
Brief Announcement:
Communication-Optimal Convex Agreement

Diana Ghinea

ghinead@ethz.ch

ETH Zurich

Zurich, Switzerland

Chen-Da Liu-Zhang

chen-da.liuzhang@hslu.ch

Lucerne University of Applied

Sciences and Arts & Web3 Foundation

Zug, Switzerland

Roger Wattenhofer

wattenhofer@ethz.ch

ETH Zurich

Zurich, Switzerland

ABSTRACT

Byzantine Agreement (BA) allows a set of 𝑛 parties to agree on

a value even when up to 𝑡 of the parties involved are corrupted.

While previous works have shown that, for ℓ-bit inputs, BA can be

achieved with the optimal communication complexity O(ℓ𝑛) for
sufficiently large ℓ , BA only ensures that honest parties agree on a

meaningful output when they hold the same input, rendering the

primitive inadequate for many real-world applications.

This gave rise to the notion of Convex Agreement (CA), intro-

duced by Vaidya and Garg [PODC’13], which requires the honest

parties’ outputs to be in the convex hull of the honest inputs. Un-

fortunately, all existing CA protocols incur a communication com-

plexity of at least Ω(ℓ𝑛2). In this work, we introduce the first CA

protocol with the optimal communication of O(ℓ𝑛) bits for inputs
in Z of size ℓ = Ω(𝜅 · 𝑛2 log𝑛), where 𝜅 is the security parameter.

CCS CONCEPTS

• Theory of computation → Cryptographic protocols.

KEYWORDS

convex agreement, optimal communication, long messages

ACM Reference Format:

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. 2024. Brief

Announcement: Communication-Optimal Convex Agreement. In ACM Sym-

posium on Principles of Distributed Computing (PODC ’24), June 17–21, 2024,

Nantes, France. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/

3662158.3662782

Related Version: A full version of this paper is available at [18].

1 INTRODUCTION

Reaching collaborative decisions becomes tricky in decentralized

systems, especially when participants might be unreliable or even

malicious. This is where agreement protocols come in, acting as

crucial tools for finding common ground. One such primitive is

Byzantine Agreement (BA), where a group of 𝑛 parties agree on a

value, even if up to 𝑡 of the parties are byzantine.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’24, June 17–21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0668-4/24/06

https://doi.org/10.1145/3662158.3662782

The standard BA definition comes with certain limitations when

applied to real-world scenarios. Consider, for instance, a network of

sensors deployed within a cooling room, responsible for measuring

and reporting the room’s temperature. One can expect minor dis-

crepancies in the measurements, such as correct sensors obtaining

temperatures between −10.05◦𝐶 and −10.03◦𝐶 . In such a scenario,

standard BA allows the honest parties to agree on a value proposed

by the byzantine parties, such as +100◦𝐶 , instead of requiring the

output to reflect the correct sensors’ measurements.

A stronger variant of BA, known as Convex Agreement (CA),

addresses this issue, as it requires the honest parties to agree on a

value within the convex hull of their inputs (or within the range of

their inputs, if the input space is uni-dimensional). The synchro-

nous model, where parties have synchronized clocks and messages

get delivered within a publicly known amount of time, facilitates a

straightforward approach for achieving CA through Synchronous

Broadcast (BC). Essentially, each party sends its input value via

BC, which provides the parties with an identical view of the inputs.

Afterwards, the parties decide on a common output by applying a

deterministic function to the values received. While this approach

yields optimal solutions in terms of resilience and round complexity,

there is still a gap in terms of communication. Specifically, if the

honest parties hold inputs of at most ℓ bits, a lower bound on the

communication complexity is Ω(ℓ𝑛) bits [26], and this approach

incurs a sub-optimal communication cost of Ω(ℓ𝑛2) bits. For BA
and BC, this gap was long closed in a line of works [4, 14, 15, 22, 26]

via so-called extension protocols, that achieve a communication com-

plexity of 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) bits, where 𝜅 is a security parameter.

In this work, we focus on closing this gap in the synchronous model

for CA. In this setting, we ask the following question:

Can we achieve CA with the asymptotically optimal

communication of 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) bits?

