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Abstract
Broadcast is a fundamental primitive in distributed computing. It allows a sender to consistently

distribute a message among n recipients. The seminal result of Pease et al. [JACM’80] shows
that in a complete network of synchronous bilateral channels, broadcast is achievable if and only if
the number of corruptions is bounded by t < n/3. To overcome this bound, a fascinating line of
works, Fitzi and Maurer [STOC’00], Considine et al. [JC’05], and Raykov [ICALP’15], proposed
strengthening the communication network by assuming partial synchronous broadcast channels,
which guarantee consistency among a subset of recipients.

We extend this line of research to the asynchronous setting. We consider reliable broadcast
protocols assuming a communication network which provides each subset of b parties with reliable
broadcast channels. A natural question is to investigate the trade-off between the size b and the
corruption threshold t. We answer this question by showing feasibility and impossibility results:

A reliable broadcast protocol ΠRBC that:

For 3 ≤ b ≤ 4, is secure up to t < n/2 corruptions.
For b > 4 even, is secure up to t <

(
b−4
b−2n+ 8

b−2

)
corruptions.

For b > 4 odd, is secure up to t <
(

b−3
b−1n+ 6

b−1

)
corruptions.

A nonstop reliable broadcast ΠnRBC, where parties are guaranteed to obtain output as in reliable
broadcast but may need to run forever, secure up to t < b−1

b+1n corruptions.
There is no protocol for (nonstop) reliable broadcast secure up to t ≥ b−1

b+1n corruptions, implying
that ΠRBC is an asymptotically optimal reliable broadcast protocol, and ΠnRBC is an optimal
nonstop reliable broadcast protocol.
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1 Introduction

Broadcast protocols constitute a fundamental building block in distributed computing. They
allow a sender to consistently distribute a message among n recipients, even if some of them
exhibit arbitrary behaviour. It is used as an important primitive in many applications, such
as verifiable secret-sharing or secure-multiparty computation [9, 2, 5, 13].
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The seminal result of Pease et al. [12] shows that in the standard communication model
of a complete synchronous network of pairwise authenticated channels, perfectly-secure
Byzantine broadcast is achievable if and only if less than a third of the parties are corrupted
(i.e., t < n/3). To overcome this bound, a line of works [8, 6, 15] has considered using
stronger communication primitives such as partial broadcast channels, which guarantee that
a message is consistent among all recipients on the channel. Hence, a natural question is to
investigate a generalization of the classical broadcast problem, namely the trade-off between
the strength of the communication primitives and the corruptive power from the adversary.

To the best of our knowledge, all works investigating such trade-offs for broadcast
achievability [8, 6, 15] operate in the so-called synchronous model, where parties have access
to synchronized clocks, and there is a known upper bound on the network delay.

A more realistic setting is the so-called asynchronous model, where no timing assumption
is made. In the asynchronous model, the classical notion of synchronous Byzantine broadcast,
where termination is guaranteed, is not achievable, since one cannot distinguish between
a dishonest sender not sending a message or an honest sender being slow [4, 3, 1]. Hence,
one considers the weaker notion of reliable broadcast, where parties may not obtain output
if the sender is dishonest; however, if an honest party obtains output, every honest party
does as well. To the best of our knowledge, constructions of reliable broadcast [3] in the
asynchronous setting are only known up to t < n/3 corruptions.

A natural question is then to investigate such trade-offs between the communication
network and the corruptive power of the adversary in the asynchronous model.1

In the asynchronous network Nb where parties can reliably broadcast to any subset of b
parties, for which t is there a reliable broadcast protocol secure up to t corruptions?

We answer this question by showing feasibility and impossibility results:

Feasibility Results. In the network communication Nb, we show:

A reliable broadcast protocol ΠRBC that satisfies:

For b ≤ 4, secure up to t < n/2 corruptions.
For b > 4 even, secure up to t <

(
b−4
b−2n+ 8

b−2

)
corruptions.

For b > 4 odd, secure up to t <
(

b−3
b−1n+ 6

b−1

)
corruptions.

A nonstop reliable broadcast ΠnRBC, where parties are guaranteed to obtain output as in
reliable broadcast but may need to run forever, secure up to t < b−1

b+1n corruptions.

