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ABSTRACT
This paper presents an efficient algorithm for detecting and
disseminating information in a single-hop multi-channel net-
work: k arbitrary nodes have information they want to share
with the entire network. Neither the nodes that have in-
formation nor the number k of these nodes are known ini-
tially. This communication primitive lies between the two
other fundamental primitives regarding information dissem-
ination, broadcasting (one-to-all communication) and gos-
siping (total information exchange). The time complexity
of the information exchange algorithm we present in this
paper is linear in the number of information items and thus
asymptotically optimal with respect to time. The algorithm
does not require collision detection and thanks to using sev-
eral channels the lower bound of Ω(k+logn) established for
single-channel communication can be broken.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Theory

1. INTRODUCTION
For about a dozen years we have been witnessing a revo-

lution in wireless communication, as new inexpensive near-
range technology standards such as Wireless LAN or Blue-
tooth emerged. A lot of research has been devoted to study
the problem complexity and devise algorithms for one wire-
less communication channel. In practice, most wireless de-
vices can use more than one channel which allows us to solve
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some problems faster. We believe that this it is important to
revisit basic communication primitives leveraging the avail-
ability of multiple channels. In this paper we restrict our-
selves to the simplest possible network topology, the single-
hop network, where every node can communicate directly
with each other node, with multiple communication channels
available. Imagine for example a bunch of wireless sensors
monitoring an area. Sometimes, a few nodes make an obser-
vation which they need to communicate to the others. For
many applications all nodes of the network should be notified
of certain events efficiently, e.g., in order to raise an alarm
or react to a particular situation. For such cases, we need
a fast information dissemination primitive. To this end we
study the problem of distributing k information items orig-
inating from k unknown sources efficiently in multi-channel
networks. In other words, we generalize the Information
Exchange Problem [9] (also known as k-Selection [16] and
Many-to-All Communication [4]) for networks with several
communication channels.

Problem 1.1 (Information Exchange).
Consider a network of n nodes with an arbitrary subset of
k ≤ n nodes where each of these k nodes (called reporters)
is given a distinct piece of information. The Information
Exchange Problem consists of disseminating these k infor-
mation items to every node in the network. The subset of the
nodes with information items is not known to the network.

The problem complexity depends on the fact whether or
not n and k is known to the participants and on the com-
munication model. In wireless networks, messages that are
transmitted on the same channel at the same time collide
and cannot be decoded. Moreover, wireless devices are of-
ten not able to perform collision detection, i.e., they cannot
distinguish ambient noise from a collision and therefore are
not able to detect that a collision occurred at all. This pa-
per explores the problem in networks without collision de-
tection. Analogously to previous work (e.g., [16]) we study
a static case where a worst-case adversary inserts k infor-
mation items at the beginning of the first time slot and no
more items are inserted later.

Naturally, learning new information takes time, depending
on the available bandwidth and frame length. If a constant
number of information items fit into one message, a lower
bound on the time complexity for the Information Exchange
problem is Ω(k) since at any point in time the message from
at most one node can be received successfully on one chan-
nel and this message can only contain a constant number of



information items. In this paper we propose an algorithm
that solves the problem in asymptotically optimal time com-
plexity for any (unknown) k with high probability in n.1 In
addition we construct an algorithm that solves the Informa-
tion Exchange problem even if k is unknown.

One could think of a very simple algorithm to solve this
problem: Estimate the number of nodes with information
items k (with a size estimation algorithm, e.g. [2]) and then
let all these nodes send with probability 1/k. But even if
the estimate is accurate, this approach does not guarantee
the distribution of all information items to all nodes in time
O(k) whpn.2 Thus a more sophisticated method is necessary
to tackle this problem efficiently and have a high success
probability for all values of k.

2. OUR CONTRIBUTIONS
In a first step we assume the number of information items

k to be known up to a constant, i.e., we assume that the
algorithm knows a number k̃ ∈ N satisfying k̃/2 ≤ k ≤ 2k̃.
Later we show that this bound is not necessary.

Depending on the value of k̃, different strategies are ap-
plied to guarantee a timely detection and distribution of
information items whpn. More precisely, we devise two ran-
domized algorithms, each suitable for a different range of k,
and one deterministic algorithm for any k. All algorithms
run in time O(k̃) and run correctly whpn. The constant β
depends on the desired success probability (β is independent
of n and k, see Sec.8 for more details).

