
The TROOTH Recommendation System

Keno Albrecht, Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich, 8092 Zurich, Switzerland
{kenoa, wattenhofer}@tik.ee.ethz.ch

Abstract

In this paper we present TROOTH as a robust, partially
decentralized, collaborative, and personalized recommen-
dation system. We examine a voting scheme where users
have to assess a continuous stream of items to be either
good or bad—either manually or, assisted by TROOTH,
automatically based on previous votes. For this purpose,
TROOTH implicitly creates special interest groups contain-
ing users who share similar opinions expressed by assenting
votes. To evaluate an item with TROOTH, a user trusts those
votes most which have been cast by other users in the same
group. TROOTH has been implemented in the SPAMATO

spam filter system where it is used in the context of collabo-
rative spam filtering.

1 Introduction

Internet users of today’s online shops and information
portals are often stunned by the vast amount of product and
service alternatives, unable to decide which product to buy
or service to approve. Recommendation systems promise
to help customers find a way in this information overload.
By tracing and analyzing explicit or implicit data on user
actions, such as the visit of web pages, the order of products,
or the assessment of experienced services, it is possible to
recommend particular objects which are assumed to match
a user’s expectation.

E-commerce sites as well as their customers both ben-
efit from a recommendation system. Online shops, such
as Amazon.com, greatly profit by suggesting individually
chosen books to users being satisfied even with unexpected
purchases. Ebay.com employs a recommendation scheme
to comfort people buying articles from strangers by having
both rate each other after their transaction.

But recommendation systems are not restricted to online
business. They can be applied to a much broader applica-
tion domain, including social bookmarking, software evalu-
ation, and spam filtering—thus, in all areas where users can

annotate items and contribute their opinions to a collabora-
tive environment.

Recommendations systems have been influenced by the
work on collaborative filtering techniques. Generally, a
sparse m × n matrix for m users and n items is consid-
ered in which only a few entries reflect the users opinions
on the items. The goal of a collaborative filtering system is
to ease the task of manually choosing a new item by auto-
matically recommending suitable items to users who have
not rated them previously. For this purpose, this technique
derives future decisions from assenting opinions in the past.

In this paper, we adopt this notion in that we also assume
users to vote for items, votes being either “good” or “bad.”
Additionally, we explicitly introduce trust values between
users; a higher value denotes more confidence in a user.
By this, we implicitly define special interest groups (SIGs)
which contain users with assenting opinions. In contrast to
collaborative filtering, we are not particularly interested in
recommendations for arbitrary items—instead, our system
computes evaluations of specific items, being either good
or bad (or unknown if an item cannot be evaluated). Fur-
thermore, we assume a continuous stream of items which a
varying number of users want to have assessed. Thus, the
number of users and items is not predefined or bounded to
any m and n respectively.

These ideas are incorporated in TROOTH which we
present as a robust, partially decentralized, collaborative,
and personalized recommendation system. It is robust as
it withstands malicious users who are trying to cheat the
system, partially decentralized as clients are explicitly in-
volved in the voting and evaluation processes, and collabo-
rative and personalized as users interact with each other for
collective benefits.

As an example, we present the collaborative spam fil-
ter in the SPAMATO spam filter system (see Section 5): A
user constantly receives emails. For the user, it is unknown
whether the emails are legitimate or spam messages. Look-
ing at them manually is expensive in that a user has to spend
time on it and also involves some risk as an inexperienced
user might open dangerous attachments or fall for phish-

ing attacks. Therefore, SPAMATO separates spam messages
from legitimate messages before they are delivered to the
user. For this purpose, SPAMATO relies on TROOTH which
calculates an evaluation based on reports for spam messages
and revokes for legitimate messages that have been sent by
users previously.

The remainder of this paper is organized as follows. In
the next section, we discuss related work. In Section 3, we
describe some basic notions which we use to present the
TROOTH recommendation system in Section 4. Finally, in
Section 5, we show how to embed TROOTH in our SPAM-
ATO spam filter system.

2 Related Work

All work on collaborative filtering shares the concept of
predicting future user behavior or recommending suitable
choices based on historical data. One of the earliest work on
collaborative filtering systems is Tapestry [6] which uses a
SQL-like language to filter manually annotated (electronic)
messages. The focus of current research lies in different
areas; [9, 7, 2] study several approaches and give a good
overview.

