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Abstract. Many classical blockchains are known to have an embar-
rassingly low transaction throughput, down to Bitcoin’s notorious seven
transactions per second limit. Various proposals and implementations for
increasing throughput emerged in the first decade of blockchain research.
But how much concurrency is possible? In their early days, blockchains
were mostly used for simple transfers from user to user. More recently,
however, decentralized finance (DeFi) and NFT marketplaces have com-
pletely changed what is happening on blockchains. Both are built using
smart contracts and have gained significant popularity. Transactions on
DeFi and NFT marketplaces often interact with the same smart con-
tracts. We believe this development has transformed blockchain usage.
In our work, we perform a historical analysis of Ethereum’s transaction
graph. We study how much interaction between transactions there was
historically and how much there is now. We find that the rise of DeFi
and NFT marketplaces has led to an increase in “centralization” in the
transaction graph. More transactions are now interconnected: currently
there are around 200 transactions per block with 4000 interdependencies
between them. We further find that the parallelizability of Ethereum’s
current interconnected transaction workload is limited. A speedup ex-
ceeding a factor of five is currently unrealistic.

Keywords: Blockchain · Ethereum · smart contract · decentralized fi-
nance · parallelizability · connectedness · transaction graph.

1 Introduction
When the first blockchain, Bitcoin [33], was launched in 2008, it allowed the
execution of financial transactions without relying on a central authority. With
its promise, Bitcoin sparked the creation of many more cryptocurrencies, most
notably Ethereum [43], which introduced smart contracts in 2015. However, even
though cryptocurrencies are continuously reaching new levels of popularity, the
transaction throughput of the most popular1 ones remains incredibly low.

Given the low throughput of blockchains, especially in comparison to es-
tablished payment systems such as Visa or PayPal, many suggestions to tackle
low blockchain throughput levels have been introduced as well as implemented.
1 Measured by total fees users are willing to pay to use the blockchain (see

https://cryptofees.info) Ethereum is orders of magnitude more popular than other
smart contract-enabled blockchains, such as Avalanche and Cardano.
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Layer 2 protocols [13, 36, 25, 34], handling transactions off-chain, sharding proto-
cols [19, 23, 30, 46, 12, 42, 3], and moving from Proof-of-Work (PoW) to Proof-of-
Stake (PoS) [18] are amongst the most adopted scaling solutions. In addition to
the development of the aforementioned solutions, the potential of concurrency
control for multithreaded execution has been explored thoroughly.

However, these solutions do not focus on the implications of the changing
nature of blockchain transactions. Before the rapid rise of decentralized finance
(DeFi) and NFT marketplaces, transactions were largely simple transactions
between two parties. Consequently, dependencies between a large set of transac-
tions in a block were rare. In the face of few dependencies, transaction through-
put can be increased with the proposed solutions – as they rely on the parallel
execution of transactions to increase throughput. However, DeFi and NFT mar-
ketplaces have brought new challenges when scaling throughput.

While DeFi employs smart contracts hosted on the blockchain to offer many
of the services provided by traditional finance, NFT marketplaces utilize smart
contracts to facilitate NFT purchases. Core smart contracts building DeFi and
NFT marketplaces are involved in many of a block’s transactions and create
dependencies between a significant proportion of transactions. This new reality
on Ethereum greatly challenges the parallelization of transaction execution.

In this work, we explore the limits of transaction parallelization on Ethereum.
We analyze these limits by investigating the connectedness of the Ethereum
mainnet transaction graph over time. The identification of the largest connected
component and clique in terms of the required execution workload in a block’s
transaction graph allows us to explore the potential of concurrent execution over
time. In particular, we point out that DeFi’s most important smart contracts are
central in the transaction graph and responsible for the vast majority of trans-
action dependencies. Thus, a handful of smart contracts present a significant
parallelization bottleneck, especially given the widespread adoption of DeFi and
NFT marketplaces starting in 2020.

This development presents a tremendous challenge in the quest to reach
throughput levels of established payment systems. We, therefore, conclude by
outlining three areas to tackle in order to increase the parallelizability of Ethereum’s
workload and allow concurrency mechanisms to reach their full potential. These
areas should not only be targeted by Ethereum, the focus of our analysis, but
also by blockchains with comparable smart contract designs and usage patterns,
as we expect them to have similar bottlenecks.

2 Related Work

Blockchain throughput has been one of the first topics of Bitcoin research, and
many solutions have emerged to tackle the issue, e.g., layer 2, sharding. Here, we
concentrate on those solutions that aim to parallelize the workload through con-
current execution. These works directly study the parallelization of the workload,
whose bounds we quantify.

Sergey and Hobor [39] are among the first to explore smart contract concur-
rency for parallel execution of blockchain transactions. They provide an analogy
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between smart contracts and concurrent programming. In the scheme introduced
by Zhang and Zhang [48], miners use concurrency control techniques to pre-
compute a serializable schedule that can be utilized by validators replaying the
block. By employing a dependency graph based concurrency control technique,
Amiri et al. [1] find a valid schedule execution that allows for non-conflicting
transactions to execute in parallel. Our work, on the other hand, explores the
blockchain transaction dependency graph to quantify the existing real-world po-
tential of parallelization.

Additionally, a recent line of work surrounding smart contracts’ concurrency
leverages speculative execution. Dickerson et al. [15], and Anjana et al. [2] pre-
compute a serializable concurrent schedule for a block’s transactions through
speculative execution, while Gelashvili et al. [21] propose Block-STM, a parallel
execution engine that avoids pre-computation. An estimation of the potential
concurrency of speculative execution by miners is offered by Saraph and Her-
lihy [38]. Chen et al. [11] take speculative execution to a new level by specu-
latively executing transactions that are waiting to be included in a block. In
contrast, we explore the limits of concurrency given the nature of blockchain
transactions in light of the recent rise of DeFi and NFT marketplaces.