Theorem 2.1 (Section 7). For k̃ <
√

logn, Algorithm
Atiny distributes all information items in Θ(k̃) time slots
whpn using O(n1/2) channels.

Theorem 2.2 (Section 8). Let β be a constant to be
chosen later (independent of n and k̃). For

√
logn ≤ k̃ <

logn−3
β

, Algorithm Asmall distributes all information items

in Θ(k̃) time slots whpn using O(nβ log k̃/k̃) channels.

Theorem 2.3 (Section 6). The deterministic Algorithm
Atree distributes all information items in time Θ(max{k̃, logn})
using n channels.

Observe that Since Algorithm Atree is used on a small sub-
network (with accordingly smaller runtime) in Algorithm
Asmall, we describe Algorithm Atree in a more general form
than necessary to solve the information exchange problem
for k̃ > logn−3

β
.

Next we argue that the above algorithms can be combined
to solve the selection problem for unknown k even without
needing given bounds on k like k̃/2 ≤ k ≤ 2k̃. We construct
Algorithm A using the above algorithms. We start with
estimating k to be k̃ = 2, run the appropiate algorithm
for the current range of k̃. We repeat this process until all
information items have been distributed.

1An event E occurs with high probability in x (whpx), if
Pr[E ] ≥ 1 − 1

xα
for any fixed constant α ≥ 1. By choosing

α, this probability can be made arbitrarily low. Usually one
is interested in whp in n.
2If k ∈ Ω(logn), whpn is possible. Observe that for any
k ∈ o(logn) this algorithm does only achieve whpk.

Theorem 2.4 (Section 9). Algorithm A needs at most
Θ(k) time slots after which all information items have been
detected and distributed whpn even if k is unknown and no
bounds on k are given.

The number of channels our randomized algorithms need
is large in order to guarantee high success probability (Θ(

√
n)

channels). The deterministic algorithm presented requires
even more channels for a timely distribution. Such large
numbers of channels are rarely available in practice. Thus
we mainly view our work as a first step to generalizing the
information exchange problem to multiple channels proofing
that a time-optimal distribution is possible. Reducing the
number of channels necessary and providing tight trade-offs
between the number of channels and the time complexity is
left as an open problem for future research.

The proposed algorithms can be used as a subroutine for
other algorithms that disseminate information of a subset of
nodes to the whole network. For example, we expect them
to enable time-optimal network monitoring and cope with
nodes crashing at any time for all values of k and not only
for k ∈ Ω(logn) as in [10].

3. RELATED WORK
The information exchange problem has been studied for

single-channel networks. A non-constructive upper bound
(based on the probabilistic method) was given by Komlos
and Greenberg [15]. Clementi, Monti and Silvestri [6] pro-
vided a lower bound in Ω(k log(n/k)) for oblivious deter-
ministic k-selection protocols (where the sequence of trans-
missions does not depend on messages received previously,
this result also holds for adaptive deterministic protocols in
the model without collision detection). Kowalski [16] proves
the existence of an oblivious deterministic algorithm without
collision detection that distributes k information items in
time O(k log(n/k)) based on selectors as well as a matching
lower bound. Moreover, he presents an explicit polynomial-
time construction with time complexity
O(k polylog n) to solve this problem deterministically. Later
these results have been improved and extended in [4] to
multi-hop networks and the authors provide bounds for cen-
tralized and distributed algorithms. In contrast to our as-
sumptions, they assume that all k information items fit into
one message and they let the nodes know how many infor-
mation items are to be distributed. Furthermore, they only
strive for success probabilities of at least 1 − k−α (whpk),
where we require 1−n−α (whpn). When restricted to single
hop networks, they present a randomized algorithm that dis-
seminates all information items in time O(log k(log2 n+ k))
whpk. Kushilevitz and Mansour proved a lower bound of
Ω(k+ logn) on the expected time of randomized algorithms
[18]. The average time complexity in directed networks is
addressed in [5] with bounds O(min(k log(n/k), n logn) and
Ω(k/ logn+logn). Furthermore, they devised a protocol for
the case when information items have to be delivered sepa-
rately (as in our model) within time O(k log(n/k) logn) and
a lower bound of Ω(k logn). Exploiting the availability of
multiple channels we achieve better bounds: the dissemina-
tion problem can be solved in asymptotically optimal time
complexity Θ(k). Recently, Gilbert and Kowalski [9] pro-
vided upper and lower bounds for the Information Exchange



problem in single-channel networks where some of the nodes
exhibit Byzantine behavior.