We share some ideas of collaborative filtering but focus
on specific practical aspects. For this purpose, we only pro-
vide a heuristic to evaluate an item for a user. We do not
provide mathematical analysis as in [8, 2].

In contrast to offline algorithms, such as [8, 11, 9], that
usually recommend a single item to a user based on a fixed
set of votes, we consider a continuous stream of items which
a user has to assess. These items can arrive at anytime, mak-
ing predictions time-dependent. Furthermore, users cannot
be asked to train a server-based system in order to increase
the rate of correct predictions; items are always selected
client-side. We also emphasize the role of clients in that
we store only a minimum of data on the server and evaluate
items on clients. We differ from other online approaches,
such as [5, 3], in that we do not consider a round-based
synchronous model. Again, in TROOTH, users can vote for
items at any time.

Systems, such as employed by Amazon [10], which rec-
ommend articles to clients differ from ours in two aspects.
First, Amazon chooses a fast, server-based approach while
we explicitly integrate clients to evaluate items. And sec-
ond, we do not recommend items to users but evaluate them
when they arrive.

Other collaborative spam filtering approaches also rely
on trust systems to distinguish between trustworthy and ma-
licious users. Razor [14] uses a server-based AIMD ap-
proach, while products such as Cloudmark’s Desktop [4] or
IBM’s SpamGuru [13] might entail a manual, administered
clustering.

3 Preliminaries

In this section, we describe some basic primitives which
we use throughout this paper.

In this paper, the general aim of recommendations is to
express the evaluation of items, such as products, people,
or emails, to be either good, bad, or unknown by allowing
users to classify the item as good or bad.1 Given an item,
a user first tries to revert to a recommendation to check
whether it is good or bad. If the evaluation has been un-
known, she has to manually assess the item. Afterwards,
she casts a vote to express her assessment.

In this section, we assume that a pre-defined, globally
valid evaluation for an item exists which has to be exposed
for each item. In Section 4, we revise this assumption and
instead calculate individual opinions about each item.

3.1 Evaluation Functions

A global evaluation of an item can be derived from all
user votes in various ways. For instance, using a simple
majority evaluation, the overall categorization of an item is
good if a majority of all users (> 50%) votes in favor of the
item, bad if a majority votes against the item, and unknown
if the number of good and bad votes are equal.

For the threshold evaluation function, we let V be the set
of all user votes for an item, and, thereof, Vg be the set of all

good votes. Additionally, ρg := |Vg|
|V | denotes the fraction of

the good votes of all votes. We then define the two thresh-
olds hg ∈ R+

0 and hb ∈ R+
0 such that 0 ≤ hb ≤ hg ≤ 1.

The threshold evaluation function can now be expressed as

threshEval(V) =

good if hg < ρg ≤ 1,

bad if 0 ≤ ρg < hb,

unknown if hb ≤ ρg ≤ hg.

Please note that the majority evaluation is the special case
where hg = hb = 0.5.

It is easy to extend this simple voting scheme from the
set {good, bad, unknown} to a more general range where
votes and evaluations can be in the interval [0, 1]. In this

case, we define ρ =
∑

v∈V v

|V | to denote the average of all
vote values. Then, we can apply the threshold evaluation
function with ρ instead of ρg or directly use ρ as the result of
the evaluation. It is obvious that the simple voting scheme
can be derived by using votes with values of 0 (bad) and 1
(good) only.

1We assume that a user who does not know how to classify an item
does not vote at all.

3.2 Weighting Votes With Trust Values

So far, votes or rather users have been considered to be
equally important. In real life, however, it can be beneficial
to apply different weights to votes or, in other words, to con-
sider some users to be “more equal than others.” Since we
assume the existence of a single, pre-defined evaluation for
each item, users who often agree with the majority of user
should be trusted more than those who regularly dissent.