We answer this question in the affirmative. We introduce a de-

terministic protocol in the plain model (no setup) that achieves

the optimal resilience 𝑡 < 𝑛/3, optimal asymptotic communication

complexity of𝑂 (ℓ𝑛+poly(𝑛, 𝜅)) and round complexity𝑂 (𝑛 log𝑛).1
The protocol makes use of collision-resistant hash functions and

takes as inputs ℓ-bit strings interpreted as integers.

2 RELATEDWORK

Convex-Hull Validity. The requirement of obtaining outputs

within the honest inputs’ range has been first introduced in [9]

1
With randomization, our protocol can be made to achieve𝑂 (𝜅 log𝑛) = �̃� (1) rounds.

492

https://orcid.org/0000-0002-5294-9459
https://orcid.org/0000-0002-0349-3838
https://orcid.org/0000-0002-6339-3134
https://doi.org/10.1145/3662158.3662782
https://doi.org/10.1145/3662158.3662782
https://doi.org/10.1145/3662158.3662782
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3662158.3662782&domain=pdf&date_stamp=2024-06-17


PODC ’24, June 17–21, 2024, Nantes, France Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

for Approximate Agreement (AA). AA relaxes the agreement re-

quirement, where parties’ outputs may deviate by a predefined

error 𝜀 > 0. This allows for deterministic asynchronous protocols,

circumventing the FLP result [13], and it also has advantages in

the synchronous model if 𝑛 is Ω(ℓ): the runtime of deterministic

AA protocols may only depend on ℓ , bypassing the𝑂 (𝑛) rounds re-
quirement [10]. AA has been a subject of an extensive line of works,

focusing on optimal convergence rates [3, 11, 12], higher resilience

[1, 16, 21], and different input spaces, such as multidimensional

inputs [17, 24, 30], or abstract convexity spaces [2, 8, 20, 27].

CA was formally defined by Vaidya and Garg in [25, 30], as-

suming that the input space consists of multidimensional values.

Feasibility with optimal resilience has been considered for abstract

convexity spaces as well [8, 27]. Another line of works has inves-

tigated the feasibility of an even stronger requirement for inputs

in R, i.e. that the output is close to the median of the honest inputs

[7, 28], or, more generally, to the 𝑘-th lowest honest input [23].

Extension Protocols.The problem of reducing the communication

complexity of BA on multi-valued inputs was first addressed by

Turpin and Coan [29], where the authors assume 𝑡 < 𝑛/3 and give

a reduction from long-messages BA to short-messages BA with a

communication cost of Ω(ℓ𝑛2) bits. Fitzi and Hirt [14] later achieve
BA in the honest majority setting with the asymptotically optimal

communication complexity 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) bits, assuming a

universal hash function. Further works have provided error-free

solutions focusing on reducing the additional poly(𝑛, 𝜅) factor in
the communication complexity both in the 𝑡 < 𝑛/3 [15, 22, 26]

setting and in the honest-majority setting [4, 15, 26].

Extension protocols have also been a topic of interest for prob-

lems related to BA, such as BC in the 𝑡 < 𝑛 setting [6, 19], or

asynchronous Reliable Broadcast [5, 26].

Comparison to previous works. In terms of techniques, our

solution differs significantly from both prior works on BA extension

protocols and prior works on CA or AA. In comparison to BA, the

honest-range requirement adds a new level of challenges when

it comes to reducing communication. Roughly, in prior works on

communication-optimal BA, each party first computes a short 𝜅-

bit encoding of its long input value (using e.g. a hash function).

Afterwards, the parties agree on an encoding 𝑧★ using a BA protocol

for short messages. Finally, parties holding the (unique) input 𝑣★

matching 𝑧★ non-trivially distribute 𝑣★ to all the parties. The main

issue when trying to adapt this approach to CA is that the short

𝜅-bit encodings cannot reflect the honest inputs’ range. On the

other hand, existing CA or AA protocols involve some step where

all parties send their ℓ-bit values to all other parties. It might seem

intuitive that the parties need a view of the actual inputs to decide

on a valid output. However, we show that this intuition is not true.

3 OUR RESULT

We state our main theorem below. In the remainder of this paper,

we describe the construction behind the theorem, outlining the

main challenges and techniques.