Apart from the Information Exchange problem many other
problems are non-trivial even in single-hop networks. Other
communication primitives studied for networks without col-
lision detection are initialization (n nodes without IDs are
assigned labels 1, . . . , n) [22], wake up [3, 8], consensus and
mutual exclusion [1, 7], leader election [6, 11, 17, 19, 20, 21],
size approximation [2, 11, 12], alerting (all nodes are notified
if an event happens at one or more nodes) [14], sorting (n
values distributed among n nodes, the ith value is moved to
the ith node) [13], aggregation problems like finding the min-
imum, maximum, median value and computing the average
value [23, 19].

4. COMMUNICATION MODEL
The network consists of a set of n nodes, each node v with

a built-in unique ID idv known to all other nodes (for sim-
plicity we assume these IDs to be {1, . . . , n}). When using
an initialization algorithm that assigns IDs to nodes, e.g.,
[22], this assumption can be dropped. All nodes are within
communication range of each other, i.e., every node can com-
municate with every other node directly (single-hop). To
simplify the presentation of the algorithms and their anal-
ysis, we assume time to be divided into synchronized time
slots. Messages are of bounded size, i.e., we assume that each
message can only contain one information item. We assume
that n properly divided communication channels are avail-
able (for some of our algorithms, a lower number of chan-
nels suffices). In each time slot a node v chooses a channel
c and performs one of the actions transmit (v broadcasts
on channel c) or receive (v monitors channel c). A trans-
mission is successful, if exactly one node is transmitting on
channel c at a time, and all nodes monitoring this channel
receive the message sent. If more than one node transmits
on channel c simultaneously, listening nodes can neither re-
ceive any message due to interference (called a collision) nor
do they recognize any communication on the channel (the
nodes have no collision detection mechanism).

5. REPORTER-FREE SET IN O(k̃)
A building block we often use is to determine a set of nodes

without reporters fast using one channel. To this end, the
Procedure PRF (x) determines a reporter-free set of size x.
It starts by letting the nodes with the smallest 2k̃ + 2 IDs
reveal whether they are reporters by transmitting their IDs
on the first channel one after another. At least two of those
nodes are not reporters, because there are at most k ≤ 2k̃
reporters altogether. The two smallest ID nodes without
information to distribute are assigned to be the coordinator
and the dummy node respectively (takes time O(k̃)). A
reporter-free set of size x < (n − 2 − 2k̃)/(2k̃) is found by
letting the dummy node and the reporters out of the set of
nodes with IDs [2k̃+ 3, . . . , 2k̃+ 3 +x] transmit at the same
time on channel 1 while the coordinator listens on channel
1. Afterwards, the coordinator informs all nodes whether
it heard the dummy node, in which case a reporter-free set
has been found. Otherwise, this procedure is repeated for
the next set of x nodes. Since at most k sets can contain a

reporter, a reporter-free set is identified within O(k) = O(k̃)
time slots. Thus we can state the following Lemma.

Lemma 5.1. Procedure PRF (x) ensures that after its com-
pletion all nodes know the IDs of a reporter-free set of size
x in time O(k̃) using one channel if x < (n− 2− k)/k .

6. DETERMINISTIC DISSEMINATION
ALGORITHM ATREE

We can use a balanced binary tree to disseminate infor-
mation deterministically in time O(k + logn). The tree
determines a schedule, where each node transmits all its
messages on its own channel and children or parent nodes
listen on specified channels according to the schedule. Af-
ter each transmission/reception the nodes sort the messages
they currently have prepare the message with the lowest re-
porter ID for the next transmission.

Algorithm 6.1.
Algorithm Atree for each node v with ID idv

1: determine position in balanced binary tree based
on idv;

2: while root has not sent “stop”-message do
3: receive item from children / send next item

to parent on channel idv according to
schedule S;

4: end while
5: if v is root then send information items on chan-

nel 1;
6: else receive information items on channel 1 from

root;