Impossibility Result. Following the impossibility of [6], we show in the full version of the
paper that, in the network Nb, there is no protocol for (nonstop) reliable broadcast secure up
to t ≥ b−1

b+1n corruptions, implying that ΠRBC is an asymptotically optimal reliable broadcast
protocol when n→∞ and b = O(n), and that ΠnRBC is an optimal nonstop reliable broadcast
protocol.

1 Investigating such trade-off is additionally motivated as a natural way to overcome the n/3-bound
of constructing reliable broadcast in the pairwise channels setting. Note that this bound holds even
assuming public-key infrastructure (PKI), in contrast to the synchronous counterpart, where Byzantine
broadcast (and reliable broadcast) can be achieved under arbitrary many corruptions with PKI [7].
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1.1 Related Work
Previous results operate in the synchronous model, where parties proceed in rounds, and
messages sent at round r are guaranteed to be delivered by round (r + 1).

Fitzi and Maurer [8] showed that assuming partial Byzantine broadcast channels among
every triplet of parties, global Byzantine broadcast can be realized securely if and only
if t < n/2. Considine et al. [6] generalized this result to the b-cast model, i.e. a partial
Byzantine broadcast channel among any b parties, showing that Byzantine broadcast is
achievable if and only if t < b−1

b+1n. Raykov [15] generalized this result to the setting of
general adversaries [10] proving that broadcast is achievable from b-cast channels against
adversary structures A if and only if A satisfies the so-called (b+ 1)-chain-free condition.

Some additional works focus on the setting of incomplete communication networks, where
some of the partial b-cast channels might be missing. Ravikant et al. [14] provide necessary
and sufficient conditions for 3-cast networks to satisfy so that Byzantine agreement can be
achieved while tolerating threshold adversaries in the range n/3 ≤ t < n/2. In a follow-up
work, Jaffe et al. [11] provide asymptotically tight bounds on the number of necessary and
sufficient 3-cast channels to construct Byzantine agreement for the same threshold adversary.

1.2 Comparison to Previous Work
We argue that the asynchronous setting has different challenges from the ones in the
synchronous setting. Compared to previous works which assume and construct Byzantine
broadcast, in this work we assume and construct reliable broadcast. That is, although our
constructed primitive is weaker than the traditional Byzantine broadcast primitive (it does
not guarantee termination in the dishonest sender case), we also assume a weaker primitive,
which poses new challenges. For example, in the synchronous model, the primitive proxcast
[6] which provides a weak form of consistency where parties output a level of confidence, and
is used as a core building block to construct Byzantine broadcast, can be achieved simply
by allowing the sender to partially broadcast the input value via all possible b-casts, and
letting each recipient Ri take a deterministic decision based on all the outputs: Ri decides
on level `i as the minimum number of parties with whom Ri sees only zeros. However, in the
asynchronous model, parties cannot wait for the outcome of all partial reliable broadcasts
from the sender, because the sender may be dishonest and so some of the partial channels
may not output a value. As a consequence, Ri needs to make a decision without knowing the
outcome of all partial channels. In general, parties have to make progress in the protocol
after seeing the messages from n− t parties, as all other parties could be corrupted. This is
especially troublesome in the dishonest majority setting, where parties need to make progress
after seeing messages from n− t ≤ t parties, i.e., even when potentially no message from any
honest party is received. The key idea to overcome this is by observing that honest parties
can wait for messages from n − t parties that are consistent, i.e., it is allowed to wait for
more than n− t parties if inconsistency is received. This prevents the adversary, with the
help of partial channels, to send arbitrary inconsistent messages.

2 Model and Definitions

We consider a setting with n + 1 parties, where a designated party, called the sender S,
distributes a value to a set of n recipients R = {R1, . . . , Rn}. We note that the insider-sender
setting where the sender is also a recipient is a special case, as it can run in parallel both
processors, acting as sender and as recipient simultaneously.