Theorem 1. Assume a BA protocol resilient against 𝑡 < 𝑛/3 cor-
ruptions with round complexity R and communication complexity

B𝜅 for 𝜅-bit inputs. Additionally, assume a collision-resistant hash

function 𝐻𝜅 : {0, 1}★ → {0, 1}𝜅 . Then, there is a protocol achieving

CA on Z resilient against 𝑡 < 𝑛/3 corruptions, with round complexity

𝑂 (log𝑛) · R and communication complexity 𝑂 (ℓ𝑛 + 𝜅 · 𝑛3 log𝑛) +
𝑂 (𝑛 log𝑛) · B𝜅 for ℓ-bit inputs.

Note that 𝑂 (ℓ𝑛 + poly(𝑛, 𝑘)) bits do not allow for a step where

the parties distribute their ℓ-bit values. Instead, we aim to only work

with the values’ prefixes. In the following, we solely concentrate on

inputs in N. To extend the protocol to Z, the parties may first agree

on their input values’ sign using a BA protocol. Parties holding

input values with a different sign set their value to 0. Afterwards,

the parties run the steps we describe below on inputs in N.
For intuition, it will be useful to arrange the honest inputs’ range

in a so-called prefix tree (or trie). As shown in Figure 1, a prefix

tree is a (rooted) tree where each node stores a string’s prefix. The

edges from nodes to their children are labelled with characters (0

or 1) indicating the prefixes stored on the children. To achieve CA,

it is sufficient for the parties to find a leaf in this prefix tree.

Figure 1: Prefix tree storing the honest inputs’ range, assum-

ing that ℓ = 4 and the honest inputs are 5, 7 and 11.

As the inputs may be of different lengths, to compare prefixes

effectively, we enable the parties to agree on a value ℓest ≤ ℓ + 𝑛

such that every party can modify its input to a valid ℓest-bits value.

3.1 Warm-up

As a starting point towards our solution, we describe a simple (yet

inefficient) approach that finds a leaf in the prefix tree of the honest

inputs’ range using ℓest iterations.

We need to establish a few notations. For a value 𝑣 ∈ N, we define
its binary representation bits(𝑣) := b1b2 . . . b𝑘 such that 2

𝑘−1 ≤
𝑣 < 2

𝑘
, b𝑖 ∈ {0, 1} for every 1 ≤ 𝑖 ≤ 𝑘 , and

∑𝑘
𝑖=1 b𝑖 · 2𝑘−𝑖 = 𝑣 .

The reverse operation will be val(bits). For ℓ ≥ 𝑘 , we additionally

define bitsℓ (𝑣) as the ℓ-bit string obtained by prepending ℓ − 𝑘

zeroes to bits(𝑣). The length of a bitstring bits is denoted by

��
bits

��
.

In iteration 𝑖 , the parties hold valid values 𝑣 such that the bit

representations bitsℓest (𝑣) have a common prefix prefix
★
of 𝑖 − 1

bits. The parties extend the common prefix with one bit using a

BA protocol ΠBA: they join ΠBA with input b𝑖 := the 𝑖-th bit of

bitsℓest (𝑣) and agree on bit prefix
★
𝑖
. Parties holding b𝑖 ≠ prefix

★
𝑖

need to update their value 𝑣 to some valid value matching the prefix

agreed upon. We know that prefix
★
𝑖
was proposed by an honest

party, hence prefix ∥ prefix★
𝑖
is the prefix of a valid ℓest-bit value

𝑣★. This allows the parties to update their values as follows: if b𝑖 = 0

and prefix
★
𝑖

= 1, meaning that 𝑣 < 𝑣★, then the lowest ℓest-bit

value having prefix prefix
★ ∥ prefix★

𝑖
is in [𝑣, 𝑣★] and therefore

is valid. Similarly, if b𝑖 = 1 and prefix
★
𝑖
= 0, meaning that 𝑣 > 𝑣★,

then the highest ℓest-bit value having prefix prefix
★ ∥ prefix★

𝑖
is

in [𝑣★, 𝑣] and therefore is valid.

493



Brief Announcement: Communication-Optimal Convex Agreement PODC ’24, June 17–21, 2024, Nantes, France

For a bitstring prefix of at most ℓ bits, maxℓ (prefix) denotes
the highest ℓ-bit value having prefix as prefix (obtained by con-

catenating prefix with ℓ −
��
prefix

��
ones). Similarly, minℓ (prefix)

denotes the lowest ℓ-bit value having prefix as prefix (obtained

by concatenating prefix with ℓ −
��
prefix

��
zeroes). The remark be-

low then ensures that the update step indeed leads to valid values,

therefore achieving CA at the end of iteration ℓest.