The positions of the nodes are assigned as follows. Node
v with idv = 1 is the root and any other node v with ID
idv has a father w with ID idw = bidv/2c. For 2 · idv ≤ n
(or 2 · idv + 1 ≤ n) the node with ID 2 · idv (or 2 · idv + 1)
is a child of v. The nodes exchange messages with their
parents, children and the root according to a schedule con-
sisting of five time slots which is repeated continuously until
the root broadcasts a message indicating that it has received
all information items. The first time slot of the schedule is
assigned to the root node, all other nodes listen to the root
broadcasting on channel 1. In the following four time slots
each node can send one piece of information to its parent
and receive one piece of information from each child: Each
node v in odd levels of the tree (that is blog2(idv)c is odd)
receives one message from child 2 · idv in the first time slot
and from child 2 · idv + 1 in the second time slot – observe
that children are in even levels. Then each node v in even
levels of the tree receives one message from child 2·idv in the
next time slot and from child 2 · idv + 1 in the last time slot.
Every node u sends messages on its own channel u to avoid
collisions – receivers will tune to this channel. The complete
schedule sn : [n] × {1, 2, 3, 4, 5} → {receive, send} × [n] is
given by



sn(idv, 1) =

{
(send, 1)
(receive, 1)

: idv = 1
: otherwise

sn(idv, 2) =

{
(receive, 2 · idv)
(send, idv)

: blog2(idv)c is odd
: blog2(idv)c is even

sn(idv, 3) =

{
(receive, 2 · idv + 1)
(send, idv)

: blog2(idv)c is odd
: blog2(idv)c is even

sn(idv, 4) =

{
(receive, 2 · idv)
(send, idv)

: blog2(idv)c is even
: blog2(idv)c is odd

sn(idv, 5) =

{
(receive, 2 · idv + 1)
(send, idv)

: blog2(idv)c is even
: blog2(idv)c is odd

If a channel (vertex) on (to) which a node v should send
or listen is not in the range of {1, . . . , n}, then v can be sure
that the corresponding node does not exist and just sleeps
in this slot – this happens if v is the root or a leaf.

The nodes use this schedule to send all information items
to the root of the tree and the root can use every fifth slot
to end the protocol.

We now prove Theorem 2.3 stating that Atree distributes
all information items within O(k + logn) time slots, i.e.,
linear in the height of a balanced binary tree.

Proof of Theorem 2.3. During one execution of the
loop in lines 2–4 (lasting five time slots), each node can
exchange messages with its children and parent and listen
to a broadcast message of the root. To ensure that the root
obtains all information items, each node v maintains a list of
items. In each execution of the loop, it might receive up to
two new items from its children, these items are appended
to the list. Each time it sends a message to its parent using
the schedule, it removes the first element of the list. The
sequences of sending/receiving depends on the IDs of the
nodes. Using this procedure ensures that no collisions occur
as each node uses a separate channel for communication.
After height(tree) + k phases (in each phase the schedule
above is executed) the root has received all items. The root
can detect when it has received all items: If in any phase
p > height(tree)+1 it does not receive any message, no more
messages will arrive (if a child still had a message it would
have sent it – and since all nodes behave like this, it follows
due to the height of the tree that there are no more items
stored in the lists of the other nodes by induction). When
all messages have arrived, the root sends “stop” on channel
1 and transmits all information items on channel 1 subse-
quently. Thus each node knows all information items after
O(k+ height(tree)) = O(k+ logn) time slots and Theorem
2.3 follows.

7. ALGORITHM ATINY

The basic idea of the algorithm Atiny is that each re-
porter selects a random channel from a large set of chan-
nels, such that at least half of the reporters choose a unique
channel. We call a transmission of a reporter that chooses
a unique channel a “successful transmission” since in this

case no collision occurs. The number K := n1/(2k̃) of chan-
nels is selected in such a way that it is small enough to

ensure that for each of the
∑k̃
i=0

(
K
i

)
possible subsets of

at most k̃ channels with a successful transmission there is

a node in the network that can be assigned to listen to
that subset. Each such listener then listens on all chan-
nels from the assigned subset one after another. We argue
that there is a unique node (called the “boss”) that listens
exactly on those channels on which the information items
were transmitted successfully. Thus this boss collects the
information of all successful reporters (at least half of all
reporters transmitted successfully) and broadcasts it sub-
sequently. In other words, the boss can successfully trans-
mit the gathered information to the network and thus the
number of reporters is cut in half in time O(k̃). Repeat-
ing this procedure until no reporters are left takes time

O(k̃)/20 +O(k̃)/21 +O(k̃)/22 + · · ·+O(k̃)/2logO(k̃) = O(k̃)
as well and thus yields Theorem 2.1. Algorithm 7.1 provides
a description in pseudo-code.

