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Abstract

We study the problem of evacuating two robots from a bounded area,
through an unknown exit located on the boundary. Initially, the robots
are in the center of the area and throughout the evacuation process they
can only communicate with each other when they are at the same point at
the same time. Having a visibility range of 0, the robots can only identify
the location of the exit if they are already at the exit position. The task
is to minimize the time it takes until both robots reach the exit, for a
worst-case placement of the exit.

For unit disks, an upper bound of 5.628 for the evacuation time is
presented in [8]. Using the insight that, perhaps surprisingly, a forced
meeting of the two robots as performed in the respective algorithm does
not provide an exchange of any non-trivial information, we design a
simpler algorithm that achieves an upper bound of 5.625. Our numerical
simulations suggest that this bound is optimal for the considered natural
class of algorithms. For dealing with the technical difficulties in analyzing
the algorithm, we formulate a powerful new criterion that, for a given
algorithm, reduces the number of possible worst-case exits radically. This
criterion is of independent interest and can be applied to any area shape.

1 Introduction

Imagine that two robots are trapped in the middle of a room with a single door.
Their goal is to evacuate both of them via the door in the shortest possible time.
However, there is a problem: The position of the door is unknown to them in the
beginning. Moreover, the robots have no sight and no wireless communication;
they cannot see the door or the other robot except when they are right on top of
it, and they can only communicate when they are at the same point at the same
time. However, they do know the shape of the room and share all information
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before they start searching for the door. How should they divide the work of
scouring the boundary for the door among them? Which routes should they
take? Does it make sense to meet at some predefined point in order to exchange
information?

We consider the above problem for the most fundamental room shape possible,
namely, the unit disk. In more formal terms, the goal is to minimize the time for
evacuating both robots from the room where the exit is assumed to be worst-case
placed and the robots move with unit speed. The state-of-the-art algorithm for
this problem due to Czyzowicz et al. [8] proceeds roughly as follows: First, both
robots move to the same point on the perimeter, then they search the perimeter
in different directions until they meet at the opposite point. At some predefined
point in time during their search along the perimeter they leave the perimeter
on symmetric non-linear routes in order to meet inside the circle upon which
they return to their search. If a robot finds the exit at any point in time, then
it immediately calculates the shortest route for meeting the other robot and
subsequently brings the other robot to the exit. The authors of [8] show that
this algorithm achieves an evacuation time of 5.628 and remark that it is possible
to improve upon this result by truncating the detour to the middle slightly.

We note that the forced meeting of the robots cannot be used to exchange
any non-trivial information. Moreover, the requirement to meet introduces
dependencies between the parameters of the detour such as position, length,
shape and angle (with respect to the perimeter). We prove that removing
this requirement indeed allows for an improved algorithm that utilizes the
independence of the aforementioned parameters while preserving the simplicity
of the algorithm. In fact, we present an algorithm that simplifies the algorithm
described above by omitting the forced meeting and instead using one (symmetric)
detour (per robot) that is a straight line with fixed depth. An important point
in omitting the forced meeting is that there is actually an implicit exchange of
information between the robots even before any meeting: When a robot finds
the exit, the best it can do is to meet the other robot as quickly as possible
in order to communicate the location of the exit. Conversely, from not being
visited by the other robot up to some point a robot can deduce that the exit
does not lie in a certain part of the perimeter.

Furthermore, we show that, surprisingly, the shape of the detour and its angle
to the perimeter do not affect the evacuation time if they are chosen from some
reasonable range. In particular, our linear detour is optimal for the parameters
chosen for the depth and the position of the detour.

Our algorithm achieves an evacuation time of 5.625, thereby slightly improving
upon the previously best known upper bound. For the class of algorithms as
described above with exactly one symmetric detour per robot, our numerical
simulations suggest that this bound is optimal (up to numerical precision, of
course). A theoretical substantiation for this optimality claim is given by the fact
that for our algorithm there are three different worst-case exit placements with
the same evacuation time (again, up to numerical precision). These three exit
positions are characteristic for the algorithms from the mentioned class—it stands
to reason that, in an optimal algorithm, they have to exhibit the same evacuation
time (since otherwise the parameters of the algorithm could be changed locally
in a way that improves the evacuation time for the worst of the three points)
and that there is only one algorithm that has the same worst-case evacuation
time for these three exit positions.

2



A fundamental problem regarding evacuation from a disk is that the evacua-
tion time for a fixed algorithm and a fixed exit placement is usually the solution
to some equation of the kind x = cos(x) (only more complex). For equations of
this kind no closed-form solutions are known in general, which makes it difficult
to find the worst-case exit placement for a fixed algorithm, not to mention to find
an algorithm with an improved worst-case evacuation time. We take a substantial
step in remedying this problem by proving that a very specific condition must be
satisfied for an exit in order to be worst-case placed. In “reasonable” algorithms
this condition is satisfied at only a few exit positions which makes it a powerful
tool for determining that an exit is not worst-case placed. In fact, in order for an
exit to be worst-case placed, it must satisfy one of the two following conditions:
1) The movement of one of the two robots at the exit point, resp. pick-up point1,
is not differentiable, or 2) the angles β and γ between the line connecting exit
and pick-up point and the directions of movement of the robots at the exit,
resp. the pick-up point, satisfy 2 cosβ + cos γ = 1. Moreover, the presented
tool is not restricted to the disk—it can be applied to any room shape. For the
analysis of our aforementioned algorithm, we rely heavily on this tool. In fact,
one might consider the development of this tool as the foremost contribution of
this work, while its application to the disk scenario may serve as an example of
its practicability.

1.1 Related Work

A thriving area in the context of problems involving mobile agents are search
problems in all its diversity. Such problems include ants searching for food (cf.,
e.g., [11, 12, 13]), rendezvous problems (cf., e.g., [1, 10, 17]), pursuit-evasion
games (cf., e.g., [14, 20, 21]) and graph exploration problems (cf., e.g., [15, 16, 19]),
just to name a few. Another example from the class of search problems are
evacuation problems, where one or multiple robot(s) search for one or multiple
exit(s) through which usually all of the robots have to evacuate. Evacuation
problems have been studied in a centralized setting in which the robots know
the terrain they search and where the other robots are, and in a distributed
setting where the knowledge of the robots is restricted to the area they have
already explored.2 Very recent results concerning optimal strategies on graphs
in both settings can be found in [4]. In the following, we assume that the area is
known to the robots. Moreover, we assume that the exit is worst-case placed
and that the robots move with unit speed.