Remark 1. Consider two values 𝑣, 𝑣 ′ ∈ N satisfying 𝑣 ≤ 𝑣 ′ < 2
ℓ
, and

let common_prefix be the longest common prefix of bitsℓ (𝑣) and
bitsℓ (𝑣 ′). If

��
common_prefix

�� < ℓ , then maxℓ (common_prefix ∥
0),minℓ (common_prefix ∥ 1) ∈ [𝑣, 𝑣 ′].

Figure 2: In iteration 𝒊, the parties hold values with a com-

mon prefix of 𝒊 − 1 bits, and agree on the 𝒊-th bit prefix
★
𝒊 . If

prefix
★
𝒊 = 1, parties holding b𝒊 = 0 update their values.

3.2 From bits to blocks

The abovewarm-up solution has communication𝑂 (ℓ𝑛2). To achieve
an asymptotically optimal solution, instead of building some valid

values’ prefix bit by bit, we may do so block by block. Assume with-

out loss of generality that ℓest is amultiple of𝑛. Then, for 𝑣 ∈ Nwith��
bits(𝑣)

�� ≤ ℓest, let blocks(𝑣) := (block1, block2, . . . , block𝑛)
such that bitsℓest (𝑣) = block1 ∥ block2 ∥ . . . ∥ block𝑛 , and, for
any 1 ≤ 𝑖 ≤ 𝑛,

��
block𝑖

�� = ℓest/𝑛. For 1 ≤ 𝑖 ≤ 𝑛, use block𝑖 (𝑣) to
refer to block𝑖 . We use the term block to refer to such sequences

of ℓest/𝑛 bits. Following the outline of the warm-up approach, in

iteration 𝑖 , the parties hold valid ℓest-bit values 𝑣 with a common

prefix prefix
★
of 𝑖 − 1 blocks. In an attempt to extend prefix

★
by

one block prefix
★
𝑖
, the parties join a BA protocol ΠℓBA (for long

messages) with block𝑖 (𝑣) as input.
When the parties agree on a block. If the parties agree on a

block prefix
★
𝑖
, the honest parties holding block𝑖 ≠ prefix

★
𝑖
should

update their values 𝑣 to match the prefix agreed upon. However,

unless all honest parties hold block𝑖 = prefix
★
𝑖
, prefix

★
𝑖
may be a

block proposed by a corrupted party, forcing the updated values

outside the honest range. To prevent this, wemake use of the special

symbol ⊥, and we require ΠℓBA the following property.

Definition 1. Honest Output: If the honest parties output 𝑣 ≠ ⊥,
then 𝑣 is some honest party’s input.

If ΠℓBA satisfies Honest Output and the parties agree on a block

prefix
★
𝑖
, then prefix

★ ∥ prefix★
𝑖
is the prefix of an honest party’s

(valid) value. If a party 𝑃 holds value 𝑣 with block𝑖 (𝑣) ≠ prefix
★
𝑖
,

it updates 𝑣 to match the prefix agreed upon. If block𝑖 < prefix
★
𝑖
,

then 𝑃 updates its value as 𝑣 := minℓest (prefix★ ∥ prefix★
𝑖
), and, if

block𝑖 > prefix
★
𝑖
, 𝑃 updates its value as 𝑣 := maxℓest (prefix★ ∥

prefix
★
𝑖
). In both cases, the updated value remains valid.

When the parties agree on⊥. If ΠℓBA returns⊥ in some iteration

𝑖★ ≤ 𝑛, honest parties hold different blocks block𝑖★ . In fact, this

means that we are very close to finding a valid output.

Looking at Figure 1, a crucial observation is that nodes that have

two children, and hence that store valid values’ longest common

prefixes, reveal subsets of the honest inputs’ range. For example,

the node storing 01 indicates that the highest 4-bit value with prefix

010 (in this case, this is 5) and the lowest value with prefix 011

(namely, 6) are valid. This means that, once the parties identify

some valid values’ longest common prefix, they may immediately

derive an output with the help of Remark 1. However, this property

applies to valid values’ longest common prefix of bits, while the

parties are only aware of a longest common prefix of blocks: some

of the bits in block 𝑖★ may be common. We then enable the honest

parties to find the common bits in block 𝑖★ by adding one more

property to ΠℓBA, defined below. Then, parties may distribute their

blocks 𝑖★ via BC, and this additional property allows us to identify

two different blocks 𝑖★ that lead to prefixes of valid values.

