Learning with Graphs

Roger Wattenhofer

Midjourney Boris Eldagsen

Machine Learning Deals with ...

Networks **Social Networks Neural Networks Mobile Networks Wireless Networks Financial Networks Economic Networks Biological Networks Computer Networks**

AlphaFold

Google DeepMind

High-res 3D simulations

up to 19k particles 2 different simulators (MPM & SPH)

Node Classification

Node Classification

Graph Generation

Graph Embedding

Roger Wattenhofer

 $a_v = \text{AGGREGATE} (\{\{h_u \mid u \in N(v)\}\})$ (Min, Max, Mean, Sum)

 $a_v = \text{AGGREGATE} \left(\{ \{ h_u \mid u \in N(v) \} \} \right)$ (Min, Max, Mean, Sum) $h_v^{(t+1)} = \text{UPDATE} \left(h_v, a_v \right)$

 $a_v = \text{AGGREGATE} (\{ \{ h_u \mid u \in N(v) \} \})$ (Min, Max, Mean, Sum) $h_v^{(t+1)} = \text{UPDATE} (h_v, a_v)$ (Little Neural Network)

GNN Limitations?

Limits of GNNs

Limits of GNNs

More Expressive GNNs?

DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks

Pál András Papp ETH Zurich apapp@ethz.ch Karolis Martinkus ETH Zurich martinkus@ethz.ch **Lukas Faber** ETH Zurich lfaber@ethz.ch Roger Wattenhofer ETH Zurich wattenhofer@ethz.ch

Multiple runs of the GNN

Each node removed with probability *p* independently

Multiple runs of the GNN

Each node removed with probability *p* independently

Multiple runs of the GNN

Each node removed with probability *p* independently

Multiple runs of the GNN

Each node removed with probability *p* independently

Multiple runs of the GNN

Each node removed with probability *p* independently

Multiple runs of the GNN

Each node removed with probability *p* independently

Port Numbers

Angle Features

Random Features

A Theoretical Comparison of Graph Neural Network Extensions

Pál András Papp¹ Roger Wattenhofer¹

Easier Learning

More Expressivity

Extrapolation

Without Aggregation?

GwAC: GNNs with Asynchronous Communication

Lukas Faber ETH Zurich, Switzerland lfaber@ethz.ch **Roger Wattenhofer** ETH Zurich, Switzerland wattenhofer@ethz.ch

AGENT-BASED GRAPH NEURAL NETWORKS

Karolis Martinkus¹, Pál András Papp², Benedikt Schesch¹, Roger Wattenhofer¹ ¹ETH Zurich ²Computing Systems Lab, Huawei Zurich Research Center

AGENT-BASED GRAPH NEURAL NETWORKS

Karolis Martinkus¹, Pál András Papp², Benedikt Schesch¹, Roger Wattenhofer¹

Model	4-CYCLES [59]	CIRCULAR SKIP LINKS [15]	2-WL
GIN [75]	50.0 ± 0.0	10.0 ± 0.0	50.0 ± 0.0
GIN with random features [64; 1]	99.7 ± 0.4	95.8 ± 2.1	92.4 ± 1.6
SMP [71]	100.0 ± 0.0	$\textbf{100.0} \pm \textbf{0.0}$	50.0 ± 0.0
DROPGIN [59]	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{100.0} \pm \textbf{0.0}$
ESAN [8]	100.0 ± 0.0	$\textbf{100.0} \pm \textbf{0.0}$	$100.0 \pm 0.0 *$
1-2-3 GNN [53]	100.0 ± 0.0	$\textbf{100.0} \pm \textbf{0.0}$	$100.0 \pm 0.0 \ddagger$
PPGN [51]	100.0 ± 0.0	100.0 ± 0.0	50.0 ± 0.0
CRAWL [67]	100.0 ± 0.0	$\textbf{100.0} \pm \textbf{0.0}$	100.0 ± 0.0
RANDOM WALK AGENTNET	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{100.0} \pm \textbf{0.0}$	50.5 ±4.5
SIMPLIFIED AGENTNET	100.0 ± 0.0	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{100.0} \pm \textbf{0.0}$
AgentNet	100.0 ± 0.0	$\textbf{100.0} \pm \textbf{0.0}$	100.0 ± 0.0