Evacuation problems can be grouped into two main categories, namely, evac-
uation problems on graphs and geometric evacuation problems. Since our paper
deals with a problem from the latter class, we will focus on the related work
in this domain. Another distinction is given by the model of communication
between the robots: Here, we distinguish between instantaneous wireless com-
munication and non-wireless communication where explicit communication can
only take place when the communicating entities are at the same point.

In the geometric setting, research has considered different areas from which
the robots have to escape. The famous cow-path problem asks how long it takes

1Recall that upon finding the exit, a robot immediately takes the shortest possible tour to
meet the other robot and communicate the location of the exit. We call the point where this
meeting happens the pick-up point.

2Of course, all kinds of intermediate models are possible.
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a single robot (or cow) to evacuate through a worst-case placed exit on a line, in
terms of the distance d between initial position and exit. The correct answer
of 9d (up to lower order terms) was given by Beck and Newman [3] already in
1970, and later rediscovered by Baeza-Yates et al. [2]. In [5], Chrobak et al. show
that, somewhat surprisingly, the same is true for the evacuation time of multiple
robots on the line in the non-wireless communication model.

For the case of two robots in equilateral triangles and squares, Czyzowicz et
al. [9] present optimal evacuation trajectories, given wireless communication.

Study of the unit disk as the confining environment was initiated by Czyzowicz
et al. in [7]. The authors present upper bounds of 3+2π/k and 3+π/k+O(k−4/3)
and lower bounds of 3 + 2π/k −O(k−2) and 3 + π/k for the non-wireless and
the wireless communication model, respectively, where k is the number of robots.
Moreover, they give better upper and lower bounds for the case of 2 and 3 robots,
amongst them a lower bound of approximately 5.199 and an upper bound of
approximately 5.74 for the case of two robots in the non-wireless model. In [8],
Czyzowicz et al. improve the latter two bounds to a lower bound of approximately
5.255 and an upper bound of 5.628. Lamprou et al. [18] present (partly matching)
upper and lower bounds for two robots in the wireless model where one robot,
deviating from the above, has speed of larger than 1. Finally, in [6], Czyzowicz
et al. consider variations of the problem of evacuating from a disk where the two
robots do not know their own initial locations.

For our paper, the algorithms from [7] and [8] that achieve the upper bounds
for two robots in the non-wireless communication model are of particular interest.
The algorithm from [7] proceeds as follows: Starting in the center M of the disk,
both robots move to the same point A on the perimeter and start searching for
the exit in opposite directions. When one of the robots finds the exit, it picks
the other robot up as fast as possible and returns with it to the exit. This results
in an upper bound of approximately 5.74. For an illustration of the algorithm
we refer to Figure 1.

The authors of [8] improve on the previously suggested algorithm by incorpo-
rating a forced meeting of the two robots before all of the perimeter is searched.
For this, the robots leave the perimeter in a straight line, symmetric to each
other, until they meet, and then return to their search of the perimeter if the
exit has not been found yet. The authors were able to improve on this algorithm
even more by moving towards the meeting point in a triangular fashion. The
reasons for this further improvement are more subtle and explained in Section
3.1. For an illustration of the two algorithms with a forced meeting, we refer to
Figure 2.

1.2 Model

The specifics of the model for our robot evacuation problem, developed in [7],
are as follows: The area from which the robots have to escape is a disk of radius
1. Somewhere on its perimeter, there is a point, called exit, which two robots,
initially placed in the center of the disk, have to find and evacuate through. The
task of the robots is to minimize the time until both robots have reached the
exit, which we call the evacuation time. We assume that the location of the exit
on the perimeter is worst-case for the algorithm the two robots perform, i.e., the
exit position maximizes the evacuation time.

The robots itself are point-shaped and move at unit speed. Changing direction
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(a) Trajectories of the two robots if the
exit is at point D. Purple parts of the
trajectories indicate that both the red
and the blue robot travel along the re-
spective segment.
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B

C

(b) Trajectories of the two robots if the
exit is at point B. The red robot collects
the blue robot at the pick-up point at
C and then both robots travel together
to the exit.

Figure 1: Illustration of the evacuation algorithm described in [7].
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(a) First suggestion from [8], achieving
a runtime of approximately 5.644 for
α = 0. The blue robot first moves from
M to A, then along the perimeter to B,
then to E, back to B and finally to D
(if the exit is not found before).
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BC
D
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EJ K

(b) Improved algorithm from [8], achiev-
ing a runtime of 5.628. Instead of the
previously used linear cut, the robots
move along a triangular cut. Again, the
robots follow the indicated trajectories
only to the end if the exit is at D.

Figure 2: Illustration of the evacuation algorithms described in [8].
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takes no time and communication is also instantaneous, but only possible if both
robots are at the same point.3 Since this is the case in the beginning, the robots
can exchange all information about each others algorithm before they start
searching for the exit. The robots have no vision, and therefore can only identify
the exit position when they are at the exact location of the exit. Computation
also takes no time and we assume that the robots are able to actually perform
all necessary computations. The robots know the shape of the area and they
have the same sense of direction, i.e., we may assume that they have the same
underlying coordinate system.

1.3 Notation

In the following, we give an overview of the notation and the most important
terms we use.

R1 and R2 References for the two robots. We will call the robot that finds the
exit first R1, and the other robot R2.

÷AB For two points A and B on the perimeter,÷AB denotes the shorter arc from
A to B along the perimeter.

AB Denotes the straight line between A and B.

|÷AB| or |AB| Denote the lengths of÷AB, resp. AB.

Cut A movement of a robot from the perimeter onto the disk and back to the
point where the perimeter was left. Note that a cut can take any shape in
general. However, in our algorithm, the term cut describes a linear cut,
i.e., a movement from the perimeter onto the disk and back on a straight
line.

Cut length The distance traveled when moving along a cut.

Cut depth Only used if the cut is linear, in which case the cut depth is defined
as half of the cut length.

Cut position Point where a robot leaves the perimeter to perform a cut.

Meeting protocol A term coined in [8]. When R1 finds the exit, the best it can
do to minimize the evacuation time is to compute (and take) the shortest
route to meet R2. Since R1 knows the algorithm R2 follows (and therefore
also that R2 has not found the exit so far), R1 can actually determine
this shortest route.4 Note that this route is always a straight line since
otherwise there would be a shorter route, by the triangle inequality. After
meeting each other, both robots travel straight to the exit. This process of

3Note that a robot can also infer information from the fact that the other robot is not at the
same point as it is. For instance, it may conclude that the other robot has not already found
the exit in some specific segment of the perimeter, since otherwise the other robot would have
picked him up at the latest at the current position. This indirect information transfer plays an
important role in our arguments that the robots cannot infer any non-trivial information from
a forced meeting.