Ideally, this means trying to separate users into two
groups: One group contains those users who are trustwor-
thy and the other group those who are malicious. Practi-
cally, it is possible to approximate these groups by intro-
ducing trust values for each user that are adjusted whenever
new information is available. Then, instead of simply sum-
ming up equal good (and bad) values as before, each vote
is previously weighted with the trust value of the associated
user. For this approach to make sense, we generally assume
that the group of trustworthy users are a majority, or more
precisely: that those users who agree with the majority are
trustworthy.

The Additive Increase, Multiple Decrease (AIMD) ap-
proach takes user specific and automatically adjusted trust
values into account. When all users have cast their votes, the
trust values are modified. Using AIMD, users who voted
correctly, that means in accordance with the majority, are
awarded by slightly increasing their trust values. On the
other hand, users whose votes do not comply with the ma-
jority are punished by harshly decreasing their trust values.

Formally, let ei denote the evaluation of an item i, tu the
trust value of a user u, and vi

u the vote of a user u for item
i, where u ∈ U i and U i the set of all users who have cast
a vote for item i. The new trust value t′u is calculated as
follows (inc ∈ N+, dec ∈ R+

0 , dec < 1):

∀u ∈ U i : t′u :=

{
tu + inc if vi

u = ei,

tu · dec if vi
u �= ei.

Initially, we set tu to tdefault, for instance 1, and demand
tu to be smaller than a maximum trust value tmax.

Please note that we are rating now in two different do-
mains: On the one hand, we want to evaluate items by hav-
ing unknown users vote good or bad for it. On the other
hand, we want to calculate trust values for unknown users
to make votes more reliable. The voting (and thus also the
evaluation) is actively performed; trust values are implic-
itly generated. While in principle it is possible to let users
choose whom they want to trust, in reality this is considered
too involved.

Implementation Issues

For applications like the collaborative spam filter system
SPAMATO (see Section 5), the voting for an item (in this

case, a message) and the categorization of it (spam/not
spam) will not take place at a single point in time. Instead,
users can always vote for an arbitrary message, and SPAM-
ATO classifies a message whenever it arrives in a user’s in-
box. Additionally, not all users vote for all items, since not
all users receive the same messages. Therefore, user votes
have to be stored for later usage and the evaluation of an
item has to be recalculated whenever a new vote has been
cast. In other words, evaluations are time-dependent. Fur-
thermore, users must not be able to vote more than once for
the same item or a scheme must exist to handle multiple
votes in a reasonable way. Finally, users casting a vote have
to be authenticated to prevent manipulation.

Implementing the AIMD approach or weighting algo-
rithms in general entails some difficulties. As users can
vote at any time, the update of trust values either has to
be conducted at a specific point in time, or needs to con-
sider earlier changes associated with the same item. While
an algorithm for the former solution can calculate the new
values by knowing few variables only, such as the time of
the first vote, the current time, and the number of votes so
far, it obviously ignores later votes and thus important in-
formation to provide fair trust values. On the other hand,
adjusting the trust values only once reduces the complex-
ity of the system and saves server resources. The latter so-
lution, however, means that we need to manage extensive
historic information about the voting process. Additionally,
trust values have to be updated every time a new vote is
cast, thus, increasing the demand for server resources. In
both cases, the server has to store the trust values for each
user and the overall evaluation of each item—to avoid in-
stant time- and resource-consuming calculations whenever
these values become necessary.

4 The Trooth System

In this section, we introduce TROOTH as a robust, par-
tially decentralized, collaborative, and personalized voting
and trust system.

4.1 Motivation

In Section 3, we have assumed that it is possible to
globally evaluate an item—that an overall evaluation exists
which coincides with the votes of all trustworthy users. But
the separation of users into groups of trustworthy and mali-
cious users, as described in Section 3.2, often is too harsh.

Instead, we believe it is more reasonable to individually
evaluate an item for each user separately. A user does not
distinguish between trustworthy and malicious users any-
more, but between users who generally vote in accordance
and those who do not. Thus globally seen, users are im-
plicitly separated into several special interest groups (SIGs)

who share a “similar opinion” rather than to discriminate
them with the “black & white” scheme described before.

Please notice that we still believe that trustworthy and
malicious users exist. While the former describe users who
really try to express their opinion, the latter usually vote
against the common sense and try to deceive the system,
probably for personal benefits. We also consider users who
make failures and others who just do not understand how to
operate a voting system. So generally, from a user’s point
of view, all these categories can be reduced to assenting and
dissenting users only. For simplicity, in this section we use
the term malicious for byzantine as well as incautious and
unaware users.