Pîrlea et al. [35] and Murgia et al. [32] utilize static analysis to parallelize
execution. They statically determine which transactions can safely be executed
in parallel and which contracts can be placed on different shards. While static
analysis is valuable to identifying dependencies ahead of time, the existing ap-
proaches do not remove inherent dependencies from the workload, which are at
the center of our findings.

A parallel line of work studies the transaction graphs of popular cryptocur-
rencies. Ron and Shamir [37] first analyzed the Bitcoin transaction graph. While
their work studies the full transaction graph statically, Kondor et al. [26] also ex-
amine changes in the Bitcoin transaction network over time. Several studies also
explore the Ethereum transaction network [22, 31, 31, 10, 4, 20, 29, 28, 49, 24, 45,
44, 49] through temporal graph analysis. Instead of solely studying the evolution
of Ethereum’s full transaction network, we focus on the impacts of the increased
smart contract usage on the connectedness of Ethereum’s block-wise transac-
tion graphs and quantify the implications for parallelizability of the current and
historical transaction workload.

In their study of Ethereum’s transaction network, Zanelatto et al. [47] fo-
cus on understanding the evolution of connected components in the network.
Their work precedes the rise of DeFi and NFT marketplaces on the Ethereum
and therefore does not capture the increased trend of more and more interplay
between transactions and different smart contracts. Our work focuses on this
increased connectivity and further discusses its implications on the blockchain.

3 Background

In the following, we introduce the essential preliminaries concerning transaction
execution on the Ethereum blockchain and DeFi smart contracts.
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3.1 Ethereum Transaction Execution

Ethereum is a smart contract platform, i.e., it does not only support Ether
transfers. Instead, it runs a general purpose virtual machine, the Ethereum vir-
tual machine (EVM), that executes a specific byte code instruction set. Thus,
Ethereum allows functions defined in smart contracts to be called in transactions.
Smart contract functions can call functions of other smart contracts, generat-
ing internal calls. The EVM distinguishes between the following different types
of function calls: (1) call performs operations scoped to the called contract’s
storage, (2) delegate call performs operations scoped to the calling contract’s
storage, (3) static call is like a regular call but with read-only access to the stor-
age, and (4) call code is a deprecated version of delegate call. Thus, all calls are
scoped to a specific contract and have either read/write or read-only access to
its storage.

We call two transactions conflicting or dependent if they have calls with the
same scope and one of them has write access on that scope. Note that two trans-
actions that interact with the same smart contract might not necessarily touch
the same storage cell. However, taking this coarser view on conflicts simplifies
large scale analysis and is easier to reason about for smart contract developers.

There are also EVM instructions (BALANCE, EXTCODESIZE, EXTCODE-
HASH, EXTCODECOPY), which allow a contract to read global state (includ-
ing the current Ether balance and smart contract code) of any address, regardless
of the current scope. In practice, out of these mostly EXTCODESIZE is used
to detect whether an address is a smart contract. In our analysis we disregard
potential conflicts, which could be caused by these instructions.

Ethereum introduced the access list [7, 8], which specifies a list of addresses
and storage keys that the transaction wants to access, giving a gas discount on
these accesses. However, it is optional and not yet widely adopted. We found that,
out of more than 600 million transactions only 2 million included an access list
and their accuracy and completeness is unclear. Building complete and accurate
access lists of just addresses would also be easier for smart contract developers
and end users. Further, previous work could not gain a significant advantage by
parallelizing at the storage key level [38] as opposed to the address level.

Code execution on the EVM is paid for in gas, which is automatically con-
verted from the sender’s Ether balance. Gas is a measure for how expensive code
execution is for validators on Ethereum [17]. Thus, we use gas as a proxy mea-
sure for real execution time (including computation and storage accesses). This
way assumptions about the underlying implementation, runtime environment,
and hardware are kept to a minimum. Further, we define sequential gas as the
highest cumulative gas cost of any sequential execution in a parallel schedule.

3.2 Decentralized Finance Smart Contracts

DeFi offers many financial services from traditional finance. Instead of relying on
intermediaries, DeFi utilizes smart contracts. We elaborate on the functionality
of some of DeFi’s most important smart contracts in the following.
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ERC-20 Tokens are smart contracts that implement fungible tokens, i.e.,
they can represent anything that can be owned and exchanged in integer quanti-
ties, and adhere to a specific interface standard, the ERC-20 (Ethereum Request
for Comments 20) [16]. These implement at least a given set of nine functions,
including transfer (transferring an amount of tokens from the callers address
to a given address) and balanceOf (getting token balance of a given address).

Routers are implemented by DEXs as a central frontend to their trading
interfaces. These routers are stateless, they simply specify via which liquidity
pools, trading venues for ERC-20 tokens, trades are routed. The router makes
the calls to the liquidity pools according to a pre-defined route.

4 Data Collection
We run an Erigon client [27] to collect Ethereum blockchain data. In particular,
we query trace data for the whole blockchain history to better understand the
parallelizability of the Ethereum mainnet workload, as well as trends over time.
Trace data provides us the internal calls executed by each transaction. In the
proceeding evaluation, we look at historical data by sampling 65 blocks per day
at random over the whole history of Ethereum’s mainnet blockchain. With the
historical analysis we can observe long term trends in Ethereum’s workload and
parallelizability thereof. Additionally, we also look at recent data in more detail
by considering every single block over the three-month period from 1 June 2022
through 31 August 2022. Through the recent data we hope to get an accurate
view of the current state of parallelizability on the Ethereum blockchain.

5 Ethereum Mainnet Workload
In the following we consider changes in the Ethereum mainnet workload over
time. In Fig. 1a, we compute and plot the average number of transactions of
the blocks in our data set each month along with the 95% confidence interval.
Alongside this, we also show the Ether price.