DISC 2020
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2.1 Communication, Adversary and Setup
In this work, we generalize the communication model where, in addition to a complete network
of pair-wise authenticated channels, parties have access to partial reliable broadcast channels
as well. We refer to such a partial reliable broadcast channel RBC(S, {R1, . . . , Rb−1}) with a
sender S and b− 1 additional recipients {R1, . . . , Rb−1} as b-cast channel. We denote by Nb

the generalized communication model where each party P , sender or recipient, in addition
has access to all channels RBC(P, {Rii

, . . . , Rib−1}), where Rii
, . . . , Rib−1 are b− 1 additional

recipients. The network is fully asynchronous. That is, we assume that the adversary has full
control over the network and can schedule the messages in an arbitrary manner. However,
each message must be eventually delivered.

We consider the same adversarial model and setup as in [6]. We consider an adaptive
adversary who can gradually corrupt parties and take full control over them. Moreover, we
require our protocols to be unconditionally secure, meaning that security holds even against
a computationally unbounded adversary. Note, however, that our impossibility proofs hold
even with respect to a static adversary that is assumed to choose the corrupted parties at
the beginning of the protocol execution and in addition is computationally bounded. Finally,
we consider the setting where parties have no public-key infrastructure available.

2.2 Reliable Broadcast
Reliable broadcast is a fundamental primitive in distributed computing which allows a
designated party S, called the sender, to consistently distribute a message towards a set of
recipients R = {R1, . . . , Rn}.

I Definition 1. A protocol π where initially the sender S holds an input m and every recipient
Ri terminates upon generating output is a reliable broadcast protocol up to t corruptions, if
the following properties are satisfied:

Validity: If the sender is honest, the sender terminates and every honest recipient
terminates with output m.
Consistency: If an honest recipient terminates with output m, every honest recipient
terminates with output m.

We additionally define a slightly weaker version of broadcast, which requires the recipients
to obtain outputs like in reliable broadcast, but may need to run forever.

I Definition 2. A protocol π where initially the sender S holds an input m is a nonstop
reliable broadcast protocol up to t corruptions, if the following properties are satisfied:

Validity: If the sender is honest, every honest recipient outputs m.
Consistency: If an honest recipient outputs m, every honest recipient outputs m.

3 A Warm-Up Protocol in N3

In this section, we consider the model N3, where the parties have access to 3-cast channels.
That is, any party can reliably broadcast messages to any subset of 2 recipients.

We present a reliable broadcast protocol Πn,3
RBC in the communication network N3 secure

up to t < n/2 corruptions inspired by Bracha‘s reliable broadcast protocol [3]. In the full
version of the paper, we show that the construction is optimal with respect to the corruption
threshold.
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Πn,3
RBC first lets the sender S mega-send its input message m (distribute m to any two

recipients, via all available 3-cast channels). Any recipient Ri that mega-receives the same
message (MSG,m) from S (receives consistently (MSG,m) via all (in total n−1) 3-cast channels
from S), mega-sends a message (READY,m) notifying all recipients that it is ready to outputm.
Any recipient Ri that receives consistent notification messages (READY,m) from t+ 1 different
recipients mega-sends (READY,m). Finally, any recipient Ri that mega-sent (READY,m) and
mega-received consistent notification messages (READY,m) from n − t − 1 other different
recipients than himself, outputs m and terminates.

Intuitively, the usage of 3-cast channels guarantees that honest parties send consistent
READY messages, because two recipients cannot mega-receive different messages from the
sender (they have a common 3-cast channel with the sender). Moreover, note that if an
honest recipient Ri mega-receives (READY,m) from Rj , then any honest recipient Rk receives
(READY,m) from Rj via the 3-cast containing Rj as the sender and {Ri, Rk} as the recipients.
This ensures that if an honest recipient outputs a message m, meaning that it sent (READY,m)
and mega-received (READY,m) from n− t− 1 different recipients, then any honest recipient
eventually receives (READY,m) from n− t ≥ t+ 1 different recipients. It then follows that all
honest parties mega-send (READY,m), so all honest parties mega-receive (READY,m) from at
least n− t− 1 parties and terminate. The protocol is described below, and a formal analysis
of it can be found in the full version of the paper.

Protocol Πn,3
RBC

Code for the sender S

1: On input m, send (MSG,m) to every pair of recipients via 3-cast and terminate with
output m.