Depending on the voting domain, the number of groups
might vary significantly between only a few and tens or
more. Although we expect groups to be rather large and
overlapping, in the extreme, each user might trust only her-
self so that the number of groups equals the number of
users. But this especially expresses the strength of the sys-
tem: Even if all except one user are malicious, this one will
(eventually) figure out not to trust anybody except herself.
Thus, the system can even serve different minorities with
satisfying results while approaches that assume the exis-
tence of an objective evaluation cannot.

Since TROOTH does not compute a global evaluation of
an item for all users, it is possible to reduce the consump-
tion of server-side resources to a minimum. Therefore, in
TROOTH we store only (item,user,vote)-tuples server-side
and calculate user specific trust values client-side as we
show in the next two sections.

4.2 Managing Votes and Trust

As in structured peer-to-peer systems, we assign each
item and each user a unique identifier from an interval
[0, ..., N], organized as a “ring.” Thus, we can use the no-
tions of clockwise and anti-clockwise to denote neighbors
on the ring. In Section 5.2, we show how user IDs (and sig-
natures to authenticate users) are generated in SPAMATO.

4.2.1 The Voting Process

When a user votes for an item, she sends her opinion (good
or bad) to the TROOTH server and locally adapts the trust
values for other users who voted for the same item. In more
detail, the voting process takes the following steps:

• User u0 sends a vote v0 for an item i to the server
where the (i, u0, v0)-tuple is stored.

• The server assembles two lists which are populated
with the identifiers of other users who voted good (list
G) and bad (list B) for item i before. Each list contains
a maximum of k user IDs that are numerically nearest

to u0 in respect to the ring formation. The lists G and
B are sent to the client.

• User u0 locally adapts the trust values of the users sent
to her by increasing the trust values of those users who
agreed with her own vote v0 and decreasing the trust
values of those users who voted against it (using the
AIMD approach described in Section 3.2 or any other
weighting scheme).

4.2.2 The Evaluation Process

To classify an item, good and bad votes from the server are
weighted with the client-side stored trust values. In detail,
the following steps are performed for the evaluation pro-
cess:

• User u0 sends a query for item i to the server.

• The server returns two lists containing identifiers of
users who voted good (list G) and bad (list B) as in
the second step of the voting process described above.

• User u0 extracts the l ≤ k most trustworthy users of
each list, resulting in the lists G′ ⊆ G and B′ ⊆ B.

• Finally, the classification can be calculated using the
threshold evaluation function described in Section 3.2
with V ′ = G′ ∪B′ (or rather all weighted votes of the
selected users).

4.2.3 User Specific Parameters

The size k of the good and bad lists returned by the server,
l that denotes the number of the most trusted users to select,
inc and dec as parameters of AIMD, and the values of hg

and hb for the threshold evaluation function are user spe-
cific values. Thus, the user is able to further configure the
processes to some extent on the client-side.

4.2.4 Discussion

In the second step of both algorithms, the server returns
about k/2 clockwise and anti-clockwise neighbors of user
u0 for each list. If there are less then k other users who
voted good (bad) for item i, we return only that many with-
out any loss in quality. Assuming that users usually vote for
the same type of items2, it is reasonable to believe that the
total number of trust values that have to be handled client-
side is bounded. This means that each user generally stores

2Regarding e-mails, for instance, users who are collected on the same
e-mail address list often get the same spam messages. Regarding products,
Amazon-like “Users who bought this product also bought...” statements
also underline our assumption that users will often vote for the same type
of items.

only a small subset of all users who share the same opin-
ion. It is also an advantage that a user’s vote can only affect
those users in the implicit neighborhood. Thus, the impact
of a possibly malicious user trying to cheat the system is
limited. On the other hand, though, the rather high con-
sumption of bandwidth for each voting and evaluation op-
eration can be regarded as a drawback.