4We emphasize that R1 does not calculate a shortest route to the point where R2 is when
R1 finds the exit, but rather the shortest route for picking R2 up, knowing that and how R2

will move until being picked up.
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picking the other robot up after finding the exit and traveling to the exit
together is called the meeting protocol. If R1 finds the exit at time t and
the aforementioned shortest route has length x, then the evacuation time
is t+ 2x.

Pick-up point The point where R2 is picked up by R1 according to the meeting
protocol.

2 Determining the Worst-case Placement of the
Exit

If an algorithm for the two robots is fixed, it is still a challenging task to determine
the worst-case placement of the exit and thereby the evacuation time. One reason
is that already determining the pick-up point for a fixed exit placement often
involves solving equations where polynomial and trigonometric functions in some
variable x occur side by side. For equations of this kind no closed-form solutions
are known in general.

In this section, we develop a new technique to determine possible candidates
for the worst-case placement of the exit. More precisely, we give a criterion that
determines for a pair (exit, pick-up point) whether the exit can be excluded from
the list of candidates of worst-case placed exits, by only looking at the behaviour
of the algorithm in ε-neighborhoods of the exit and the pick-up point. The
criterion is quite strong in the following sense: Let β denote the angle between
the straight line from exit to pick-up point and the direction of the movement
of R1 at the exit. Let γ denote the angle between the straight line from exit
to pick-up point and the direction of the movement of R2 at the pick-up point.
Then, a very specific relation between β and γ has to be satisfied in order that
the exit from our pair (exit, pick-up point) is not excluded from the list of
possible worst-case placed exits.

In order to be able to exclude an exit, the movement of the two robots at the
exit and the corresponding pick-up point have to be differentiable (a property
that holds for almost all possible exit points in reasonable algorithms).

We make a natural distinction between two cases regarding the direction of
the movement of the two robots at the exit and the pick-up point: If according
to the algorithm, the two robots would move to the same side of the infinite line
through exit and pick-up point if they did not find the exit, resp. were not picked
up, as described above, then we say that the movement of the two robots (at exit
and pick-up point) is conform. If the two robots would move to different sides of
the infinite line, we say that their movement is converse. The cases where one
or both robots would move on the infinite line can be arbitrarily considered to
belong to one of the two cases.

Since our considerations in this section are independent of the shape of the
area, we phrase them as generally as possible, i.e., for an arbitrarily shaped area.

2.1 The Case of Conform Movement

Consider two lines g and h and two points B on g and C on h. Denote the
straight line from B to C by s. For simplicity, we assume that s has length 1.
The presented results can easily be scaled to any length of s. Denote the angle
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B C
s

g h

β γ

(a) The basic setting for the case of con-
form movement: Robot R1 finds the
exit at B and picks R2 up at C. A very
similar picture applies if we do not re-
quire straight-line movements of the two
robots, but only differentiable ones.

B
Cs

g h

. .

D
E

ε
ε/2

(b) If 2 cosβ + cos γ < 1, then traveling
from B to E via D takes more time than
traveling from B to E via C. Presuming
R1 picks R2 up at C if the exit is at B,
then R1 is to late to pick R2 up at E if
the exit is at D.

Figure 3: Zooming in at a potential worst-case exit and the corresponding
pick-up point.

between g and s by β and the angle between s and h by γ. In particular, we
have β, γ ≤ π. For an illustration, we refer to Figure 3(a).

In the following, we consider an arbitrary, but fixed evacuation algorithm
for two robots in some arbitrarily shaped bounded area. We assume that B is
the location of the exit and C the pick-up point where R1 picks R2 up via s.
Furthermore, we assume that locally (i.e., in some ε-neighborhood of the exit),
R1 arrives at B via g and would continue on g if it didn’t find the exit at B.
More precisely, the part of g where R1 would continue forms the angle β with s
(to specify the direction of R1). Analogously, we assume that locally, R2 arrives
at C via h and would continue on h if it wasn’t picked up by R1. Here the part
of h where R2 would continue forms the angle γ with s.

Now, we consider two cases, namely, 2 cosβ+cos γ < 1 and 2 cosβ+cos γ > 1.
We will show for both cases that B is not a worst-case placed exit even if the
trajectories of the robots at B and C are only differentiable and not necessarily
straight lines in an ε-neighborhood.

2.1.1 The Case 2 cosβ + cos γ < 1

Let 0 < ε ≤ 1/2. We assume that in the ε-neighborhood of B, resp. C, R1

and R2 behave as described above. Let D be the point that R1 would reach in
distance ε from B if it continued on g. Let E be the point that R2 would reach
in distance ε/2 from C if it continued on h. For the moment, let β ≤ π/2. For
an illustration, we refer to Figure 3(b).

Set zβ,γ := 1 − 2 cosβ − cos γ which is positive due to the constraint on β
and γ. Note that zβ,γ ≤ 2 since β ≤ π/2. For our proof that placing the exit at
B is not worst-case, we need the following two technical lemmas.

Lemma 2.1. If 2 cosβ+cos γ < 1 and β ≤ π/2, then |DE| ≥ 1−ε/2+zβ,γ ·ε/2.

Proof. By adding orthogonal lines to BC through D and E to the picture (cf.
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Figure 3(b)), we see that we can express |DE| as follows5:

|DE| =
È

(1− ε cosβ − ε/2 · cos γ)2 + (ε sinβ − ε/2 · sin γ)2

=
È

1 + ε2(sin2 β + cos2 β) + 1/4 · ε2(sin2 γ + cos2 γ) + ε2(cosβ cos γ − sinβ sin γ)

− ε(2 cosβ + cos γ)

Using the trigonometric identities sin2 β + cos2 β = 1, sin2 γ + cos2 γ = 1 and
cos(β + γ) = cosβ cos γ − sinβ sin γ, the fact that the minimum value of the
cosine function is −1, and the definition of zβ,γ , we obtain:

|DE| ≥
È

1 + ε2 + 1/4 · ε2 − ε2 + ε(zβ,γ − 1)

≥
È

1− ε+ 1/4 · ε2 + zβ,γ · ε+ 1/4 · z2β,γ · ε2 − 1/2 · zβ,γ · ε2

=
È

(1− ε/2 + zβ,γ · ε/2)2

= 1− ε/2 + zβ,γ · ε/2

The second inequality follows since β ≤ π/2 implies zβ,γ ≤ 2 which in turn
implies 1/4 · z2β,γ · ε2 − 1/2 · zβ,γ · ε2 ≤ 0.

Lemma 2.2. If 2 cosβ + cos γ < 1 and β ≤ π/2, then ε+ |DF | ≥ 1 + |CF |+
zβ,γ · ε/2 for all F on CE.