Definition 2. Bounded Pre-agreement: If the honest parties output

⊥, then at most 𝑡 honest parties hold the same input value.

3.3 A round-efficient approach

Although the approach described achieves our goal regarding com-

munication complexity, the round complexity is 𝑂 (𝑛) times the

round complexity of ΠℓBA. We reduce the number of iterations

from𝑂 (𝑛) to𝑂 (log𝑛) (while maintaining the communication com-

plexity) by employing binary search: the parties are looking for

an index 𝑖★ such that, roughly, ΠℓBA returns ⊥ on valid values’

prefixes of 𝑖★, but not on valid values’ prefixes of 𝑖★ − 1 blocks.

Then, we proceed as follows: in the first iteration, the parties

check whether ΠℓBA returns ⊥ on the first half of their blocks

block1 ∥ . . . ∥ blockmid. If ΠℓBA returns ⊥, mid is an upper bound

for 𝑖★, and we continue the search for 𝑖★ within the first half of

the blocks block1, . . . , blockmid−1 in the next iteration, using an

identical approach. Otherwise, if ΠℓBA returns a bitstring of mid

blocks prefix
★
1
∥ . . . ∥ prefix★

mid
, the parties update their values to

match this prefix and use the same approach to find 𝑖★ within the

second half of their updated values’ blocks in the next iteration.

After 𝑂 (log𝑛) iterations, either ΠℓBA never returned ⊥ and the

parties now hold identical values, or 𝑖★ is found.

This approach introduces some challenges for deciding on the

final output once 𝑖★ is found. At the end of 𝑂 (log𝑛) iterations,
honest parties’ values have a common prefix of 𝑖★ − 1 blocks. As

opposed to the previous solution, these values might have been

updated, and now the 𝑖★-th block might also be common. Instead,

we make use of the values 𝑣⊥ held in the last iteration where ΠℓBA

has returned ⊥: Bounded Pre-Agreement holds for these values’

prefixes of 𝑖★ blocks. The parties first obtain a valid values’ prefix of

𝑖★ from their values 𝑣 . Then, each honest party that holds a value 𝑣⊥
notmatching this prefix complains by announcing the first bit where

𝑣⊥ differs from the prefix agreed upon. Each honest complaint will

lead to a valid value. Due to Bounded Pre-Agreement, there are

sufficiently many honest complaints so that parties identify a valid

value and agree on it.

494



PODC ’24, June 17–21, 2024, Nantes, France Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

REFERENCES

[1] Ittai Abraham, Yonatan Amit, and Danny Dolev. 2005. Optimal Resilience Asyn-

chronous Approximate Agreement. In Principles of Distributed Systems, Teruo

Higashino (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 229–239.

[2] Dan Alistarh, Faith Ellen, and Joel Rybicki. 2021. Wait-Free Approximate Agree-

ment on Graphs. In Structural Information and Communication Complexity,

Tomasz Jurdziński and Stefan Schmid (Eds.). Springer International Publishing,

Cham, 87–105. https://doi.org/10.1007/978-3-030-79527-6_6

[3] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. 2010. Brief Announcement: Sim-

ple Gradecast Based Algorithms. In Distributed Computing, Nancy A. Lynch and

Alexander A. Shvartsman (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

194–197.

[4] Amey Bhangale, Chen-Da Liu-Zhang, Julian Loss, and Kartik Nayak. 2023. Ef-

ficient adaptively-secure byzantine agreement for long messages. In Advances

in Cryptology–ASIACRYPT 2022: 28th International Conference on the Theory and

Application of Cryptology and Information Security, Taipei, Taiwan, December 5–9,

2022, Proceedings, Part I. Springer, Springer-Verlag, Berlin, Heidelberg, 504–525.