By choosing only the most trustworthy users in the third
step of the evaluation process, we decrease the influence of
unwanted users to a minimum. As an additional optional
step, trust values can be adjusted after the evaluation pro-
cess similar to the last step in the voting process. Doing so
would amplify the influence of trust values even more. Fur-
thermore, the calculated evaluations could automatically be
sent as a personal vote to the server. If the user does not
agree with the evaluation, she would (immediately or after
some time) send her correct opinion rejecting the old one.

Please note that a malicious user who tries to gain a high
trust value in order to manipulate the evaluation process,
previously would have to “play by the rules” for a long
time and, thus, helping other users more than harming the
system. Furthermore, to manipulate a particular user (or
a group of users with assenting opinions), it is necessary
to, first, get an ID that is near that of the user, and sec-
ond, to know which items the user is “interested” in. While
attacking one particular user will be hard, it is almost im-
possible to oppose against many groups or even all users
at once. Thus, TROOTH significantly reduces the impact of
malicious users in the evaluation process.

4.3 The Majority Heuristic

We introduce the majority heuristic which can be applied
as a special case when many users have almost unanimously
decided about an item. To use it, one should have ruled out
the chance of malicious users being a majority.

More formally, let votesmin denote the minimal number
of users who have to cast a vote for an item i and let ρdv be
the maximal allowed fraction of dissenting votes. Addition-
ally, V denotes the set of all votes for the item, and Vg and
Vb are the sets of good and bad votes respectively. Then,
the majority heuristic can be applied instead of the normal
case described in Section 4.2 if |V | ≥ votesmin and either
|Vg|
|V | ≤ ρdv or |Vb|

|V | ≤ ρdv .
In the voting process, the server still stores the vote of a

user for an item. But the server does not return any data and
the client, therefore, cannot adjust any trust values.

In the evaluation process, the server sends only the num-
ber of good and bad votes to the client. Therefore, the client
is not able to select her most trusted users anymore; all votes
count the same. The evaluation for the item is calculated us-
ing the majority or threshold evaluation function.

As in Section 4.2.3, the user can completely configure

the processes: The total number of voters and the fraction
of dissenting voters have to be sent to the server; the param-
eters hg and hb can directly be adjusted in the client.

The majority heuristic clearly simplifies the voting and
evaluation processes by sending less information between
client and server and, thus, also saving bandwidth. By do-
ing so, it slightly reduces the reliability of the classification
since trust values are not considered anymore. But this can
be neglected since there are almost none dissenting votes,
and malicious users cannot be a majority.

5 Applications

In this section, we introduce the spam filter system
SPAMATO which utilizes TROOTH in the context of collab-
orative spam filtering. First, we give a short overview of
SPAMATO. After that, we describe the Spamato Authenti-
cation and Authorization System which we use to generate
unique user identifiers for TROOTH. And finally, we show
how TROOTH is integrated into our collaborative spam filter
to distinguish between spam and legitimate messages.

5.1 The Spamato Spam Filter System

SPAMATO [1] is a client-side spam filter system that can
be extended using the provided plug-in mechanism. As
an add-on, it can be embedded in common email clients
such as Outlook or Thunderbird. Emails arriving in a
user’s inbox are automatically checked by several spam
filters, and detected spam messages are moved to a spe-
cial folder. The user can interact with SPAMATO by man-
ually reporting messages which have not been identified
as spam and revoke messages which have falsely been
identified as such. This way, a user collaborates with
the system, sending feedback (votes) to local and cen-
tral components. SPAMATO is available for download at:
http://www.spamato.net.

5.2 The Spamato Authentication and Au-
thorization System

The Spamato Authentication and Authorization System
(SAAS) is used to create unique identifiers for users who
want to interact with the TROOTH system. Additionally,
SAAS generates a public/private key pair with which users
(automatically) sign their votes to prevent any cheating and
manipulation attempts.

Since SPAMATO (and therefore SAAS) is embedded into
an email client, SAAS can make use of the authentication
process between the email client and the server. In other
words, if a user is able to receive an email that has been
sent to him via SAAS, the user is “authenticated” also for
TROOTH.

In more detail, the first time SPAMATO is started, the
SAAS client locally generates a public/private key pair. The
public part of this pair and the user’s email address is sent
to an SAAS server (using a TCP connection) which in turn
sends a random challenge email to the stated address. On
receiving this challenge email, the client signs the message
with its private key and sends it back to the server (again
using a TCP connection). After that, the user is fully reg-
istered with the SAAS server which stores the user’s public
key and the (hashed) email address.