Algorithm 7.1.
Algorithm Atiny for k̃ <

√
logn

1: find reporter-free set L of size
√
n logn with

PRF (
√
n logn);

2: nodes of L compute S≤k̃ := {S0, . . . , SN−1},
the set containing all N subsets of the chan-
nels {1, . . . ,K} of size at most k̃, where K :=

2logn/(2k̃);
3: each reporter-free set node v ∈ L with ID idv maps

itself to subset Sidv ∈ S≤k̃;

//** Send information **//
4: reporters and listeners do the following simultane-

ously:
- each reporter v chooses random channel in
{1, . . . ,K} and sends its information item on that
channel during k̃ time slots.
- each node v ∈ L listens for one time slot on each
channel c in its assigned subset Sidv .

//** Identify unique boss **//
5: if v ∈ L received a message on all |Sidv | monitored

channels in Sidv then
6: v marks itself to be a candidate;
7: end if
8: for t = k̃, . . . , 1 do
9: each candidate v that monitored |Sidv | = t chan-

nels sends its ID on channel 1, all other nodes
listen on channel 1;

10: end for

//** Broadcast all information items **//
11: if ID id was broadcast in step 9 then
12: node id+ 1 broadcasts “id” on channel 1;
13: the boss (node id) broadcasts the gathered infor-

mation on channel 1 to the network;
14: end if

The first lemma bounds the collision probability of the
reporters in line 5 of Algorithm 7.1.

Lemma 7.1. If each of k reporters chooses a channel uni-

formly at random from {1, . . . ,K} for K := 2logn/(2k̃), more
than k/2 reporters select a unique channel with probability
larger than 1− n−1/9.



Proof. Let p := Pr[a reporter does not choose a unique
channel]. Although p is not independent among different
reporters, it is always smaller than k/K (k nodes choose
one out of K channels), no matter how many of the other
reporters did not choose a unique channel. We use this prop-
erty in the following analysis:

Pr[> k/2 reporters do not choose a unique channel]

≤
k∑

i=k/2

(
k

i

)
· pi · (1− p)k−i

≤
k∑

i=k/2

2k · (k/K)i · 1

≤ k · 2k
(
k/2

logn

2·k̃

)k/2
≤ 2log k · 2k · 2

k
2
·log k− logn

2k̃
· k
2

≤ 2− logn
8

+log k+k+ k
2
·log k

≤ n−1/9

for large n, as k ≤ 2k̃ < 2
√

logn.

Using the procedure described in Section 5 we can de-
termine a reporter-free set of size

√
n logn as

√
n logn <

(n−2−2k̃)/k for our range of k̃. There are enough nodes in

L to assign one listener node to each element of S≤k̃ (Line 3).

Claim 7.2. All subsets S0, . . . , SN−1 of {1, . . . ,K} of size
at most k̃ can be mapped to

√
n logn nodes for k̃ ≤

√
logn.

Proof. The total number of such subsets is∑k̃
i=0

(
2
logn

2·k̃
i

)
≤ k̃ ·

(
2

logn

2·k̃

)k̃
≤ k̃2

1
2
logn ≤

√
n logn as k̃ ≤

√
logn. Therefore we can apply the canonical mapping us-

ing the canonical enumeration of the N subsets to a subset
of all nodes in the network.

Next, we prove that at most one listener node v ∈ L
obtained all information items during the loop of Line 4 of
Algorithm 7.1. This node is the boss mentioned earlier.

Lemma 7.3. There exists one node called boss that can
collect the information items of all successfully transmitting
reporters in time O(k̃).

Proof. Each reporter sends its information on the cho-
sen channel k̃ times. Due to Claim 7.2 we can assume that
a unique node v ∈ L is assigned to any subset of size at
most k̃ of the K channels, unless v is a reporter. Let us
assume that |L| = N , i.e., no reporter node is assigned to a

subset in S≤k̃. Let iv be the number of channels that node
v is assigned to. More precisely, let node v be assigned to
subset Sidv = {c1, . . . , civ} of iv ≤ k channels. In this case
v listens to each of these iv channels one after another for
exactly one time slot. Thus there are nodes w that receive
all the information of the j reporters without collisions since
they listen to Sidw ⊇ J , J being the set of these j successful
reporters. Furthermore, there is a unique node that collects
the information from all j successful reporters without lis-
tening to any other channels (exactly one node was assigned
to this subset).

