Learning with Graphs

Roger Wattenhofer
Machine Learning Deals with ...
High-res 3D simulations

up to 19k particles

2 different simulators (MPM & SPH)
Refik Anadol, Unsupervised, MOMA
Graph Classification

Node Classification
Graph Neural Networks
Graph Neural Networks
Graph Neural Networks

\[a_v = \text{AGGREGATE} \left(\{ \{ h_u \} \mid u \in N(v) \} \right) \quad (\text{Min, Max, Mean, Sum}) \]
Graph Neural Networks

\[a_v = \text{AGGREGATE} \left(\{ h_u \mid u \in N(v) \} \right) \quad \text{(Min, Max, Mean, Sum)} \]

\[h_v^{(t+1)} = \text{UPDATE} \left(h_v, a_v \right) \]
Graph Neural Networks

\[a_v = \text{AGGREGATE} \left(\left\{ h_u \mid u \in N(v) \right\} \right) \]

\[h_v^{(t+1)} = \text{UPDATE} \left(h_v, a_v \right) \]

(Min, Max, Mean, Sum)

(Little Neural Network)
Graph Neural Networks
GNN Limitations?
Limits of GNNs
Limits of GNNs
More Expressive GNNs?
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
GNNs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently
GNNs with Dropouts

Multiple runs of the GNN
Each node removed with probability p independently

Run #1
GNNs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #1
GNNs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #2
GNNs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #2
GNNs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #3
GNNs with Dropouts
Port Numbers
Angle Features
Random Features
Easier Learning More Expressivity

Base GNN DropGNN Ports Rand IDs
Efficiently
Learn
Compute
Extrapolation
Without Aggregation?
GwAC: GNNs with Asynchronous Communication

Lukas Faber
ETH Zurich, Switzerland
lfaber@ethz.ch

Roger Wattenhofer
ETH Zurich, Switzerland
wattenhofer@ethz.ch

I am an H

An H? Not interesting to me

I am an H

OH! I have an H neighbor

Then this is an alcohol
AGENT-BASED GRAPH NEURAL NETWORKS

Karolis Martinkus¹, Pál András Papp², Benedikt Schesch¹, Roger Wattenhofer¹
¹ETH Zurich ²Computing Systems Lab, Huawei Zurich Research Center

I've been there 3 steps ago!
Agent-based Graph Neural Networks

Karolis Martinkus1, Pál András Papp2, Benedikt Schesch1, Roger Wattenhofer1

The Graph has triangles!

I see a triangle!

I didn't see a triangle.

Me neither.

1. Node Update
2. Neighborhood Aggregation
3. Agent Update
4. Agent Transition

I've been there 3 steps ago!

I keep seeing these nodes!
<table>
<thead>
<tr>
<th>Model</th>
<th>4-CYCLES [59]</th>
<th>CIRCULAR SKIP LINKS [15]</th>
<th>2-WL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIN [75]</td>
<td>50.0 ±0.0</td>
<td>10.0 ±0.0</td>
<td>50.0 ±0.0</td>
</tr>
<tr>
<td>GIN with random features [64; 1]</td>
<td>99.7 ±0.4</td>
<td>95.8 ±2.1</td>
<td>92.4 ±1.6</td>
</tr>
<tr>
<td>SMP [71]</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
<td>50.0 ±0.0</td>
</tr>
<tr>
<td>DROPGIN [59]</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
</tr>
<tr>
<td>ESAN [8]</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0*</td>
</tr>
<tr>
<td>1-2-3 GNN [53]</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0†</td>
</tr>
<tr>
<td>PPGN [51]</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
<td>50.0 ±0.0</td>
</tr>
<tr>
<td>CRAWL [67]</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
</tr>
<tr>
<td>RANDOM WALK AGENTNET</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
<td>50.5 ±4.5</td>
</tr>
<tr>
<td>SIMPLIFIED AGENTNET</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
</tr>
<tr>
<td>AGENTNET</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
<td>100.0 ±0.0</td>
</tr>
</tbody>
</table>
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Karolis Martinkus1 Andreas Loukas2,3 Nathanaël Perraudin3 Roger Wattenhofer1
def outer_loop():
 for i in range(N):
 inner_loop()