Proof. Let F be some point on CE. Then, by the triangle inequality, |DF | ≥
|DE| − |EF |. Using Lemma 2.1, we obtain

ε+ |DF | ≥ ε+ |DE| − |EF |
≥ 1 + ε/2 + zβ,γ · ε/2− |EF |
= 1 + |CE|+ zβ,γ · ε/2− |EF |
= 1 + |CF |+ zβ,γ · ε/2 .

By comparing the evacuation times of the case where the exit is located at
B and the case where the exit is located at D instead, we obtain the following
theorem that states that placing the exit at B is not worst-case:

Theorem 2.3. If 2 cosβ+ cos γ < 1 and β ≤ π/2, then there is an exit position
that yields a larger evacuation time than placing the exit at B.

Proof. Let t be the time it took R1 to get to point B. Then at time t+ 1, R2 is
at point C. Moreover, the evacuation time for the exit position at B is t+ 2.

Consider the case that the exit is located at D instead. In this case, R1 finds
the exit at time t+ ε. We claim that R2 is picked up at a point in time later
than t+ 1 + ε/2. Suppose otherwise. Then, R2 is picked up at some point F on
CE at time t+ 1 + |CF |. But, even if R1 heads straight for point F after finding
the exit at D, he arrives there only at time t+ ε+ |DF | which, by Lemma 2.2,
is strictly larger than t+ 1 + |CF |, thereby yielding a contradiction and proving
the claim.

5Note that the expression for |DE| also holds if γ > π/2.
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Robot R2 is at point E at time t+ 1 + ε/2 and, by Lemma 2.1, the distance
between D and E is strictly larger than 1− ε/2. Thus, R2 reaches the exit at
D strictly later than at time t+ 2. It follows that the evacuation time for the
exit position at D is strictly larger than the evacuation time for the exit at B.
Hence, B cannot be a worst-case placed exit position.

Up to now, in our quest for showing that exits can only be worst-case placed
under very specific conditions, we only considered the case that the robots move
locally in a straight line around the exit and the pick-up point. Now we extend
our approach to the case of curves that are differentiable in ε-neighborhoods
around the exit and the pick-up point. Thereby, we can finally tackle fundamental
shapes like circles.

Let g, h, B, C, s, β, γ, ε, D and E be defined as above with the slight
difference that g and h now indicate the directions of the movement of R1 and
R2 at point B, resp. C, linearly extended (which not necessarily coincides with
the routes the robots take, for any point except B, resp. C). Again, we start
with the assumption that R1 finds the exit at B and picks R2 up at C. Let g′

and h′ denote the curves along which R1 and R2 would move if they did not
find the exit at B, resp. were not picked up at C. From our definitions it follows
that B lies on g′, C lies on h′, and g and h indicate the derivative of g′, resp. h′,
in B, resp. C.

The direction of the robots on g′, resp. h′, is analogous to the direction of
the movement on g, resp. h, in the previous case (without curves), i.e., when
moving along g′, resp. h′, the robots are always on the same “side” with respect
to s and they move towards the side which encloses β, resp. γ, with s. Let D′

be the point on g′ that R1 reaches by traveling a distance of ε from B on g′

and E′ the point on h′ that R2 reaches by traveling a distance of ε/2 from C on
h′. Furthermore, for all 0 ≤ w ≤ ε/2, let Fw be the point on h that R2 would
reach by traveling a distance of w from C on h and F ′w the point on h′ that
R2 reaches by traveling a distance of w from C on h′. Again, we assume that
2 cosβ + cos γ < 1 and set zβ,γ := 1− 2 cosβ − cos γ.

In our new setting, we obtain an analogous statement to Theorem 2.3.

Theorem 2.4. If the trajectories of the two robots are differentiable around B
and C, the following statement (still) holds: If 2 cosβ + cos γ < 1 and β ≤ π/2,
then there is an exit position that yields a larger evacuation time than placing
the exit at B.

Proof. Let ε be chosen small enough such that |DD′| ≤ zβ,γ · ε/6 and |FwF ′w| ≤
zβ,γ · ε/6 for all 0 ≤ w ≤ ε/2. This is possible since zβ,γ depends only on β and
γ and (the directions of) g and h indicate the derivative of g′ and h′ in B, resp.
C.

Now, using Lemma 2.2, we obtain the following statement for any point F ′w
on h′ between C and E′ (which is quite similar to the statement of Lemma 2.2):

ε+ |D′F ′w| ≥ ε+ |D′Fw| − zβ,γ · ε/6
≥ ε+ |DFw| − zβ,γ · ε/6− zβ,γ · ε/6
≥ 1 + |CFw|+ zβ,γ · ε/2− zβ,γ · ε/6− zβ,γ · ε/6
= 1 + |CFw|+ zβ,γ · ε/6 .

Now the theorem statement follows by a argumentation completely analogous to
the proof of Theorem 2.3.
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So far, the above results are achieved under the condition that β ≤ π/2.
What if β > π/2? In this case, independent of the trajectory of the two robots
around B, resp. C, provided the trajectories are differentiable at B, resp. C,
there exists an ε′ > 0 such that at time t + ε′, R1 is at some point G with
|GC| > |BC| = 1. Then, if the exit is placed at point G, the evacuation time is
strictly larger than the evacuation time t+ 2 for the exit placement at B since
R2 is at point C at time t+ 1 and |GC| > 1. Thus, if β > π/2, placing the exit
at B is also not worst-case. We condense our observations into the following
corollary.

Corollary 2.5. If the trajectories of the two robots are differentiable around B
and C, the following statement holds: If 2 cosβ + cos γ < 1, then there is an exit
position that yields a larger evacuation time than placing the exit at B.

2.1.2 The Case 2 cosβ + cos γ > 1

Again, let 0 < ε ≤ 1/2 and again we assume that in the ε-neighborhood of B,
resp. C, R1 and R2 behave as described above. Deviating from the previous
notation, let D be the point on g that R1 reached in distance ε from B before
arriving at B. Similarly, let E be the point that R2 reached in distance ε/2 from
C before arriving at C.

Set zβ,γ := 2 cosβ+cos γ−1. It follows that 0 < zβ,γ ≤ 2 due to the constraint
on β and γ. Note that in the current case, we do not have to specifically require
that β ≤ π/2 in order to have zβ,γ ≤ 2. Moreover, we observe that the constraint
on β and γ already implies β ≤ π/2.

The following lemma is the analogous version of Lemma 2.1 for the case of
2 cosβ + cos γ > 1. Note that, for technical reasons, the last summand on the
right-hand side of the inequality is zβ,γ · ε/4, and not zβ,γ · ε/2. Apart from
having to carry the additional factor of 1/2 through the proofs of the following
theorems, this change does not affect our approach at all.