In Lines 8–12 of Algorithm 7.1 the nodes determine the
unique boss.

Lemma 7.4. The network can identify the unique boss with
probability larger than 1− n−1/9.

Proof. We call each node v that received a message on
each of its iv monitored channels a candidate. However,
there might be several candidates. The unique boss is the
unique node that listened to all successful reporters and did
not listen to any other (“empty”) channels. To detect the
unique boss among the candidates we let each candidate
v send a message on the channel specified by the number
of channels iv they monitored. More precisely, for k̃ time
slots t = 1, . . . , k̃ we ask all candidates v that monitor iv
channels to send their own ID on channel 1 at time t = iv.
Due to Lemma 7.1 with probability larger than 1−n−1/9 at
most half of the reporters collide and thus we can assume
that the number of successful reporters j ≥ 1. Therefore a
unique boss is detected with probability larger than 1−n−1/9

because at time t < j no message is received: Since j > t ≥ 1
and therefore j ≥ 2 there are

(
j
t

)
≥ 2 candidates at time

t < j sending on channel 1, thus if a candidate that listened
to t < j reporters tries to transmit a message, there is a
collision with another such candidate with probability larger
than 1−n−1/9. At time t = j a message containing the ID of
the unique boss is transmitted successfully: the unique boss
sends without collision at time j. At time t > j no message
can be received: there is no candidate since only j reporters
transmitted their information successfully. Thus no listener
node v can receive a message on all iv = t > j channels.
Since we have j ≤ k̃ during the k̃ time slots there is exactly
one time slot in which a message is sent successfully and this
message contains the ID of the unique boss. Now all nodes
but the boss v know, that v is the boss and the node whose
ID is idv + 1 informs v that it is the boss. Since we assumed
that v is not a reporter it is able to broadcast all information
items in Line 13.

Proof of Theorem 2.1. The probability that the boss
collects the information from at least half of the reporters
and can be identified is at least (1 − n−1/9) due to Lem-
mas 7.3 and 7.4. Then the boss can broadcast all items it
gathered from the (with probability larger than 1 − n1/9)
at least k/2 successful reporters it is aware of on channel 1
(Line 13). Since the boss is unique no collisions occur. These
transmissions take time O(k̃). By repeating algorithm Atiny

9α times, we can amplify the success probability of 1−n−1/9

to exceed 1 − n−α. This is whpn since we can choose the
constant α arbitrarily. Thus the whole algorithm has time
complexity O(9αk̃) = O(k̃), which proves Theorem 2.1.

8. ALGORITHM ASMALL

Basic idea: As seen in the previous section it is good to
disseminate the information by first collecting all items at
one specific node (the boss). In order to achieve this goal for
the range of

√
logn ≤ k̃ < logn−3

β
in O(k̃) time, the nodes

execute four consecutive parts (the constant β is defined
later). In step 1, the nodes determine which role they are
going to play during the execution (there are k reporters,

nβ log k̃/k̃ listeners and n − k − nβ log k̃/k̃ others). In step 2,
each of the k reporters tries to tell a randomly picked listener



its information item (a balls-into-bins-style procedure with

k balls and nβ log k̃/k̃ bins). In step 3, the listeners send all
collected information items to the boss. In step 4, the boss
broadcasts the collected information items. Algorithm 8.1
gives an overview of the algorithm proposed in this section.
Step 1: As in Atiny we use the procedure of Section 5 to
find a set without reporters in time O(k). The upper bound
on k̃ < (logn − 3)/β ensures that this procedure works for
k < 2k̃. In the remaining three parts of the algorithm, each
node executes a procedure depending on its role. The nodes
that are neither reporters nor listeners wait until they are
told that the information items are broadcast on channel 1
starting in the next time slot.

Algorithm 8.1.
Algorithm Asmall for

√
logn ≤ k̃ < logn−3

β

1: find listener set L, |L| = nβ log k̃/k̃

with PRF (nβ log k̃/k̃);
2: for i := 1, . . . , k̃ do

if reporter then transmit information item
on random channel among {1, . . . , |L|};
else if listener then listen on assigned
channel and create set of information items

received;
3: if listener then forward collected items to boss

with tree dissemination algorithm Atree;
4: if boss then broadcast all information items on

channel 1;
else listen on channel 1;

Step 2: The reporters try to transmit their information
items to the listeners by a randomized “balls into bins”-
style procedure repeated k̃ times. Each of the k̃ reporters

chooses a channel c uniformly at random from [1, nβ log k̃/k̃]

to send its information item, while each of the nβ log k̃/k̃ lis-
tener nodes listens on a unique channel (throwing a ball at
random into a bin). A “listening time slot” is called success-
ful if a listener lI has received an item UJ .