def inner_loop():
 for j in range(i):
 float00 = random(0, 1)
 bool00 = float00 < 0.4
 if bool00:
 add_edge(i, j)

outer_loop()
Automating Rigid Origami Design
Jeremia Geiger, Karolis Martinkus, Oliver Richter, Roger Wattenhofer
Graph Explanation
GraphChef: Learning the Recipe of Your Dataset
The Bigger Picture
User: what is 5 times 7?

Assistant: 5 times 7 equals 35.

User: what is 384903720 times 538982734?

Assistant: 384,903,720 times 538,982,734 equals 207,559,081,508,668,480.
what is 384903720 times 538982734?

384,903,720 times 538,982,734 equals 207,559,081,508,668,480.
Thinking Slow Benchmark?
FACT: Learning Governing Abstractions Behind Integer Sequences

Peter Belcák, Ard Kastrati, Flavio Schenker, Roger Wattenhofer
Simon Tatham's Portable Puzzle Collection
Loopy (Takegaki, Slitherlink, Ouroboros, Suriza, ...
RLP: A Reinforcement Learning Benchmark for Neural Algorithmic Reasoning
<table>
<thead>
<tr>
<th>Puzzle</th>
<th>Parameters</th>
<th>PPO</th>
<th>DreamerV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netslide</td>
<td>2x3b1</td>
<td>35.3 ± 0.7</td>
<td>12.0 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>3x3b1</td>
<td>4742.1 ± 2960.1</td>
<td>3586.5 ± 676.9</td>
</tr>
<tr>
<td>Same Game</td>
<td>2x3c3s2</td>
<td>11.5 ± 0.1</td>
<td>7.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>5x5c3s2</td>
<td>1009.3 ± 1089.4</td>
<td>527.0 ± 162.0</td>
</tr>
<tr>
<td>Untangle</td>
<td>4</td>
<td>34.9 ± 10.8</td>
<td>6.3 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2294.7 ± 2121.2</td>
<td>1683.3 ± 73.7</td>
</tr>
</tbody>
</table>

100% 2k fail
Sudoku
Sudoku
<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>4</th>
<th>9</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>14</th>
<th>7</th>
<th>4</th>
<th>6</th>
<th>16</th>
<th>17</th>
<th>17</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td>33</td>
<td>2</td>
<td>18</td>
<td>8</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>17</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>29</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>11</td>
<td>16</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Kakuro GNN Step: 0
Tents
Atari Games

Puzzle Games

Intuition

Involuntary control

Speed

Reason

Patience

Concentration

Constructed thoughts

Effort

Effortlessness

Analytics

Innate skills

Reflex
Deep Neural Networks

BRAIN SYSTEMS

1. Effortlessness
 - Reflex
 - Innate skills
 - Speed

2. Constructed thoughts
 - Reason
 - Analytics
 - Effort
 - Concentration
 - Patience
 - Intuition
 - Involuntary control

Signal layer
Hidden layer 1
Hidden layer 2
Hidden layer 3
Output layer

THOMAS H. CORMEN
CHARLES E. LEISERSON
RONALD L. RIVEST
CLIFFORD STEIN

INTRODUCTION TO ALGORITHMS
FOURTH EDITION
Over 1 MILLION copies sold worldwide
Summary
Thank You!

Any questions or comments?

Thanks to co-authors: Peter Belcak, Benjamin Estermann, Lukas Faber, Florian Grötschla, Luca Lanzendörfer, Karolis Martinkus, Joël Mathys, Pal Andras Papp, etc.

Roger Wattenhofer