Lemma 2.6. If 2 cosβ + cos γ > 1, then |DE| ≥ 1 + ε/2 + zβ,γ · ε/4.

Proof. Similarly to the proof of Lemma 2.1, we obtain:

|DE| =
È

(1 + ε cosβ + ε/2 · cos γ)2 + (ε sinβ − ε/2 · sin γ)2

=
È

1 + ε2(sin2 β + cos2 β) + 1/4 · ε2(sin2 γ + cos2 γ) + ε2(cosβ cos γ − sinβ sin γ)

+ ε(2 cosβ + cos γ)

≥
È

1 + ε2 + 1/4 · ε2 − ε2 + ε(zβ,γ + 1)

≥
È

1 + ε+ 1/4 · ε2 + 1/2 · zβ,γ · ε+ 1/16 · z2β,γ · ε2 + 1/4 · zβ,γ · ε2

=
È

(1 + ε/2 + zβ,γ · ε/4)2

= 1 + ε/2 + zβ,γ · ε/4

The second inequality follows since ε ≤ 1/2 and zβ,γ ≤ 2 together imply

1/2 ·zβ,γ ·ε+1/16 ·z2β,γ ·ε2 +1/4 ·zβ,γ ·ε2 ≤ (1/2+1/16+1/8) ·zβ,γ ·ε < zβ,γ ·ε .
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Using Lemma 2.6, we can prove an analogous version of Theorem 2.3 for the
case 2 cosβ + cos γ > 1.

Theorem 2.7. If 2 cosβ + cos γ > 1, then there is an exit position that yields a
larger evacuation time than placing the exit at B.

Proof. Let t be the time it took R1 to get to point D. Then at time t+ ε, R1

is at point B and in case that the exit is placed at B, R2 is picked up at C at
time t+ 1 + ε. This implies that R2 is at point E at time t+ 1 + ε/2 unless it is
picked up before. Moreover, the evacuation time for the exit position at B is
t+ 2 + ε.

Consider the case that the exit is located at D instead. Robot R1 finds the
exit at time t. We claim that R2 is picked up at a point in time later than
t+ 1 + ε/2. Suppose otherwise, say, R2 is picked up at some point G at time
t + t′ with t′ ≤ 1 + ε/2. Since R2 would be at E at time t + 1 + ε/2 if it was
not picked up before, it follows that |EG| ≤ 1 + ε/2 − t′. Moreover, since R1

reaches G at time t+ t′, we obtain |DG| ≤ t′. By the triangle inequality, this
implies |DE| ≤ 1 + ε/2 which yields a contradiction to Lemma 2.6 and thereby
proves the claim.

Thus, at time t+ 1 + ε/2, R2 is actually at point E, and since, by Lemma
2.6, |DE| is strictly larger than 1 + ε/2, R2 reaches the exit at D strictly later
than at time t+ 2 + ε. It follows that the evacuation time for the exit position at
D is strictly larger than the evacuation time for the exit position at B. Hence,
again, B cannot be a worst-case placed exit position.

Analogously to the course of action in Section 2.1.1, we can adapt Theorem
2.7 for the more general case of differentiable curves. The proof follows by an
argumentation similar to the proof of Theorem 2.4.

Theorem 2.8. If the trajectories of the two robots are differentiable around B
and C, the following statement (still) holds: If 2 cosβ + cos γ > 1, then there is
an exit position that yields a larger evacuation time than placing the exit at B.

2.2 The Case of Converse Movement

We adopt the definitions from the case of conform movement with the exception
that now γ denotes the angle between h and s (not s and h). This change ensures
that the two robots continue in different directions with respect to s provided
that they do not find the exit, resp. that they are not picked up. Now we
can apply the arguments from the conform case and thereby obtain completely
analogous lemmas and theorems, in particular:

Theorem 2.9. If the trajectories of the two robots are differentiable around B
and C and 2 cosβ + cos γ < 1, then there is an exit position that yields a larger
evacuation time than placing the exit at B.

Theorem 2.10. If the trajectories of the two robots are differentiable around B
and C and 2 cosβ + cos γ > 1, then there is an exit position that yields a larger
evacuation time than placing the exit at B.

As in the conform case, it makes sense to distinguish between these two
theorems since the details in the respective proofs provide additional information:

12



On which side of 1 the term 2 cosβ + cos γ lies, determines to which direction
one has to move on g′ from B in order to obtain an exit with a larger evacuation
time. If 2 cosβ + cos γ < 1, then shifting the exit at B in the direction of the
movement of R1 (if it did not find the exit at B) will provide an exit position
with larger evacuation time (than the exit position at B). If 2 cosβ + cos γ > 1,
then shifting the exit at B in the reverse direction will provide an exit position
with larger evacuation time. The last two statements hold for both the conform
and the converse case.

3 Evacuating from a Disk

In this section we use the criterion 2 cosβ + cos γ 6= 1, which we developed in
Section 2, in order to improve the upper bound for evacuating two robots from
a unit disk to 5.625. Like the algorithm presented in [8], which achieves the
previously best known upper bound of 5.628, our algorithm consists of each
robot exploring its assigned half of the perimeter, only interrupted by exactly
one detour each, called cut, to the inside of the circle (and symmetric to the
other’s cut). In contrast, the algorithm from [8] additionally contains a forced
meeting of the two robots at the far end of the cuts (provided that none of the
robots finds the exit beforehand in which case the meeting protocol is invoked).

We will show that, perhaps counterintuitively, the robots cannot infer any
non-trivial information from this meeting that they could not have inferred
from the previous course of events. Thus, such a meeting can be omitted. We
will see in more detail that all the advantages of the meeting come from the
actual movement of cutting to the middle and not from an explicit exchange of
information.

Without the condition that the two robots actually have to meet at the end-
point of their (symmetric) cuts, many cuts are possible candidates for improving
the runtime of the evacuation algorithm. A cut is determined by four properties:
the position on the perimeter where the cut starts and ends, the shape of the
cut, the angle at which the cut protrudes from the perimeter and the size of the
cut, which corresponds to the cut depth in the case of a linear cut. As we will
show, somewhat surprisingly, the shape of the cut is optimal if it is linear, for
the choices of the other three parameters made in our algorithm. Similarly, we
will show that the angle does not influence the performance of the algorithm if
it is chosen in a reasonable range.

We will provide a choice of the remaining two parameters for linear cuts that
achieves the stated bound of 5.625. Moreover, we give a rigorous proof for the
evacuation time.