Please notice that the actual implementation is slightly
more complicated to allow for a reregistration of users who
want to use the same SAAS user account, for instance, on
several machines. Additionally, the TROOTH and SAAS
servers need to exchange data so that the TROOTH server
can validate a user’s signature. See [12] for a detailed de-
scription.

5.3 Collaborative Spam Filtering

The Earl Grey filter is a collaborative URL filter. When
receiving a new message, it collects all URLs in the mes-
sage, extracts the domains, and calculates a hash value of
them. This hash value is sent to the Earl Grey server which
queries a database to find out whether the message is spam
or legitimate. Entries in the database are collaboratively in-
serted by users who report “spam” or revoke “legitimate”
emails (or rather the calculated hashes). Thus, users help
each other to filter spam messages.

Since not all users define the term “spam” equally—
some also declare unwanted newsletters to be spam while
others like to read about online drug stores—clearly, a sys-
tem like TROOTH is necessary to handle these different
opinions.

In the context of TROOTH, the hash values are the iden-
tifiers for items, users are identified with their email ad-
dresses (or their SAAS public key), and reports and revokes
correspond to bad and good votes. As said before, to pre-
vent malicious users from harming the system, votes are
signed with a user specific private key. Additionally, the
Earl Grey server ignores multiple reports/revokes and re-
moves contrary votes for the same message and user.

The Earl Grey filter is fully implemented and runs for
more than one year with several users without failures.

Acknowledgment

The authors would like to thank Simon Schlachter for
implementing TROOTH [12], Nicolas Burri for the initial
idea and fruitful discussions, and all users of SPAMATO for
using it.

References

[1] K. Albrecht, N. Burri, and R. Wattenhofer. Spamato – An
Extendable Spam Filter System. In Proceedings of 2nd Con-
ference on Email and Anti-Spam (CEAS), 2005.

[2] B. Awerbuch, Y. Azar, Z. Lotker, B. Patt-Shamir, and M. R.
Tuttle. Collaborate With Strangers To Find Own Prefer-
ences. In Proceedings of 17th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2005.

[3] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Tuttle. Im-
proved Recommendation Systems. In Proceedings of 16th
ACM-SIAM Symposium on Discrete Algorithms (SODA),
2005.

[4] Cloudmark Desktop. www.cloudmark.com.
[5] P. Drineas, I. Kerenidis, and P. Raghavan. Competitive Rec-

ommendation Systems. In Proceedings of 34th ACM Sym-
posium on Theory of Computing (STOC), 2002.

[6] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Us-
ing Collaborative Filtering to Wave an Information Tapestry.
Communications of the ACM, 35(12):51–60, 1992.

[7] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
Algorithmic Framework for Performing Collaborative Fil-
tering. In Proceedings of the 1999 Conference of the Amer-
ican Association of Artificial Intelligence (AAAI), 1999.

[8] J. Kleinberg and M. Sandler. Convergent Algorithms for
Collaborative Filtering. In Proceedings of ACM Conference
on Electronic Commerce (EC), 2003.

[9] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
Recommendation systems: a probabilistic analysis. In Pro-
ceedings of 39th IEEE Symposium on Foundations of Com-
puter Science (FOCS), 1998.

[10] G. Linden, B. Smith, and J. York. Amazon.com Recommen-
dations, Item-to-Item Collaborative Filtering. IEEE Internet
Computing, 7(1):76–80, 2003.

[11] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis
of Recommendation Algorithms for E-Commerce. In Pro-
ceedings of ACM Conference on Electronic Commerce (EC),
2000.

[12] S. Schlachter. Spamato reloaded. Master thesis, Federal
Institute of Technology Zurich (ETHZ), 2004.

[13] R. Segal, J. Crawford, J. Kephart, and B. Leiba. SpamGuru:
An Enterprise Anti-Spam Filtering System. In Proceedings
of the First Conference on E-mail and Anti-Spam, 2004.

[14] Vipul’s Razor. http://razor.sourceforge.net.

