmetric (Figure 6), indicating that
positive and negative errors are in equilibrium. Nevertheless,
a symmetric error alone is not a sufficient condition for opti-
mality, since patterns in the error series might be exploited.
To ensure that this is not the case, we compute the autocor-
relation of the synchronization error time series (Figure 7).
The plot of the autocorrelation shows nearly no dependency
between the error of subsequent probes, in contrast to the
strong correlation observed in Figure 4. Since no more pat-
terns exist that can be exploited, we believe that our time
synchronization algorithm is to some degree optimal given
the constraints of the hardware platform.

0 0.5 1 1.5 2

x 10
4

−3

−2

−1

0

1

2

3

Time (s)

S
yn

ch
ro

ni
za

tio
n

er
ro

r
(t

ic
ks

)

Figure 5. Synchronization error between Node 3 and the
reference node.

A quick follow-up experiment using Mica2 motes was
performed to investigate the influence of the clock granular-
ity on the synchronization error. The implementation on the
Mica2 platform offers a 912kHz hardware clock resulting in

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
el

at
iv

e
oc

cu
re

nc
e

Synchronization error (ticks)

Figure 6. Distribution of the synchronization error be-
tween Node 3 and the reference node (with drift compen-
sation).

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A

ut
oc

or
re

la
tio

n

Time (events)

Figure 7. Autocorrelation of the synchronization error
time series (Node 3, with drift compensation).

a granularity of around 1µs. Our early measurement results
show that our algorithm achieves an average error of 1.46
ticks (1.59µs) and a standard deviation of 1.84 ticks (2.00µs)
when synchronizing every 30 seconds. However, the dis-
tribution of the synchronization error still exhibits a small
asymmetry. We believe that further fine-tuning can reduce
the resulting synchronization error to the range of the clock
granularity (1µs).

4.4 Energy Efficient Synchronization
Energy efficiency is an important aspect when designing

applications for sensor networks. A deployed sensor node
should ideally run with batteries for a long time period with-
out the need of human interactions. Having the radio module
switched on is very expensive compared to the energy con-
sumption in low-power mode. The interval between clock
synchronizations should be tuned in a manner that energy is
saved while the accuracy of the synchronization remains still

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

Synchronization period (s)

S
yn

ch
ro

ni
za

tio
n

er
ro

r
(u

s)

Figure 8. Average synchronization error depending on
the synchronization interval.

within the acceptable range. A measurement series was per-
formed to evaluate the impact of the synchronization interval
on the accuracy of the synchronization. The initial synchro-
nization interval was set to 60 seconds and doubled for each
subsequent measurement run (see Table 1). The accuracy of
clock synchronization degrades only slightly with increasing
synchronization interval, as shown in Figure 8. The benefit
in terms of accuracy is quite small when using a shorter syn-
chronization interval than 960 seconds. Remarkable is the
large increase of the synchronization error when doubling
the synchronization interval from 960 to 1920 seconds.

Error in ticks (µs)
Interval Average Worst case Std. dev

60s 0.37 (11.32) 2 (61.0) 0.61 (18.66)
120s 0.37 (11.34) 2 (61.0) 0.61 (18.69)
240s 0.36 (11.17) 2 (61.0) 0.61 (18.58)
480s 0.39 (11.79) 2 (61.0) 0.62 (19.03)
960s 0.44 (13.35) 3 (91.5) 0.69 (20.96)
1920s 0.81 (24.83) 5 (152.5) 0.83 (25.31)

Table 1. Measurement results for different synchroniza-
tion intervals (1 tick = 30.5 µs).

5 Conclusion
Accurate synchronization of clocks is a prerequisite for

many application in wireless sensor networks. In this pa-
per, we presented a prototype implementation of a sender-
receiver based single-hop clock synchronization algorithm.
The performance of the algorithm was evaluated on an in-
door testbed. Measurement results showed that the error be-
tween our estimation and the real reference clock value is
very small (1-2 clock ticks). Furthermore, the remaining
synchronization error is distributed in a symmetric manner
and uncorrelated in time which we believe is optimal (see
Section 4.3). A follow-up experiment on the Mica2 plat-
form using a finer grained clock showed that our algorithm
is competitive to existing algorithms in applications where
small variances in the synchronization error are required.

6 References
[1] TinyOS. http://webs.cs.berkeley.edu/tos.

[2] N. Burri, P. von Rickenbach, and R. Wattenhofer.
Dozer: Ultra-low power data gathering in sensor net-
works. In IPSN ’07: Proceedings of the 6th interna-
tional conference on Information processing in sensor
networks, 2007.

[3] H. Dai and R. Han. Tsync: a lightweight bidirec-
tional time synchronization service for wireless sensor
networks.SIGMOBILE Mob. Comput. Commun. Rev.,
8(1), 2004.

[4] H. Dubois-Ferrìere, L. Fabre, R. Meier, and P. Me-
trailler. Tinynode: a comprehensive platform for wire-
less sensor network applications. InIPSN ’06: Pro-
ceedings of the fifth international conference on Infor-
mation processing in sensor networks, 2006.

[5] J. Elson, L. Girod, and D. Estrin. Fine-grained net-
work time synchronization using reference broadcasts.
SIGOPS Oper. Syst. Rev., 36(SI), 2002.

[6] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-
sync protocol for sensor networks. InSenSys ’03: Pro-
ceedings of the 1st international conference on Embed-
ded networked sensor systems, 2003.

[7] M. Maróti, B. Kusy, G. Simon, and́A. Lédeczi. The
flooding time synchronization protocol. InSenSys ’04:
Proceedings of the 2nd international conference on
Embedded networked sensor systems, 2004.

[8] D. Mills. Internet time synchronization: the network
time protocol.IEEE Transactions on Communications,
39(10), Oct 1991.

[9] K. Römer. Time synchronization in ad hoc networks.
In MobiHoc ’01: Proceedings of the 2nd ACM inter-
national symposium on Mobile ad hoc networking &
computing, 2001.

[10] M. Sichitiu and C. Veerarittiphan. Simple, accurate
time synchronization for wireless sensor networks. In
WCNC ’03: Proceedings of the IEEE Wireless Commu-
nications and Networking Conference, 2003.

[11] G. Simon, M. Maŕoti, Á. Lédeczi, G. Balogh, B. Kusy,
A. Nádas, G. Pap, J. Sallai, and K. Frampton. Sen-
sor network-based countersniper system. InSenSys
’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems, 2004.

[12] R. Solis, V. Borkar, and P. Kumar. A new distributed
time synchronization protocol for multihop wireless
networks.45th IEEE Conference on Decision and Con-
trol, 2006.

[13] J. van Greunen and J. Rabaey. Lightweight time syn-
chronization for sensor networks. InWSNA ’03: Pro-
ceedings of the 2nd ACM international conference on
Wireless sensor networks and applications, 2003.