3.1 The Algorithm A(y, α, d)

In this section, we describe a parameterized evacuation algorithm (or a family of
evacuation algorithms if you wish) and provide a partitioning of R1’s half of the
perimeter into segments that will be useful in the analysis of the evacuation time.
Furthermore, we show that the forced meeting in the previously best algorithm
from [8] does not help in exchanging non-trivial information between the two
robots. In Section 3.2, we will prove that the parameters can actually be chosen
in a way that improves the previously best known upper bound.
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(a) Trajectories of the two robots if the
exit is located at D.
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exit is located at I1.

Figure 4: Illustration of Algorithm A(y, α, d).

Our parameterized algorithm A(y, α, d) is similar to the algorithm proposed
in [8]: From the center M of the disk, both robots move to the same point
A of the perimeter and continue on the perimeter in opposite directions. At

some point C, resp. B, where÷AC =÷AB = y, the robots leave the perimeter at
angle α in a straight line, until they reach depth d and then return straight to
point C, resp. B. Then both robots continue to search for the exit along the
perimeter until they meet at point D. If a robot finds the exit at any point in
time, it immediately performs the meeting protocol to pick the other robot up
and evacuate through the exit. Note that, for convenience, α denotes the angle
between the cuts and BC. For an illustration, we refer to Figure 4(a).

Now we examine Algorithm A(y, α, d) in more detail, laying the foundation
for the analysis of the evacuation time for a specific choice of the parameters y, α
and d in Section 3.2. Since the described algorithm is symmetric, it is sufficient
to analyze possible exit positions on one side of the symmetry axis, i.e., for one
of the two robots. Without loss of generality, we assume that the exit lies on the
arc from A to D that contains C, which implies that the robot that explores this
arc is called R1 and the other one R2. We partition this arc into four segments
by specifying the points on the arc where one segment ends and the next one
begins. Note that, for simplicity, we include any of these dividing points in both
its adjacent segments if not explicitly specified otherwise. The choice of the
segments depends on the parameters of our algorithm. For an illustration of the
trajectories of the two robots for the exit placements at three important points
defined in the following, we refer to Figure 4(b) and Figure 5.

1. Segment ÷AI1: Here, I1 is the point with the following property: If the exit
is at I1, then R1 will pick R2 up at point B before R2 performs its cut.

In other words, I1 satisfies |÷AI1|+ |I1B| = |AB|. This segment contains
exactly those exit positions for which the evacuation time is not influenced
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Figure 5: Illustration of Algorithm A(y, α, d) for important exit positions.

by the cut.

2. SegmentøI1I2: Here, I2 is the point with the following property: If the exit
is at I2, then R1 will pick R2 up at point B after R2 performs its cut. In

other words, I2 satisfies |÷AI2|+ |I2B| = |AB|+ 2d. This segment contains
exactly those exit positions for which the pick-up point lies on the cut.

3. SegmentøI2I3: Here, I3 = C. The exit positions in this segment are those
for which R1 finds the exit before performing its cut, but R2 is picked up
after performing its cut.

4. SegmentøI3D: For this segment, we explicitly specify that I3 itself does not
belong to the segment. This segment contains exactly those exit positions
that R1 reaches after performing its cut.

One main difference of our general algorithm to the one suggested in [8] is
that in the latter the robots always cut far enough to meet each other. In the
following, we argue that this meeting is not necessary since no real information
can be shared. Consider the following three cases for the algorithm from [8]:

Case 1: The exit is located in one of the first three segments, excluding I3. If R1

went now immediately to the meeting point on a straight line, then it would
arrive there earlier than if it had not found the exit before performing
its cut, because of the triangle inequality. Thus, because of symmetry
reasons, it would also arrive earlier than R2 at the meeting point. Hence,
by using the meeting protocol upon finding the exit, R1 picks R2 up before
R2 actually reaches the meeting point. It follows that in Case 1, R2 never
reaches the meeting point and therefore no information can be shared.

15



Case 2: The exit is located at I3. In this case, there actually is an exchange
of information at the meeting point, but the reason is that the predefined
meeting point happens to be the pick-up point for the exit position at I3.
In other words, if R1 (but not R2) followed a completely different algorithm
without a forced meeting but with the property that it finds the exit at
I3 at the same time as in Algorithm A(y, α, d), then it would still pick
R2 up at the same point at the same time and the resulting evacuation
time would not change. Thus, even in this specific case, the benefit in the
algorithm from [8] does not come from the forced meeting, but from the
fact that R2 cuts far enough in the direction of the exit to be picked up at
the tip of its cut.

Case 3: The exit lies behind R1’s cut, in the fourth segment. At the meeting
point, the only relevant information that can be shared is that neither robot
has found the exit yet. However, both robots can deduce this information
from the fact that they have not been picked up yet (see Case 1).

Note that in [8], two algorithms were presented, as described in Section 1.1:
One with a linear cut and an improved one where the robots cut to the meeting
point in a triangular fashion. In the latter algorithm, the exit position at I3 is
also dealt with by the explanations in the above Case 1, while Case 2 is not
needed at all.

We can conclude that the meeting itself does not contribute to a better
runtime of the algorithm. But it does limit the algorithm by introducing a
dependency between cut position and cut length. At first sight it might seem as
if the improvement between the two algorithms presented in [8] simply comes
from the shape of the cut and therefore a shortening of the pick-up distance.
However, the possibility to find parameters for the algorithm with the triangular
cut that give an improved evacuation time essentially comes from a decoupling
of cut position and cut length. Yet there is still some correlation between cut
position and cut length which is completely nullified in our algorithm A(y, α, d).

3.2 The Evacuation Time for y = 2.62843, α = π/4 and
d = 0.48793

In this section, we show an evacuation time of 5.625 for Algorithm A(y, α, d) for
the parameters y = 2.62843, α = π/4 and d = 0.48793.6 To do so we determine,
for each of the four segments defined in Section 3.1, the potential candidates for
the worst-case exit position and then take the maximum over the evacuation
times for those exits positions. For determining these candidates we use our
findings from Section 2. To this end, for any pair (exit position, pick-up point),
let β and γ denote the same angles as in Section 2, i.e., β is the angle between
the direction of movement of robot R1 at the (potential) exit position and the
line connecting exit position and pick-up point and γ the angle between this
line and the direction of movement of R2 at the (potential) pick-up point. Note
that when both robots move along the perimeter, we have β = γ for reasons of
symmetry.