In each of the k̃ trials, a reporter is successful whpn,
thanks to the bound k < 2k̃ and k̃ ≥

√
logn.

Claim 8.1. Since k < 2k̃ the probability that a fixed re-
porter v is able to transmit UI to a listener during the k̃
repetitions of step 2 is at least 1− 1/nβ−1.

Proof. At first, we want to bound Pr[v is not successful
in the first round] for a reporter v. Again, this probability is
not independent among different reporters. But Pr[v is not

successful in the first round] is at most 2k̃/nβ log k̃/k̃ < 1 −
n(β−1) log k̃/k̃ since each of the |R| ≤ 2k̃ reporters chooses one

of |L| = nβ log k̃/k̃ channels uniformly at random, no matter
how many of the other reporters choose the same channel.
Hence we derive that Pr[v is not successful in all k̃ rounds]

is less or equal then
(

1/n(β−1) log k̃/k̃
)k̃
≤ 1/nβ−1.

Reporters do not need to be notified if their transmission
was successful as all items are transmitted whpn. The re-
porters keep sending their items even if they have already
been detected by a listener.

Lemma 8.2. If k < 2k̃ then the probability that all re-
porters successfully transmitted their information to the lis-
tener nodes L is at least 1− n−(β−2).

Proof. The probability that all reporters transmitted
their information successfully after k̃ rounds is equal to Pr[After
k̃ rounds each reporter v successfully transmitted UI to a

listener] which can be lower bounded by
(
1− 1/nβ−1

)k̃
ap-

plying claim 8.1 and the initial assumption that there are
k < 2k̃ reporters. Hence, the above-mentioned probability

is at least 1 − k̃

n(β−1)
due to Bernoulli’s inequality (stating

that (1 +x)y ≥ 1 +yx for every integer y > 0 and every real
number x ≥ −1). This probability is at least 1 − n−(β−2)

since k̃ ≤ 2k ≤ n, and the lemma follows.

As long as each reporter can transmit to a listener suc-
cessfully during the k̃ repetitions of the balls-into-bins proce-
dure, the algorithm works correctly. If one or more reporters
are not known to the boss after this procedure, the algo-
rithm fails. This failure probability p is, as we just proved
in Lemma 8.2, upper bounded by n−(β−2).
Step 3: Inform the boss The reporters sleep while the lis-
teners forward the collected information items to their boss
using the tree dissemination algorithm Atree presented in
Section 6. This takes time O(k̃) since the time to dis-
seminate the k information items via the tree dissemina-
tion algorithm in a network of size |L| = nβ log k̃/k̃ is in
O(log |L| + k) = O(log(n · β log k̃/k̃) + k̃) = O(k̃) for all
k̃ ∈ Ω(

√
logn).

Lemma 8.3. For k̃ ∈ Ω(
√

logn) all reporters are known
to the boss whpn after O(k̃) time slots.

Proof. This follows from the fact that the listeners can
disseminate all information items to the boss in O(k̃) time
slots as we just showed and from Lemma 8.2: Let the desired
success probability of Algorithm Asmall be 1 − n−α. If α
is a constant which can be chosen arbitrarily to make this
probability arbitrarily large, this is whpn. Now, if we choose
β = α + 2, we obtain that for k̃ ∈ Ω(

√
logn), all reporters

can report to a listener with probability at least 1−n−α.

Step 4: Broadcast information items The listener node spec-
ified to be the boss of L has collected all information items
and broadcasts the information items it obtained on channel
1. No collisions occur and the time complexity of this step
is O(k̃).

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. In step 1, each node needsO(k̃)
time to decide whether it is a listener, reporter or other.
In step 2, the Algorithm 8.1 performs k̃ repetitions of the
“balls into bins” procedure—each repetition takes 2 time
slots. Since k < 2k̃ then the boss receives the informa-
tion items of all nodes whpn thanks to Lemma 8.3 in step
3. Finally, in step 4, all the collected information items
are exchanged, which requires O(k̃) time slots as well. The
number of channels required is bounded by the number of

listeners O(nβ log k̃/k̃).