While the number of transactions per block is initially only small, i.e., less
than ten transactions, we notice a first significant rise in the number of trans-
actions per block starting in early 2017 and peaking in late 2017 at around 200
transactions per block. During this time, there were unprecedented levels of spec-
ulation surrounding cryptocurrencies; this hype likely drove the rapid increase in
the Ether price and the number of transactions on the Ethereum mainnet. The
market’s subsequent cool-down is reflected in a transaction number decrease to
around 100 per block and a sharp Ether price decrease. In fact, until the end
of 2019, the number of transactions per block and the Ether price are highly
correlated, i.e., the Pearson correlation coefficient is 0.77. Later, another in-
crease in the average transaction number occurred in 2020 during the DeFi and
the subsequent NFT boom. Since then, the average number of transactions per
block was stable at around 200, and the average number of transactions did not
significantly surpass the previous peak. With the rise of DeFi and NFTs, the cor-
relation between the number of transactions and the Ether price also decreased,
i.e., the Pearson correlation coefficient drops to 0.60 from 2020 onward.
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(a) Historical development of the number of
transactions per block on Ethereum mainnet
and the Ether price.
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(b) Historical development of the num-
ber of transaction interdependencies
per block.

Fig. 1: Visualization of the average number of transactions per block (cf. Fig. 1a)
and the average number of transaction interdependencies per block (cf. Fig. 1b).
We randomly sample 65 blocks per day and plot the daily average along with
the 95% confidence interval.

We further plot the number of transaction interdependencies in Fig. 1b, i.e.,
the number of transaction pairs that access the same smart contract. While
the impact of DeFi and NFT marketplaces on the number of transactions does
not significantly surpass previous levels, this does not hold for the number of
transaction interdependencies. Notice that there were, on average, around 2000
transaction interdependencies per block during the initial peak. However, the
increased usage of smart contracts starting from 2020 also increased the av-
erage number of transaction interdependencies per block to 5000 at its peak
and never significantly dropped afterward. Note that these interdependencies
are largely created by a few core DeFi smart contracts, i.e., popular ERC-20
tokens, DEX routers, and NFT marketplaces. Thus, the widespread adoption of
these smart contracts presents a significant challenge to the parallelization of
Ethereum transactions.

6 Transaction Graph Representation

To explore trends in parallelization potential we consider a graph representation
of the transaction data. There are two graph representations commonly utilized
for Ethereum transaction data: address-based and transaction-based. We provide
a definition for the address-based graph in Definition 1 and visualize an example
in Fig. 2a. Observe that transaction tx3 involves four address, D → C → A → B,
while tx2 only involves two addresses, B → C.

Definition 1 (Address-based Graph (AGn,m)). The address-based graph
for blocks n, . . . ,m, n ≤ m, is represented as AGn,m(V,E, {ωe}e∈E). Here, V
is the graph’s set of vertices, each v ∈ V is an address and V is the set of all
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Fig. 2: Two types of graph representations of the same sample set of five
Ethereum transactions. The edge colors indicate belonging to a transaction in
the address-based graph representation (cf. Fig. 2a), the transaction-based graph
representation has the same transaction set as vertices.

addresses that appeared in blocks n, . . . ,m, i.e., were the sender or receiver of
one of the (internal) calls of one of the block’s transactions. E is the graph’s set
of edges, each edge e = (v, u) shows a call of contract u by contract v in blocks
n, . . . ,m. The weight of edge e, ωe, is given by the amount of gas utilized by the
corresponding internal call.

In Definition 2, we define the transaction-based graph and draw the corre-
sponding example in Fig. 2b. Note that the address-based representation induces
the transaction-based representation. In the transaction-based graph neighbor-
ing transactions cannot safely be executed in parallel. Therefore, in the example
shown in Fig. 2b, transaction tx4 cannot be executed while tx3 executes as they
both interact with address D (cf. Fig. 2a). Cliques in the transaction-based repre-
sentation indicate that all transactions in the clique have to be executed sequen-
tially. Thus, the execution of transactions tx1, tx2 and tx3 cannot be parallelized.
In the following, we will largely consider the address-based representation, but
will also draw unique insights from the transaction-based representation, i.e.,
calculate the graph’s biggest clique to explore the limits of parallelization.

Definition 2 (Transaction-based Graph (TGn,m)). The transaction-based
graph for blocks n, . . . ,m, n ≤ m, is represented as TGn,m(V,E, {ωv}v∈V ). Here,
V is the graph’s set of vertices, each v ∈ V is a transaction and V is the set
of all transactions that appeared in blocks n, . . . ,m. The weight of a vertex v,
ωv, is the amount of gas utilized by transaction v. E is the graph’s set of edges,
each edge e = {v, u} shows a dependency between transaction v and u in blocks
n, . . . ,m. A dependency is induced when the two transactions interact with the
same address, i.e., the address appears as sender or receiver of an (internal) call
for each of the two transactions.
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Fig. 3: Address-based visualisation of block 15,348,042 (mined 15 August 2022).
Fig. 3a shows the original graph, while Fig. 3b visualizes a disentangled version
of the graph (cf. Section 6.1). In both graphs we highlight some core DeFi smart
contracts, namely, ERC-20 tokens, DEX routers, and DEX liquidity pools. Note
that the biggest connected component of the disentangled graph is significantly
smaller than that of the original graph.

In Fig. 3a we visualize the address interactions of block 15,348,042 (mined
15 August 2022) and highlight some core DeFi smart contracts. The pink ver-
tices are the top five ERC-20 tokens (WETH, USDC, USDT, DAI, and LINK)
in terms of the number of transfers, while the purple vertices are the remaining
ERC-20 token addresses that appeared in block 15,348,042. We highlight the fol-
lowing DEX routers in yellow: Uniswap V2, Uniswap V3, SushiSwap, and 1inch,
and utilize blue to flag the Uniswap V2, Uniswap V3, SushiSwap, and Curve
liquidity pools. Notice that the majority of the block builds a single connected
component and that the vast majority of the labeled DeFi contracts are part of
this connected component. With some, mainly the top 5 ERC-20 and the DEX
routers, being central in this connected component and thereby contributing
greatly to the dependencies between the different transactions in a block.