6These parameters are chosen in a way that for the (only) three possible global worst-case
exit positions (which we determine in the following), the evacuation times are the same up to
numerical precision. While the values of the parameters were determined numerically, we give
a rigorous proof for the correctness of the claimed evacuation time for the presented algorithm.
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For calculating the distances of two points along the perimeter or along a
straight line, observe that for any two points on the perimeter with a distance
of w along the perimeter, their euclidian distance is 2 sin(w/2). Note that the
correctness of the latter does not depend on the choice of the way along the
perimeter for determining w—going clockwise or counterclockwise yields the

same value for 2 sin(w/2). For instance, the value of |÷AI1| is equal to the solution
of the equation x+ 2 sin((x+ y)/2) = y, where in our case y = 2.62843. For the

given parameters, we obtain |÷AI1| ≈ 0.63196, |÷AI2| ≈ 2.5837 and |÷AI3| = 2.62843.
Now, we examine the four segments one by one.

Lemma 3.1. If there is a (global) worst-case exit position in the first segment,
then this exit position is at I1.

Proof. Recall that for each possible exit position in the first segment, R2 is picked
up before it starts its cut. For the exit position at I1, we obtain γ = β ≈ 1.5114.
It follows that 2 cosβ + cos γ < 1 and because of the monotonicity of the cosine
function between 0 and π, the same holds for any potential exit position that is

an inner point on ÷AI1. Since we are in the conform case, we can apply Corollary
2.5 and obtain that, in the first segment, the only possible candidates for the
worst-case exit position are A and I1. Note that we cannot apply Corollary 2.5
to these two points since the movement of R1 is not differentiable at A, resp. the
movement of R2 at the pick-up point corresponding to I1 is not differentiable.
Also, A is obviously not a worst-case placement for the exit since both robots
would find the exit together after only 1 time unit. Thus, the only candidate for
a worst-case exit position in the first segment is I1.

Lemma 3.2. If there is a (global) worst-case exit position in the second segment,
then this exit position is at I1 or I2.

Proof. Recall that for each possible exit position in the second segment, R2

is picked up on its cut. Let P be the point at the tip of the cut and Q the
intersection of the perimeter and the line through P and B that is not B itself.
Hence, P lies on BQ. Moreover, let S be the exit position on R1’s half of the
perimeter for which R2 is picked up at P . For an illustration, we refer to Figure
6.

In order to simplify the analysis, we choose an underlying coordinate system
for the disk such that M = (0, 0), A = (0, 1) and R1 explores the half of the
perimeter with negative first coordinate. We obtain B ≈ (0.49094,−0.8712),
P ≈ (0.14592,−0.52168), I1 ≈ (−0.59073, 0.80687), Q ≈ (−0.8712, 0.49094),
S ≈ (−0.85568,−0.5175) and I2 ≈ (−0.5294,−0.84837).

We consider first the case where the exit lies onøI1Q. In this case, R2 is
picked up while it is on its way from B to P since S has a smaller second
coordinate than Q, i.e., since Q is explored by R1 before S. For any possible

exit onøI1Q, the respective β is at most as large as the β for the exit position at

I1, which is approximately 1.5114. Thus, for any possible exit onøI1Q, we obtain

2 cosβ > 0.11872. On the other hand, again for any possible exit onøI1Q, the
γ at the pick-up point is smaller than ∠I1PQ ≈ 0.28056. We obtain (for every
possible γ in this case) cos γ > 0.96089 which yields 2 cosβ + cos γ > 1.

Now, we consider the case where the exit lies on÷QS. Similarly to the last
case, we can bound any possible β from above by the β for the exit position at
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Figure 6: Illustration of Algorithm A(y, α, d) with our chosen parameters, for
the exit position at S. Note that SP and I3B only appear to be parallel.

Q, which is approximately 1.29856. Thus, 2 cosβ > 0.53777. On the other hand,
for any possible γ, we have γ ≤ ∠QPS ≈ 0.77673 which yields cos γ > 0.7132.

We obtain 2 cosβ + cos γ > 1, for any exit position on÷QS.

Lastly, consider the case where the exit lies on÷SI2. In this case, we want

to show that 2 cosβ + cos γ < 1. Let X be an arbitrary point on÷SI2 and Y an
arbitrary point on PB. Let β′ be the angle between the direction of movement
of R1 at X and XY and let γ′ be the angle between XY and the direction of
movement of R2 on the way from P to B.7

Assume for the moment that Y 6= B. We claim that moving Y a small ε
towards B along PB increases the value of 2 cosβ′+cos γ′. In order to prove this
claim, we start by observing that moving Y in the aforementioned way decreases
β′ by the same amount by which γ′ is increased. By making ε arbitrarily small,
the decrease in β′ gets arbitrarily close to a value that is proportional to the
derivative of the function −2 cos at β′ and the increase in γ′ similarly gets
arbitrarily close to a value that is proportional to the derivative of the function
cos at γ′. In other words, 2 cosβ′ + cos γ′ gets larger by the aforementioned
movement of Y if 2 sinβ′ − sin γ′ > 0.

It is straightforward to verify that the choice for X and Y for which 2 sinβ′

is minimized is X = I2 and Y = B.8 Similarly, the choice for X and Y that
maximizes sin γ′ is X = I2, Y = P . Calculating the corresponding values for β′

and γ′, we obtain 2 sinβ′ − sin γ′ > 1.02058− 0.94268 = 0.0779, for any choice
of X and Y . This proves the claim.

Thus, in order to show that 2 cosβ + cos γ < 1 for any exit position on÷SI2, it is sufficient to show that for any choice of X and Y = B, it holds that
2 cosβ′ + cos γ′ < 1. Hence, let Y = B. Similarly to before, it is straightforward

7Definitionwise, the angles β′ and γ′ correspond to β, resp. γ, for the (hypothetical) case
where we consider X as the exit position and Y as the pick-up point.

8For this purpose, we allow Y to be B which we disallowed before. As any other choice
for Y on PB results in a larger value for 2 sinβ′, choosing X = I2 and Y = B gives a lower
bound for 2 sinβ′.
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to show that both β′ and γ′ are minimized for Y = I2. Thus 2 cosβ′ + cos γ′ is
maximized9 for Y = I2. By calculating the values for β′ and γ′ for X = I2 and
Y = B, we obtain that 2 cosβ′ + cos γ′ < 1.72000− 0.72274 = 0.99726, for all

choices of X on÷SI2. This concludes the case where the exit lies on÷SI2.
In all three considered subcases for the second segment, we therefore obtain

either 2 cosβ + cos γ > 1 or 2 cosβ + cos γ < 1. By applying Corollary 2.5,
Theorem 2.8 and Theorem 2.10, it follows that a (global) worst-case exit can
only be located at the points where the movement of at least one robot at the
point itself or the corresponding pick-up point is not differentiable. Thus, the
only three candidates are I1, S and I2.