9. ALGORITHM A FOR UNKNOWN k
Until now we considered algorithms that need a lower and

upper bound on the actual number of information items k:



k̃/2 ≤ k ≤ 2k̃. In this section we present an algorithm A
that works for arbitrary values for k without any bounds on
k given in advance. To this end it uses an estimate k̃ of
k that is set to k̃ = 2 in the beginning and doubled until
reaching k. Note that the algorithms Atiny and Asmall are
still able to finish, but depending on the size of k compared
to k̃ none or not all messages might get through. Yet all
nodes have obtained the same information afterwards.

For each value k̃ Algorithm A uses the appropriate al-
gorithm Atiny, Asmall or Atree as a subroutine. After the
completion of this subroutine, the dummy node 2 and the
reporters that have not been able to distribute their message
transmit simultaneously on channel one. In the subsequent
time slot the boss notifies the network that k̃ was too small
(Line 6), every participant doubles k̃ and the procedure is
repeated for the remaining reporters.

Algorithm 9.1.
Algorithm A for Unknown k

each node:

1: if node 1 has no information item then inject
dummy-information at node 1;

2: k̃ := 2; //** estimate for k
3: tooSmall := true;
4: while k̃ ≤ logn−3

β
and tooSmall do

5: if k̃ <
√

logn then Atiny();
else Asnall();

6: tooSmall := false if all reporters successful;
7: k̃ := 2k̃; //** double estimate
8: end while
9: if tooSmall then Atree();

Since the time complexity of the algorithms using the es-
timate k̃ is linear in k̃ (since it is used only in the indi-
cated range of k – Line 5) and can detect whpn whether
k̃/2 ≤ k ≤ 2k̃ or not, the runtime of the final algorithm is
O(1 + 21 + 22 + · · ·+ 2log k−1 + k) = O(k) whpn.

In order to distinguish between the case without any in-
formation items and cases with at least one item, we insert
a “dummy” item at node 1 (if node 1 does not have an item
to disseminate already, see Line 1 of Algorithm 9.1). We as-
sume that the “dummy” item can not be injected by an ad-
versary (for example by using special symbols the adversary
is not allowed to use). Thanks to this trick we artificially
ensure that k 6= 0. This enables us to overcome the problem
that Algorithm 7.1 Atiny cannot distinguish the case k = 0
where no information has to be spread from the case 2k̃ < k.
Thus the“dummy item”prevents Algorithm 9.1 A from dou-
bling the estimate if k = 1 because Algorithm 7.1 Atiny can
detect that there are no messages if the dummy-message is
the only message that was disseminated. This has no impact
on the time complexity, but ensures that Algorithm A can
detect that there are no items to disseminate in time O(1)
whpn. Theorem 2.4 follows from these observations.

Our Information Exchange Algorithm can also be extended
for the dynamic setting as proposed in [16], where nodes
might obtain new information items during the execution
of the algorithm. To this end, the eight steps from Algo-
rithm 9.1 are repeated in an endless loop. Node 1 broad-

casts a “start”-message at the beginning of each such loop,
and nodes which get a new item U within one loop ignore
it until the next broadcast of a start message. Then, they
start trying to disseminate their new item to the other nodes.
Using this method the algorithm is able to distribute all in-
formation items with a latency of Θ(k).

10. CONCLUSION
In this paper, we considered the problem of disseminating

information in a single-hop multi-channel network after k
nodes have received an information item to be distributed
among all n nodes in the network. We described different
algorithms which perform well for different numbers of such
information items without needing the ability to detect col-
lisions. These algorithms can be combined such that we
obtain an algorithm that is guaranteed to disseminate all
information items to all nodes within Θ(k) time with high
probability in n, which asymptotically optimal if messages
cannot be merged. If we assume that the energy consump-
tion of transmitting and receiving is in the same order of
magnitude, the protocol is also asymptotically optimal with
respect to energy. In the way we described our algorithm, a
few nodes (for example the boss of the listeners) have to be
awake during more time slots than most of the other nodes.
However, it is easy to achieve a balanced energy consump-
tion among all nodes by using simple tricks, such as the
nodes taking turns in being the boss. The algorithm can be
used as a subroutine for other algorithms that disseminate
information of a subset of nodes to the whole network. For
example, we expect it to enable time-optimal network mon-
itoring and cope with nodes crashing at any time during the
execution of the algorithm for all values of k and not only
for k ∈ Ω(logn) as in [10].
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