[5] Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information

dispersal. In 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05). IEEE,

IEEE Computer Society, Orlando, FL, USA, 191–201. https://doi.org/10.1109/

RELDIS.2005.9

[6] Wutichai Chongchitmate and Rafail Ostrovsky. 2018. Information-Theoretic

Broadcast with Dishonest Majority for Long Messages. In TCC 2018, Part I (LNCS,

Vol. 11239), Amos Beimel and Stefan Dziembowski (Eds.). Springer, Heidelberg,

Cham, 370–388. https://doi.org/10.1007/978-3-030-03807-6_14

[7] Andrei Constantinescu, Diana Ghinea, Lioba Heimbach, Zilin Wang, and Roger

Wattenhofer. 2024. A Fair and Resilient Decentralized Clock Network for Transac-

tion Ordering. In 27th International Conference on Principles of Distributed Systems

(OPODIS 2023) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 286),

Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko

Yamauchi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 8:1–8:20. https://doi.org/10.4230/LIPIcs.OPODIS.2023.8

[8] Andrei Constantinescu, Diana Ghinea, Roger Wattenhofer, and Floris West-

ermann. 2023. Meeting in a Convex World: Convex Consensus with Asyn-

chronous Fallback. Cryptology ePrint Archive, Paper 2023/1364. https:

//eprint.iacr.org/2023/1364

[9] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E.

Weihl. 1986. Reaching Approximate Agreement in the Presence of Faults. J. ACM

33, 3 (May 1986), 499–516. https://doi.org/10.1145/5925.5931

[10] Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for

Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656–666.

[11] A. D. Fekete. 1987. Asynchronous approximate agreement. In Proceedings of the

Sixth Annual ACM Symposium on Principles of Distributed Computing (Vancouver,

British Columbia, Canada) (PODC ’87). Association for Computing Machinery,

New York, NY, USA, 64–76. https://doi.org/10.1145/41840.41846

[12] Alan David Fekete. 1990. Asymptotically optimal algorithms for approximate

agreement. Distributed Computing 4, 1 (1990), 9–29.

[13] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility

of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,

2 (1985), 374–382.

[14] Matthias Fitzi and Martin Hirt. 2006. Optimally efficient multi-valued Byzantine

agreement. In 25th ACM PODC, Eric Ruppert and Dahlia Malkhi (Eds.). ACM,

New York, NY, USA, 163–168. https://doi.org/10.1145/1146381.1146407

[15] Chaya Ganesh and Arpita Patra. 2016. Broadcast Extensions with Optimal

Communication and Round Complexity. In 35th ACM PODC, George Giakkoupis

(Ed.). ACM, New York, NY, USA, 371–380. https://doi.org/10.1145/2933057.

2933082

[16] Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. 2022. Optimal Syn-

chronous Approximate Agreement with Asynchronous Fallback. In Proceedings

of the 2022 ACM Symposium on Principles of Distributed Computing (Salerno, Italy)

(PODC’22). Association for Computing Machinery, New York, NY, USA, 70–80.

https://doi.org/10.1145/3519270.3538442

[17] Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. 2023. Multidimen-

sional Approximate Agreement with Asynchronous Fallback. In Proceedings of

the 35th ACM Symposium on Parallelism in Algorithms and Architectures (Orlando,

FL, USA) (SPAA ’23). Association for Computing Machinery, New York, NY, USA,

141–151. https://doi.org/10.1145/3558481.3591105

[18] Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. 2024.

Communication-Optimal Convex Agreement. Cryptology ePrint Archive, Paper

2024/251. https://eprint.iacr.org/2024/251

[19] Martin Hirt and Pavel Raykov. 2014. Multi-valued Byzantine Broadcast: The

𝑡 < 𝑛 Case. In ASIACRYPT 2014, Part II (LNCS, Vol. 8874), Palash Sarkar and

Tetsu Iwata (Eds.). Springer, Heidelberg, Berlin, Heidelberg, 448–465. https:

//doi.org/10.1007/978-3-662-45608-8_24

[20] Jérémy Ledent. 2021. Brief Announcement: Variants of Approximate Agreement

on Graphs and Simplicial Complexes. In Proceedings of the 2021 ACM Sympo-

sium on Principles of Distributed Computing (Virtual Event, Italy) (PODC’21).