Node Classification

Graph Generation

Graph Embedding

SPECTRE : Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Unional (CRM) (Destaine)

DISCOVERING GRAPH GENERATION ALGORITHMS

Mihai Babiac, Karolis Martinkus & Roger Wattenhofer ETH Zurich {mbabiac,martinkus,wattenhofer}@ethz.ch

```
def outer_loop():
                                          def outer_loop():
       for i in range(N):
                                               for i in range(N):
2
                                         2
            inner_loop()
                                                    int00 = i + n
3
                                         3
                                                    add_edge(i, int00)
4
                                         4
  def inner_loop():
5
                                         5
                                                   int01 = i % n
       for j in range(i):
                                         6
6
           float00 = random(0, 1)
                                                   bool00 = int01 == 0
7
                                        \overline{7}
           bool00 = float00 < 0.4
                                                   if not bool00:
8
                                        8
                                                        int01 = i + 1
           if bool00:
9
                                        9
                add_edge(i, j)
                                                        add_edge(i, int01)
10
                                        10
11
                                        11
  outer_loop()
                                          outer_loop()
12
                                        12
```


Automating Rigid Origami Design

Jeremia Geiger, Karolis Martinkus, Oliver Richter, Roger Wattenhofer

Graph Explanation

GraphChef: Learning the Recipe of Your Dataset

The Bigger Picture

120"

100"

85"

THINKING,

FASTANDSLOW

DANIEL

KAHNEMAN

WINNER OF THE NOBEL PRIZE IN ECONOMICS

User

User

what is 5 times 7?

what is 384903720 times 538982734?

5 times 7 equals 35.

384,903,720 times 538,982,734 equals 207,559,081,508,668,480.

User

what is 384903720 times 538982734?

S Assistant

384,903,720 times 538,982,734 equals 207,559,081,508,668,480.

Thinking Slow Benchmark?

FACT: Learning Governing Abstractions Behind Integer Sequences

Peter Belcák, Ard Kastrati, Flavio Schenker, Roger Wattenhofer

Simon Tatham's Portable Puzzle Collection

Simon Tatham's Puzzles 4+ Greg Hewgill Designed for iPad

★★★★ 4.8 • 171 Ratings

Free

Simon Tatham's Puzzles

Chris Boyle

 4.8★
 500K+
 €

 14.5K reviews
 Downloads
 Everyone ①

Galaxies

Mines

Range

Tents

Guess

....

.....

Mosaic

Rectangles

3

3

4

3

2

3

2

3

Towers

2 1 3

1

2

3 2

> 2 2 3 1

3

2 3

2

....

3

Inertia

Cube

Net

Same Game

Tracks

Dominosa

Keen

Netslide

Signpost

Twiddle

Fifteen

Light Up

Palisade

Filling

Loopy

2 2

Pattern

Sixteen

0000

Unequal

11 14 12

15 16

4

2

3 2 4 2 3 3 4 2 1 3 2 4 6 6 1 1

0

2

5 1 2

Flip

Magnets

Pearl

Slant

Unruly

Мар

Pegs

Solo

9 5 1 3

6 8 2

5 6 9

1 7 4

8 2 7

5 1 4 6

7 2 3 8 1 6

0

1 7 8 3 6 2 6 4 5 9 1 3 8 4 6 2 1 Untangle

7 3 1 9 5 4

Undead

Loopy (Takegaki, Slitherlink, Ouroboros, Suriza, ...)

	2		2			3		2	3
3		3	1			1			
			2	2	2	2	2		2
		2	2		3		2	2	3
		2	2						2
1	2	1	2	3		0	2		2
				0			3	1	3
		1	3	2		1		3	
3		1			3				
		2		2	3			3	

	2		2			3		2	3
3		3	1			1			
			2	2	2	2	2		2
		2	2		3		2	2	3
Ι		2	2						2
1	2	1	2	3		0	2		2
				0			3	1	3
		1	3	2		1		3	
3		1			3				
		2		2	3			3	