6.1 Disentangled Transaction Graph Representation

Observing the persistently high degree (in the address-based transaction graph)
of these DeFi contracts across the majority of the blocks since the rise of DeFi,
we noticed that many of the dependencies introduced by these smart contracts,
which are a central part of the DeFi ecosystem, are by no means essential.
Especially the apparent dependencies introduced by ERC-20 token contracts
and DEX routers in the smart contract level, would not manifest in the storage
key level. These two examples of non-essential dependencies are relatively easy
to spot by validators as we outline in the following.
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Fig. 4: Address-based graph representation of three transfers of DAI, an ERC-
20 token, between the following wallets: address A to address D, address B to
address E, and address C to address F . In Fig. 4a we show the actual address-
based representation. Observe that the three transfers appear dependent of each
other. In Fig. 4b we show how we disentangle the graph to avoid this dependency.

For example, consider three transfers of DAI, an ERC-20 token, between
the following addresses: address A to address D, address B to address E, and
address C to address F . As DAI is not the Ethereum blockchain’s native cur-
rency, we only observe calls from the DAI senders to the DAI smart contract,
which keeps track of fungible DAI tokens (cf. Fig. 4a). Thus, the three transfers
appear dependent, which would not be the case for three equivalent ETH trans-
fers. Therefore, we disentangled the transaction graph representation in Fig. 4b.
Instead of having the transaction’s sender call the token contract, we pretend
that they call the memory location of the receiver in the DAI smart contract.
In addition to making these adjustments for the ERC-20 transfer function,
we also make respective adjustments for the following ERC-20 contract func-
tions: balanceOf, transferFrom, approve, and allowance. Note that we only
perform this disentanglement for the top five ERC-20 tokens: WETH, USDC,
USDT, DAI, and LINK. These five ERC-20 tokens are the five largest in terms
of the number of transfers and together account for 34% of all ERC-20 transfers.
Further, we choose to restrict ourselves to this small number of ERC-20 tokens
to show: (1) their impact on the connectedness of a block’s transactions and (2)
ensure that the tokens do not have any unexpected behavior, e.g., transferring
a proportion to a third party [14].

DEX routers are also involved in many transactions and, thereby, lead to
increased connectedness in the transaction graph. As the DEX routers them-
selves are stateless and only perform calls to the indicated liquidity pools on
the user’s behalf, the dependencies in the smart contract level are therefore not
necessary. Thus, we remove routers from the transaction graph. In particular, we
re-route all the router edges to the sender of the respective transaction. In the
later analysis, we perform this disentanglement for the routers of the following
DEXs: Uniswap V2, Uniswap V3, SushiSwap, and 1inch.

7 Parallelizability
In the following exploration of Ethereum’s transaction graphs, we quantify the
limited parallelization potential. In Section 7.1, we discuss the evolution over
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Fig. 5: We plot the gas used by: (1) the entire block, (2) the block’s heaviest
connected component (CC), (3) the block’s heaviest clique, and (4) the block’s
heaviest transaction. Fig. 5a analyzes the original transaction data and Fig. 5b
the disentangled transaction data. Note that we plot the monthly average along
with the 95% confidence interval from randomly sampling 65 blocks per day.

time – cementing the impact of DeFi and NFTs – and, in Section 7.2, the cur-
rent state of parallelization potential on the Ethereum mainnet. We define par-
allelizability of a block as the highest speedup factor (total gas used by the block
divided by sequential gas of a schedule) that can be achieved. For our analysis
we look at specific schedules as well as graph metrics, which serve as upper and
lower bounds on the parallelizability under our definition of conflicts.

7.1 Parallelizability over Time

In the following, we analyze the parallelization potential on Ethereum’s mainnet
by considering the connectedness of the transaction graphs. We randomly sample
65 blocks per day over the entire blockchain history up until the last block on
31 August 2022 – allowing us to observe the trends over time.

The adoption of DeFi and NFT marketplaces is clearly visible when looking
at trends over time in gas usage, a proxy for the execution time. In Fig. 5a, we
plot the amount of gas per block in blue. Notice the sharp increase starting in
2020 with the rise of DeFi. Whereas these new applications did not increase the
number of transactions to unprecedented levels, they caused the amount of gas
per block to skyrocket due to the increasing complexity of transactions.

To provide an enhanced understanding of the parallelizability of these in-
creasingly heavy blocks, we also plot the size of the heaviest connected com-
ponent, drawn in yellow, and the size of the heaviest clique, shown in pink, in
Fig. 5a. Note that we measure the weight of a connected component or clique by
the total amount of gas used by its transactions. Thereby, these weights indicate
the time required to execute the contained transactions.
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Connected components are equivalent in the address-based and transaction-
based graph representations. Across both views, the weight of the heaviest con-
nected component offers a lower bound for the parallelization potential of a
block’s execution. Any schedule that runs as many transactions as possible in
parallel, i.e., in each time step executes a maximal independent set of trans-
actions, will not exceed the time required to execute the heaviest connected
component sequentially. We want to note that to obtain the dependencies be-
tween transactions, one has to have access to a statically provided access list
or first execute all transactions. However, this is done only once by the valida-
tor. Once the block was executed, a parallel schedule could be made available
to everyone else for validation. Further, we utilize the transaction-based graph
representation to find the heaviest clique. For this there is no direct analogue in
the address-based graph. The heaviest clique specifies an upper bound for the
parallelization potential of a block’s execution. Any schedule must handle all
transactions in a clique sequentially – assuming atomic transaction execution.
We, in fact, ran a simple list scheduling algorithm to find a schedule. It generates
a partial ordering and always allows execution of a maximal independent set in
parallel. We find that, while the schedule occasionally requires longer to execute
than the heaviest clique would, the relative error is negligible (cf. Appendix A).
Thus, the upper bound of the parallelization potential is almost achievable with
a simple schedule. Note that our transaction graph might over estimate depen-
dencies as we are coming from the smart contract level and not the storage key
level.