Association for Computing Machinery, New York, NY, USA, 427–430. https:

//doi.org/10.1145/3465084.3467946

[21] Christoph Lenzen and Julian Loss. 2022. Optimal Clock Synchronization with

Signatures. In Proceedings of the 2022 ACM Symposium on Principles of Distributed

Computing (Salerno, Italy) (PODC’22). Association for Computing Machinery,

New York, NY, USA, 440–449. https://doi.org/10.1145/3519270.3538444

[22] Guanfeng Liang and Nitin Vaidya. 2011. Error-free multi-valued consensus

with Byzantine failures. In Proceedings of the 30th annual ACM SIGACT-SIGOPS

symposium on Principles of distributed computing. Association for Computing

Machinery, New York, NY, USA, 11–20.

[23] Darya Melnyk and Roger Wattenhofer. 2018. Byzantine Agreement with Interval

Validity. In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS).

IEEE Computer Society, Salvador, Brazil, 251–260. https://doi.org/10.1109/SRDS.

2018.00036

[24] Hammurabi Mendes and Maurice Herlihy. 2013. Multidimensional approximate

agreement in Byzantine asynchronous systems. In 45th ACM STOC, Dan Boneh,

Tim Roughgarden, and Joan Feigenbaum (Eds.). ACM Press, Palo Alto, CA, USA,

391–400. https://doi.org/10.1145/2488608.2488657

[25] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K Garg. 2015.

Multidimensional agreement in Byzantine systems. Distributed Computing 28, 6

(2015), 423–441.

[26] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. 2020.

Improved Extension Protocols for Byzantine Broadcast and Agreement. In

34th International Symposium on Distributed Computing (DISC 2020) (Leibniz

International Proceedings in Informatics (LIPIcs), Vol. 179), Hagit Attiya (Ed.).

Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 28:1–

28:17. https://doi.org/10.4230/LIPIcs.DISC.2020.28

[27] Thomas Nowak and Joel Rybicki. 2019. Byzantine Approximate Agreement on

Graphs. In 33rd International Symposium on Distributed Computing (DISC 2019)

(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 146), Jukka Suomela

(Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,

29:1–29:17. https://doi.org/10.4230/LIPIcs.DISC.2019.29

[28] David Stolz and Roger Wattenhofer. 2016. Byzantine Agreement with Median

Validity. In 19th International Conference on Principles of Distributed Systems

(OPODIS 2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 46),

Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Butucaru (Eds.).

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 1–14.

https://doi.org/10.4230/LIPIcs.OPODIS.2015.22

[29] Russell Turpin and Brian A Coan. 1984. Extending binary Byzantine agreement

to multivalued Byzantine agreement. Inform. Process. Lett. 18, 2 (1984), 73–76.

[30] Nitin H. Vaidya and Vijay K. Garg. 2013. Byzantine vector consensus in complete

graphs. In 32nd ACM PODC, Panagiota Fatourou and Gadi Taubenfeld (Eds.).

ACM, Montreal, QC, 65–73. https://doi.org/10.1145/2484239.2484256

495

https://doi.org/10.1007/978-3-030-79527-6_6
https://doi.org/10.1109/RELDIS.2005.9
https://doi.org/10.1109/RELDIS.2005.9
https://doi.org/10.1007/978-3-030-03807-6_14
https://doi.org/10.4230/LIPIcs.OPODIS.2023.8
https://eprint.iacr.org/2023/1364
https://eprint.iacr.org/2023/1364
https://doi.org/10.1145/5925.5931
https://doi.org/10.1145/41840.41846
https://doi.org/10.1145/1146381.1146407
https://doi.org/10.1145/2933057.2933082
https://doi.org/10.1145/2933057.2933082
https://doi.org/10.1145/3519270.3538442
https://doi.org/10.1145/3558481.3591105
https://eprint.iacr.org/2024/251
https://doi.org/10.1007/978-3-662-45608-8_24
https://doi.org/10.1007/978-3-662-45608-8_24
https://doi.org/10.1145/3465084.3467946
https://doi.org/10.1145/3465084.3467946
https://doi.org/10.1145/3519270.3538444
https://doi.org/10.1109/SRDS.2018.00036
https://doi.org/10.1109/SRDS.2018.00036
https://doi.org/10.1145/2488608.2488657
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.4230/LIPIcs.DISC.2019.29
https://doi.org/10.4230/LIPIcs.OPODIS.2015.22
https://doi.org/10.1145/2484239.2484256

	Abstract
	1 Introduction
	2 Related work
	3 Our Result
	3.1 Warm-up
	3.2 From bits to blocks
	3.3 A round-efficient approach

	References