	2	9				2						J			5		5		5	9		9	2		9				2	5		9		2		2	
				2	2	0	2	3	1	1	2			1	2				2	1	2					0	1		2	3	1			1		0	2
		3		1	1		2				2	2	3	0			3									1				2			1	1			
3	2						2	2								2		2	3	1	2						2	0	3				2	3			
		2			1	1		1	1	1	0		2		2					1			2		1				2	1				2		1	3
	2	3		0		1	3		3		0					3			3		3	0	1		1	0	2				3	1	1	1			1
						2		2	2		1	2		2					2			1	1	2			2		3		1		3	3	3		
2	1	2					2	2	3			3			1					3		2					1		3				0				
	2	2	2		3		1		2			2													1			1	3				1		3		3
1			3			2					2	3		2	2	3	2	1	3		1		2	1	2	3	3			0				3	1		
				3				2	1	2					1		3	2		2	2						2	0		3	3						1
1	2	3	1	3					2	1		2			3				1	1		3	3	2	1		2							1	3		
				3	2		2	1		2	1	1	1	2		3		2	0	2	1		1		2	3		3				1		3			
		2	2					2		3	2						2										3		2				1	2	3		1
	3		2	2			2	2	2					2								2		1		1	2			1	2	2	0			2	1
		1	2	1	1	2	2	2	2	3									3	0	3				3	2				0			1	2		2	
		1	3	1	2	2	2	2	1		1		2		1			2		3			3	2				2	3							2	1
	2					2	2		2			2	0		1				2	2	2				2		2		2		3	3	2			2	
1	3		1	1				1				2			0	2		1					3		1		1	3	2			1			1		3
1		0	1	0	0	1	2	2	2	1	1	1		2	1			0	1	2							1	2	1		1	3		3		0	
2	3			1	1	0						3	2	2	2	1		2	2	2			3			2		3		2	2		2	1		1	
	1						3				2	1				2				2		1				1		1	2			1			3	1	

RLP: A REINFORCEMENT LEARNING BENCHMARK FOR NEURAL ALGORITHMIC REASONING

Puzzle	Parameters	PPO	DreamerV3
Netslide	2x3b1 3x3b1	$\begin{array}{l} 35.3 \pm 0.7 (100.0\%) \\ 4742.1 \pm 2960.1 (9.2\%) \end{array}$	$\begin{array}{l} 12.0 \pm 0.4 (100.0\%) \\ 3586.5 \pm 676.9 \ (22.4\%) \end{array}$
Same Game	2x3c3s2 5x5c3s2	$\begin{array}{c} 11.5 \pm 0.1 & (100.0\%) \\ 1009.3 \pm 1089.4 & (30.5\%) \end{array}$	$\begin{array}{c} 7.3 \pm 0.2 & (100.0\%) \\ 527.0 \pm 162.0 & (30.2\%) \end{array}$
Untangle	4 6	$\begin{array}{l} 34.9 \pm 10.8 (100.0\%) \\ 2294.7 \pm 2121.2 \ (96.2\%) \end{array}$	$\begin{array}{ccc} 6.3 \pm 0.4 & (100.0\%) \\ 1683.3 \pm 73.7 & (82.0\%) \end{array}$

_	-		_			_		
	4	6			2			
	3					7		
7		2		9	8			
		5					2	
	8		5		6		3	
	2					5		
			7	1		2		6
		9					5	
			4			8	9	

f		9		5			6						b	3	7
	6	b				1	f		7						8
				9		4						2	g		5
5	g	с	8			а	d	3		b		1			
		d	f			2				5		с			
9		4		с	5	g				d	1		е	7	
	b		5		9		3				а	6		f	4
								4	е				а	5	
	4	2				с	е								
а	d		е	1				9		4		f		8	
	5	g		f	2				d	6	8		7		g
			1		а				с			5	2		
			с		4		g	8	а			b	f	2	1
g		а	d						5		6				
7						9		е	b				6	d	
8	1	6						с			4		5		g

Sudoku

	4	6			2			
	3					7		
7		2		9	8			
		5					2	
	8		5		6		3	
	2					5		
			7	1		2	4	6
		9					5	
			4			8	9	

Sudoku RecGNN (Iterative Solving) Step 0

Tents

Summary

Thank You! Any questions or comments?

Thanks to co-authors: Peter Belcak, Benjamin Estermann, Lukas Faber, Florian Grötschla, Luca Lanzendörfer, Karolis Martinkus, Joël Mathys, Pal Andras Papp, etc.

Roger Wattenhofer

ETH Zurich – Distributed Computing Group