Looking at our data, we observe that the heaviest connected component cur-
rently makes up more than half of the block (cf. Fig. 5a). Further, the difference
between the average heaviest connected component and the average heaviest
clique has grown since the popularization of DeFi in 2020. This could be ex-
plained by interactions between the different protocols and smart contracts of
the DeFi ecosystems. Since the rise of DeFi, the transactions in the heaviest con-
nected component tend to interact with popular ERC-20 tokens, DEX liquidity
pools, and lending protocols. However, mostly those that interact with the same
smart contract are in a clique. We note that the largest clique typically consists
of those transactions that interact with WETH, i.e., the most popular ERC-20
token (in terms of the number of transfers).

As previously stated, transactions interacting with WETH generally form
the heaviest clique in the original transaction data. However, as we show in Sec-
tion 6.1, the apparent dependencies in the smart contract level view are simply
a consequence of implementing ERC-20 tokens as smart contracts as opposed
to native tokens. To obtain a more accurate picture, we perform the previously
outlined disentanglement, we observe a significant reduction in both the size
of the heaviest connected component and clique (cf. Fig. 5b) since the adop-
tion of DeFi. In fact, from 1 July 2020 to 31 August 2022, the disentanglement
decreased the size of the heaviest connected component by a factor of 1.78 on
average. Further, the size of the heaviest clique decreased by a factor of 1.88 on
average.
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Fig. 6: We visualize the achievable execution speedup (aggregated monthly)
through parallelization for the original transaction data (cf. Fig. 6a) and the dis-
entangled transaction data (cf. Fig. 6b). We obtain the lower bound for the par-
allelization potential through the identification of the heaviest connected com-
ponent and the upper bound from the heaviest clique. Note both the heaviest
connected component and clique are weighted by gas.

We also plot the size, in terms of gas used, of the heaviest transaction per
block in both Fig. 5a and Fig. 5b.2 The size of the heaviest transaction in a block
indicates a further, looser upper bound for the parallelization potential that dis-
regards any dependencies between transactions. By neglecting all dependencies,
we automatically omit any nonessential dependencies. This looser upper bound
thus only assumes that transactions must execute atomically. However, we find
that, on average, the heaviest transactions are a significant proportion of the
entire block – a ninth on average over the entire history. Thus, parallelization is
not only limited by the ever-increasing size of the heaviest clique but is similarly
bounded by individual large transactions.

We plot the lower and (realistic) upper bound for the achievable speedup
in Fig. 6. In Fig. 6a, we show these bounds for the original transaction data,
and in Fig. 6b, we show the same bounds for the disentangled transaction data.
Similar to our previous observations, the lower (given by the size of the heaviest
connected component) and the upper bound (given by the size of the heaviest
clique) of the realistically achievable speedup are close to each other up until
the rise of DeFi in 2020. Further, we observe the performed disentanglement
also only shows its effects from 2020 onward, as it targets DeFi smart contracts.
From 2020, we notice an increase in the difference between the lower and upper
bound of the achievable speedup. Further, in the original transaction data, we
observe that both the lower and the upper bound for the realistically achievable
speedup decrease once DeFi becomes adopted (cf. Fig. 6a). In the disentangled

2 Note that the disentanglement does not impact the size of the heaviest transaction,
and neither the total gas of a block.
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Fig. 7: We plot the gas used by: (1) the entire block, (2) the block’s heaviest
connected component (CC), (3) our naive schedule (sequentially), and (4) the
block’s heaviest transaction. Fig. 7a analyzes the original transaction data and
Fig. 7b the disentangled transaction data. Note that we plot the daily average
along with the 95% confidence interval. Further, we use the sequential gas of our
schedule as a proxy for the size of the heaviest clique.

transaction data, on the other hand, we notice that the lower bound for the
possible speedup does not decrease after the introduction of DeFi, but instead
remains more or less constant (cf. Fig. 6b). It is even more remarkable that
the upper bound for the realistically achievable speedup even increases after
the introduction of DeFi for the disentangled transaction data. We presume this
stems from the increasing number of transactions in the same period (cf. Fig. 1a).
Further, it is likely impacted by most DeFi transactions being dependent on each
other over a given number of hops in the graph representation but not necessarily
being all in one clique.

7.2 Current Limits of Parallelizability

To better gauge the current limits of parallelizability, we expand on the previous
analysis by analyzing all blocks from 1 June 2022 to 31 August 2022 – allowing
us to obtain a complete picture of the current state of the Ethereum mainnet.
In Fig. 7, we plot the amount of gas used by: (1) the entire block, (2) the
block’s heaviest connected component, (3) our schedule (sequentially), and (4)
the block’s heaviest transactions. Note that we only plot the sequential gas used
by our schedule and not the heaviest clique, as finding the heaviest clique is time
intensive. Our analysis in Appendix A shows that our schedule almost reaches
the same parallelization potential.

When examining Fig. 7, we notice that there are few fluctuations in both the
daily mean size of the blocks and the daily mean size of the heaviest transactions.
We only observe two collapses, of around 10%, in the mean size of the entire
block at the end of July and the beginning of August. When looking at the daily
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average size of the heaviest connected component and the daily average amount
of sequential gas used by our schedule in the original transaction data (cf Fig. 7a),
a similar picture paints itself. In general, both averages make up approximately
a half (connected component) and a third (schedule) of the block size on average.
There is one peak in the average gas used by the heaviest connected component
and the schedule around 15 June 2022 that we do not observe in the block
size. The daily price movements of Ether were very high during this time (cf.
Appendix C, Fig. 12b) due to the anticipation of and the release of the CPI
data [41]. As a consequence, the Ether trading volume on DEXs like Uniswap
V3 experienced a rapid increase [40], which we presume lead to an increased size
of both the heaviest connected component and clique in relation to the block
size. We want to point out that, while the 95% confidence interval is tight around
the daily mean for all four graphs, the fluctuations of values for all four graph
measures are substantial as shown in Appendix B (cf. Fig. 11). For instance,
shortly around the time at which we observe the peak in gas usage, the 99th
percentile of the heaviest transaction reaches is almost the 99th percentile of
the block size. Thus, there are some blocks in which a single transaction makes
up almost the entire block – allowing for little to no parallelization in those
blocks. Still, we observe that the daily average of gas usage by the heaviest
connected component and by the heaviest clique, for which we use our schedule
as a proxy, make up a relatively stable proportion of the block in the recent
(original) transaction data.