For the candidate S, recall the remark after Theorem 2.10. The problem
with the non-differentiability with respect to determining that an exit is not
worst-case placed is the following: In the proofs of the results in Section 2, we
show that an exit is not worst-case placed by finding a close-by exit position
for which it holds that the exit position and the corresponding pick-up point
are visited by robots immediately before or after this would happen for the
initial exit placement. Now, if the movement of one robot is not differentiable at
the initial exit or the corresponding pick-up point, then this visiting condition
is not necessarily satisfied. However, figuratively speaking, if the direction in
which the exit has to be moved in order to get worse is not affected by the
non-differentiability, then the results from Section 2 can still be applied. This
is the case for S: From P , R2 moves towards B on PB and this is exactly the
direction in which the pick-up point moves when moving the exit at S along÷SI2 to a worse position. Note that moving the exit at S along÷SI2, i.e., in the
direction of the movement of R1, indeed makes the exit worse according to the
remarks after Theorem 2.10 since we are in the case 2 cosβ+cos γ < 1. It follows
that in the second segment, the only candidates for worst-case exit positions are
I1 and I2.

Lemma 3.3. If there is a (global) worst-case exit position in the third segment,
then this exit position is at I2 or I3.

Proof. Recall that for each possible exit position in the third segment, R2 is
picked up after its cut. Thus, as in the first segment, we have γ = β for any exit

position onøI2I3. For the exit position at I2, we have γ = β ≈ 0.53553.10 Since

β and γ are decreasing if we move the exit from I2 alongøI2I3, 2 cosβ + cos γ
takes on its minimum if the exit is placed at I2. Using the values for β and γ
for this case determined above, we obtain that 2 cosβ + cos γ > 2.57999 > 1, for

all exit positions onøI2I3. Therefore, again, the only candidates for a worst-case
placed exit are the non-differentiable ones, i.e., I2 and I3.

For our examination of the fourth segment, we add a virtual point I ′3 to the
fourth segment that coincides with I3, but has the additional property that if
the exit is at I ′3, then R1 will only find the exit after performing its cut. The
reason for this is that without the addition of I ′3 the fourth segment is half-open
which makes it possible that there is a sequence of exit positions with increasing

9Note that the cosine function is monotonically decreasing on the interval [0, π].
10To be precise, the movement of R2 at the pick-up point B is not differentiable. Thus, for

the definition of γ, we choose for the direction of movement of R2 at B the direction along the
perimeter, not along the cut.
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evacuation times that converges towards I3 and for which there is no exit position
that has a larger evacuation time than all exit positions in the sequence. Thus,
we add I ′3 in order to obtain a closed segment.

Lemma 3.4. If there is a (global) worst-case exit position in the fourth segment,
then this exit position is at I ′3.

Proof. With an argumentation analogous to the one for the third segment, we
obtain 2 cosβ + cos γ > 1 for all possible exit positions on I ′3D. Using our
differentiability argument again, we see that the only possible worst-case exit
positions are I ′3 and D. A simple calculation shows that the evacuation time of
1 + π for the exit placement at D is much smaller than the evacuation time for
the exit placement at, e.g., I1. Therefore, the only candidate for a worst-case
placed exit is I ′3.

Observe that the evacuation time for the exit at I ′3 cannot be smaller than
the evacuation time for the exit at I3 since in the latter case R1 could just
simulate the former case which is worse than activating the meeting protocol
right away. Combining this observation with Lemmas 3.1–3.4, we obtain the
following theorem:

Theorem 3.5. For y = 2.62843, α = π/4 and d = 0.48793, the worst-case exit
placement for Algorithm A(y, α, d) is at I1, I2 or I ′3.

In order to determine the evacuation time for the worst-case exit, we simply
take the maximum of the evacuation times for the exit placements at these
three candidate locations. We obtain evacuation times of approximately 5.6249,
5.62488 and 5.62491 for I1, I2 and I ′3, respectively. Hence, the evacuation time
for the worst-case exit is approximately 5.62491. Thus, we obtain the following
corollary:

Corollary 3.6. For y = 2.62843, α = π/4 and d = 0.48793, the evacuation
time of Algorithm A(y, α, d) is at most 5.625.

Observe that, if the length of the cut is not changed, then altering the shape
or angle of the cut does not affect the evacuation times for the exit positions at
I1, I2 and I ′3. Thus, by Theorem 3.5, in such a case the overall evacuation time
cannot decrease. We cast this insight into the following corollary:

Corollary 3.7. For y = 2.62843, α = π/4 and d = 0.48793, the evacuation
time of Algorithm A(y, α, d) cannot be improved by altering the shape or angle
of the cut.

Since all the inequalities in Lemmas 3.1–3.4 are not sharp, we can choose α
in some reasonable range without compromising our evacuation time.11 As long
as the chosen α ensures that there is no worst-case exit placement such that R2

is picked up on the cut (without the start and end points of the cut), Corollary
3.6 holds. The value of exactly π/4 for α is chosen for the reason of convenience.

11The same holds for the shape of the cut, by the same reason.
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4 Conclusion

In this paper, we studied the evacuation of two robots from a disk using non-
wireless communication. We presented a new tool for the analysis of evacuation
algorithms for any area shape by showing that a strong local condition has to
be satisfied in order for an exit to be worst-case placed. Using this tool and
further insights, e.g., about the nature of forced meetings and the irrelevance
of the chosen shape and angle in some range, we improved the state-of-the-art
algorithm and gave indicators for where to look (and where not) for further
improvement.

However, we believe that our improved upper bound on the evacuation time
is already very close to the tight bound that is the correct answer. We do not
believe that our upper bound is optimal (up to numerical precision) because of
the following reason: Imagine an additional second cut of very small depth (“ε-
cut”) close to the point opposite of the point on the perimeter where the robots
start their search. If we choose the position (and the angle and depth) of this
ε-cut appropriately, then the evacuation time for the exit at I ′3 will be improved
since R1 will pick R2 up at around the tip of the ε-cut which is somewhat closer
to I ′3 than if there was no such ε-cut. Now we can make small changes to position
and depth of the first cut that result in improving the evacuation times for the
exit positions at I1 and I2 while increasing the previously decreased evacuation
time for the exit position at I ′3. By finding the parameters that again lead
to equal evacuation times for these three exits, the overall evacuation time is
improved. If one is careful not to let other points become worse exit positions,
this approach can even be applied iteratively. However, the improvement in the
evacuation time achieved by the collection of these very small cuts is negligibly
small, even compared to the improvement given by our algorithm.

While the lower bound is still a long way from our upper bound, it is hard
to imagine how an improvement to our algorithm apart from the ε-cuts might
look like. In fact, we conjecture that, apart from these ε-cuts and numerical
precision, the algorithm we presented is indeed optimal.
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