Turning to the disentangled transaction data (cf. Fig. 7b), we notice a stable
reduction in the daily average of the gas used by the heaviest connected compo-
nents (by a factor of 1.6) and the sequential gas used by the schedule (by a factor
of 1.5). It is most remarkable that the reduction is less significant in early June
than in the remaining data set. We presume that this is a consequence of the
significant price drop of Ether in the same period (cf. Fig. 12a), which likely led
to exceptional DeFi usage patterns that further interconnected the workload. In
the remaining data set, the reduction achieved by the disentanglement is very
stable, but the achievable speedup still only reaches around a factor four (cf.
Appendix B, Fig. 10).

Finally, in order to simulate higher transaction throughput, we consider
batches of ten consecutive blocks and explore the connectedness of the corre-
sponding transaction graphs (cf. Fig. 8). Even with this (rather exaggerated)
simulated increase in block size, the sequential gas of our schedule increases pro-
portionally, thus not changing this upper bound for the realistically achievable
speedup. On the other hand, the lower bound (indicated by the heaviest con-
nected component) even becomes much looser. This suggests that, when merging
blocks, the largest cliques of all blocks merge into one, whereas connected com-
ponents are even merged from within the same block. This is in line with our
analysis that the heaviest cliques are always induced by the same few contracts
– indicating that increasing block size does not improve concurrency potential.

8 Discussion and Conclusion
Our work quantifies the parallelizability of the Ethereum mainnet workload.
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Fig. 8: We plot the gas used by: (1) 10 consecutive blocks, (2) their heaviest
connected component (CC), (3) our naive schedule (sequentially), and (4) their
heaviest transaction. Fig. 8a analyzes the original transaction data and Fig. 8b
the disentangled transaction data. Note that we plot the daily average along
with the 95% confidence interval.

We find that currently, the level of concurrency is very limited. Thus, it does
not suffice to only devote efforts to finding ways to best exploit the existing
potential for concurrency. Instead, we believe that part of the focus must be
shifted towards ensuring that the workload is parallelizable in the first place.
Concretely, we believe that the following three areas must be targeted to enable
the existing concurrency mechanisms to achieve much higher speedups.

Investigate dependencies. As we outline, some of DeFi’s core smart con-
tracts appear in many transactions. Thus, we believe that transaction depen-
dencies must be investigated on a more fine-grained basis, for example at the
storage key level. Furthermore, the smart contracts could be redesigned to avoid
unnecessary dependencies in the transaction graph.

Incentivize “simple” transactions. The heaviest transaction in a block
currently makes up around one tenth of the average block size. Thus, these in-
dividual transactions present a limit on the parallelization potential. We there-
fore believe that the blockchain should discourage such frequent heavy transac-
tions and instead encourage simple transactions. One possible approach would
be charging for computation superlinearly.

Increase predictability of dependencies. The incredibly low usage of
the access list, indicates that it is currently not viable for transaction senders to
provide the addresses and storage keys their transaction will touch. Predictability
of dependencies would take care of this situation and would allow for increased
parallelization during execution.

Only once the workload on the Ethereum mainnet is truly parallelizable will
the speedup suffice to make the 100,000 transactions per second [9] stated by
the Ethereum Foundation achievable.



16 Heimbach et al.

References
1. Amiri, M.J., Agrawal, D., El Abbadi, A.: Parblockchain: Leveraging transaction

parallelism in permissioned blockchain systems. In: 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). pp. 1337–1347. IEEE
(2019)

2. Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: Optsmart: a space effi-
cient optimistic concurrent execution of smart contracts. Distributed and Parallel
Databases pp. 1–53 (2022)

3. Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Divide and scale: Formal-
ization of distributed ledger sharding protocols. arXiv preprint arXiv:1910.10434
(2019)

4. Bai, Q., Zhang, C., Xu, Y., Chen, X., Wang, X.: Evolution of ethereum: A temporal
graph perspective. arXiv preprint arXiv:2001.05251 (2020)

5. Berg, J.A., Fritsch, R., Heimbach, L., Wattenhofer, R.: An Empirical Study of
Market Inefficiencies in Uniswap and SushiSwap. In: The 2nd Workshop on De-
centralized Finance (DeFi), Grenada (February 2022)

6. Buterin, V., Conner, E., Dudley, R., Slipper, M., Norden, I., Bakhta, A.: EIP-1559.
https://eips.ethereum.org/EIPS/eip-1559 (2022)

7. Buterin, V., Swende, M.: Eip-2929: Gas cost increases for state access opcodes.
https://eips.ethereum.org/EIPS/eip-2929 (2022)

8. Buterin, V., Swende, M.: Eip-2930: Optional access lists.
https://eips.ethereum.org/EIPS/eip-2930 (2022)

9. Cavicchioli, M.: Ethereum will reach 100,000 transactions per second.
https://en.cryptonomist.ch/2022/07/22/ethereum-reach-100000-transactions-
second/ (2022)

10. Chen, T., Li, Z., Zhang, Y., Luo, X., Chen, A., Yang, K., Hu, B., Zhu, T., Deng,
S., Hu, T., et al.: Dataether: Data exploration framework for ethereum. In: 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS).
pp. 1369–1380. IEEE (2019)

11. Chen, Y., Guo, Z., Li, R., Chen, S., Zhou, L., Zhou, Y., Zhang, X.: Forerunner:
Constraint-based speculative transaction execution for ethereum. In: Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles. pp. 570–
587 (2021)

12. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards
scaling blockchain systems via sharding. In: Proceedings of the 2019 international
conference on management of data. pp. 123–140 (2019)

13. Decker, C., Wattenhofer, R.: A Fast and Scalable Payment Network with Bitcoin
Duplex Micropayment Channels. In: 17th International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), Edmonton, Canada (Au-
gust 2015)

14. DeFi Cartel: Salmonella. https://github.com/Defi-Cartel/salmonella (2022)
15. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart

contracts. In: Proceedings of the ACM Symposium on Principles of Distributed
Computing. pp. 303–312 (2017)

16. Ethereum Foundation: ERC-20 token standard.
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/ (2022)

17. Ethereum Foundation: Gas and fees. https://ethereum.org/en/developers/docs/gas
(2022)

18. Ethereum Foundation: The merge. https://ethereum.org/en/upgrades/merge/
(2022)



DeFi and NFTs Hinder Blockchain Scalability 17

19. Ethereum Foundation: Sharding. https://ethereum.org/en/upgrades/sharding/
(2022)

20. Ferretti, S., D’Angelo, G.: On the ethereum blockchain structure: A complex net-
works theory perspective. Concurrency and Computation: Practice and Experience
32(12), e5493 (2020)

21. Gelashvili, R., Spiegelman, A., Xiang, Z., Danezis, G., Li, Z., Xia, Y., Zhou, R.,
Malkhi, D.: Block-stm: Scaling blockchain execution by turning ordering curse to
a performance blessing. arXiv preprint arXiv:2203.06871 (2022)

22. Guo, D., Dong, J., Wang, K.: Graph structure and statistical properties of ethereum
transaction relationships. Information Sciences 492, 58–71 (2019)

23. Han, R., Yu, J., Zhang, R.: Analysing and improving shard allocation protocols
for sharded blockchains. Cryptology ePrint Archive (2020)

24. He, N., Su, W., Yu, Z., Liu, X., Zhao, F., Wang, H., Luo, X., Tyson, G.,
Wu, L., Guo, Y.: Understanding the evolution of blockchain ecosystems: A lon-
gitudinal measurement study of bitcoin, ethereum, and eosio. arXiv preprint
arXiv:2110.07534 (2021)

25. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
Scalable, private smart contracts. In: 27th USENIX Security Symposium (USENIX
Security 18). pp. 1353–1370 (2018)

26. Kondor, D., Pósfai, M., Csabai, I., Vattay, G.: Do the rich get richer? an empirical
analysis of the bitcoin transaction network. PloS one 9(2), e86197 (2014)

27. ledgerwatch: Erigon. https://github.com/ledgerwatch/erigon (2022)
28. Lin, D., Chen, J., Wu, J., Zheng, Z.: Evolution of ethereum transaction rela-

tionships: Toward understanding global driving factors from microscopic patterns.
IEEE Transactions on Computational Social Systems 9(2), 559–570 (2021)

29. Lin, D., Wu, J., Yuan, Q., Zheng, Z.: Modeling and understanding ethereum trans-
action records via a complex network approach. IEEE Transactions on Circuits and
Systems II: Express Briefs 67(11), 2737–2741 (2020)

30. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. pp. 17–30 (2016)

31. Motamed, A.P., Bahrak, B.: Quantitative analysis of cryptocurrencies transaction
graph. Applied Network Science 4(1), 1–21 (2019)

32. Murgia, M., Galletta, L., Bartoletti, M.: A theory of transaction parallelism in
blockchains. Logical Methods in Computer Science 17 (2021)

33. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Busi-
ness Review p. 21260 (2008)

34. Optimism Foundation: Optimism. https://www.optimism.io (2022)
35. Pîrlea, G., Kumar, A., Sergey, I.: Practical smart contract sharding with ownership

and commutativity analysis. In: Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation. pp.
1327–1341 (2021)

36. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

37. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In:
International Conference on Financial Cryptography and Data Security. pp. 6–24.
Springer (2013)

38. Saraph, V., Herlihy, M.: An empirical study of speculative concurrency in ethereum
smart contracts. arXiv preprint arXiv:1901.01376 (2019)



18 Heimbach et al.

39. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: International
Conference on Financial Cryptography and Data Security. pp. 478–493. Springer
(2017)

40. Uniswap Labs: Ether. https://info.uniswap.org/#/tokens/0xc02aaa39b223fe8d0a0
e5c4f27ead9083c756cc2 (2022)

41. U.S. Bureau of Labor Statistics: Schedule of releases for the consumer price index.
https://www.bls.gov/schedule/news_release/cpi.htm (2022)

42. Wang, G., Shi, Z.J., Nixon, M., Han, S.: SoK: Sharding on blockchain. In: Pro-
ceedings of the 1st ACM Conference on Advances in Financial Technologies. pp.
41–61 (2019)

43. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

44. Xie, Y., Jin, J., Zhang, J., Yu, S., Xuan, Q.: Temporal-amount snapshot multigraph
for ethereum transaction tracking. In: International Conference on Blockchain and
Trustworthy Systems. pp. 133–146. Springer (2021)

45. Xie, Y., Zhou, J., Wang, J., Zhang, J., Sheng, Y., Wu, J., Xuan, Q.: Understanding
ethereum transactions via network approach. In: Graph data mining, pp. 155–176.
Springer (2021)

46. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security. pp. 931–948 (2018)

47. Zanelatto Gavião Mascarenhas, J., Ziviani, A., Wehmuth, K., Vieira, A.B.: On the
transaction dynamics of the ethereum-based cryptocurrency. Journal of Complex
Networks 8(4), cnaa042 (2020)

48. Zhang, A., Zhang, K.: Enabling concurrency on smart contracts using multiver-
sion ordering. In: Asia-Pacific Web (APWeb) and Web-Age Information Manage-
ment (WAIM) Joint International Conference on Web and Big Data. pp. 425–439.
Springer (2018)

49. Zhao, L., Sen Gupta, S., Khan, A., Luo, R.: Temporal analysis of the entire
ethereum blockchain network. In: Proceedings of the Web Conference 2021. pp.
2258–2269 (2021)



DeFi and NFTs Hinder Blockchain Scalability 19

A Relative Error of Schedule

We compare the sequential gas used by our naive schedule to the amount of gas
utilized for the execution of the heaviest clique in Fig. 9. Notice that the mean
daily relative error is very small, less than 1%, throughout the entire blockchain
history. The relative error peaks for both the original transaction data and the
disentangled transaction data, starting with the rise of DeFi up until mid-2021.
From mid-2021 onward, it becomes even smaller again. We further point out
that the relative error of our schedule is slightly larger for the disentangled
transaction data than for the original data. Regardless, the sequential gas utilized
by our naive schedule accurately approximates the amount of gas utilized for the
execution of the heaviest clique, which is optimal for any schedule working with
conflicts on the granularity of addresses.
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Fig. 9: We visualize the relative error between the sequential gas of the schedule
obtained through our naive scheduling algorithm and the heaviest clique, which
is the best achievable for any parallel schedule working on the address level. We
plot daily average relative error of 65 randomly sampled blocks per day and 95%
confidence interval for the original transaction data (cf. Fig. 9a) and disentangled
transaction data (cf. Fig. 9b).

B Current Limits of Parallelizability

We plot bounds for the achievable execution speedup of the gas utilized for the
execution of the entire block (averaged over each day), in Fig. 10a for the origi-
nal transaction data and in Fig. 10b for the disentangled transaction data. The
heaviest connected component, in terms of gas used, serves as a lower bound,
whereas the sequential gas from our naive scheduling algorithm, which as we
saw closely approximates an optimal schedule, serves as a proxy for the upper



20 Heimbach et al.

15 Jul 15 Aug 15
2022-Aug

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
po

ss
ib

le
 s

pe
ed

up

max CC schedule

(a) original transaction data

15 Jul 15 Aug 15
2022-Aug

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

po
ss

ib
le

 s
pe

ed
up

max CC schedule

(b) disentangled transaction data

Fig. 10: We visualize the achievable execution speedup (aggregated daily)
through parallelization for the original transaction data (cf. Fig. 10a) and the
disentangled transaction data (cf. Fig. 10b). We obtain the lower bound for
the parallelization potential through the identification of the heaviest connected
component and the upper bound from the heaviest clique. Note that both the
heaviest connected component and clique are weighted by gas.

bound. We see that a speedup of 4.5x is not surpassed even including our disen-
tanglement, even though we only look at theoretical bounds and do not impose
limits on the degree of parallelism, e.g. a maximum number of threads.

We plot the 90th percentile of the gas utilized for (1) the sequential execution
of the entire block, (2) the heaviest connected component, (3) our naive schedule,
and (4) the heaviest transaction, in Fig. 11a for the original transaction data and
in Fig. 11b for the disentangled transaction data. Notice that in comparison to
the daily mean (cf. Fig. 7a), the daily 90th percentile of gas used by all four
measures is approximately a factor of two larger. Thus, 10% of blocks are twice
the size of the average block. Note that EIP-1559 permits blocks to be at most
twice the size of the target block size [6], and we are observing a significant
proportion of blocks being built with a size very close to twice the target size.
We also observe many blocks that are almost empty at an equal rate and presume
that this pattern of empty and overfull blocks emerged to manipulate the base
fee introduced in EIP-1559. The fact that we observe a similar increase in the
90th percentile of gas used by the heaviest connected component and our naive
schedule, in comparison to the mean, indicates that in the 90th percentile of
blocks, in terms of gas used, the level of connectedness is similar to that in
an average block. That is, the proportion of a block in the heaviest connected
component and clique remains largely unchanged. Note that this is the case for
both the original and disentangled transaction data.

If we turn to the 99th percentile of gas usage (cf. Figs. 11c and 11d), a
different picture paints itself. We are no longer simply observing a proportional
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Fig. 11: We plot daily 90th and 99th percentile of the gas used by: (1) the entire
block, (2) the block’s heaviest connected component (CC), (3) our naive parallel
schedule (sequential gas), and (4) the block’s heaviest transaction. Figs. 11a
and 11c analyze the original transaction data and Figs. 11b and 11d analyze the
disentangled transaction data. Note that we use the sequential gas utilized by
our schedule as a proxy for the size of the heaviest clique.

increase in gas usage across all four measures but instead observe widely different
patterns. Only the 99th percentile gas usage of the entire block appears stable,
as it is limited by EIP-1559. The 99th percentile of both the heaviest connected
component and the heaviest clique is significantly larger than the average block
size (cf. Fig. 7). This holds for both the original and the disentangled transaction
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data. In the 99th percentile, our disentanglement has little impact on the heaviest
cliques but still reduces the size of the largest connected components slightly.
We presume that this is due to the different nature of the transactions in the
heaviest clique in these extraordinary cases. Further, the 99th percentile of the
largest transaction is as large as the mean block size (cf. Fig. 7) and half the
size of the 99th percentile of the block size. Thus, the largest transactions make
up significant proportions of a block and thereby hugely limit the parallelization
potential of those blocks.

C Recent Ether Price Data
In Fig. 12, we plot Ether’s daily price and daily price movement from 1 June 2022
to 31 August 2022. Fig. 12a visualizes the Ether’s daily open price (popen) and
daily close price (pclose). The daily price movement, which we plot in Fig. 12b,
is a measure of the daily price volatility and is given by

phigh − plow
plow

,

where phigh is the day’s highest Ether price and plow is the day’s lowest Ether
price [5].
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Fig. 12: We plot the Ether price and daily price movement from 1 June 2022
through 31 August 2022. The daily price movement compares the day’s high to
the day’s low and is, therefore, a measure of price volatility.