Code for recipient Ri

1: Upon receiving (MSG,m) via all 3-cast RBC(S, {Ri, Rj}), Rj ∈ R, send (READY,m) to every
pair of recipients via 3-cast.

2: Upon receiving (READY,m) from t+1 different recipients, i.e. from RBC(Rj , {Ri, ·}), Rj ∈ T ,
|T | ≥ t+ 1, if no READY message was sent, send (READY,m) to every pair of recipients via
3-cast.

3: Upon receiving (READY,m) via all 3-cast RBC(Rk, {Ri, Rj}), Rj ∈ R, Rk ∈ T , |T | ≥
n− t− 1, if (READY,m) was sent, output m and terminate.

4 Notation for Protocols in Nb

We consider the model Nb where parties, sender or recipients, have access to b-cast channels.
That is, any party can reliably broadcast a message to any subset of b− 1 recipients. We
introduce some definitions that will be convenient to describe our protocols. Generalizing
the terminology of parties mega-receiving messages in Section 2.2, we add a definition for
parties that receive a message via all b-cast channels including a certain subset of recipients.

I Definition 3. Let P ∈ {S} ∪ R be a party and U ⊆ R \ {P}. We denote BP (U) :=
{RBC(P, V ) : U ⊆ V ⊆ R ∧ |V | = b− 1} the set of b-cast channels that include P as the
sender and any subset of b− 1 recipients that includes U as receivers.

In particular, note that if U ′ ⊆ U , then BP (U) ⊆ BP (U ′).

I Definition 4. We say that a party P ∈ {S}∪R U -sends a message m if it sends m through
every channel in BP (U).

DISC 2020



23:6 From Partial to Global Asynchronous Reliable Broadcast

I Definition 5. We say that a recipient R ∈ R U-receives a message m from a party P if
it receives m through every channel BP (U). Moreover, we say that R l-receives m if such
U ⊆ R with |U | = l exists.

I Remark 6. Note that if |U | ≥ b, BP (U) = ∅, and any recipient b-receives any message.
We add some properties about l-receiving values among parties. Their proofs are included

in the full version of the paper.

I Lemma 7. Let l ≤ b. If a recipient Ri l-receives m from P , then all recipients eventually
(l + 1)-receive m.

I Lemma 8. If Ri ∈ R U-receives m from P and Rj ∈ R V -receives m′ from P , with
m 6= m′, then |U ∪ V | ≥ b.

4.1 Predicate LEVELS

Our protocols follow a specific pattern. They first allow the sender S to send its input m to
each subset of b− 1 recipients. From now on, only the recipients interact with each other.
Whenever a condition C1 is met for Ri, it sends a message via all available b-cast channels,
and as soon as a (stricter) condition C2 is met, it outputs its final message.

At the core of the conditions is the predicate LEVELS, which is reminiscent of the notion
of proxcast [6]. Intuitively, the predicate LEVELS can be understood as an indicator of the
consistency level achieved so far. Level 1 is the strongest, and indicates that from the view
of Ri, the sender “looks honest”. Level 2 indicates that there might be an honest receiver Rj

for whom the sender looks honest, i.e., that Rj is at level 1. Level 3 indicates that there
might be an honest Rk at level 2, and so on.

Roughly speaking, to achieve level 1, Ri checks that it 1-received a message m from the
sender S, and that n − t parties confirm to be at level 1 as well. Intuitively, a recipient
Ri is at level l > 1 if from its point of view there could be an honest recipient that is
at level l − 1. Note that if an honest recipient is at level l − 1, then all the n − t honest
recipients eventually receive enough messages from the sender and enough confirmations
to place themselves on level l − 1 or l. Hence, for level l, Ri needs to l-receive m from S

and there must be a sequence of subsets of parties L1, . . . , Ll, where Lk can be interpreted
as a set containing parties confirming to be at level k, that satisfies

∣∣L1
∣∣ ≥ n − t and

∀ 1 ≤ k ≤ l − 1 :
∣∣Lk

∣∣+
∣∣Lk+1

∣∣ ≥ n− t. For technical reasons, it will be useful to consider
different sizes for each of the two conditions above (see Figure 1).

L1 L3L2 Ll. . . Ll−1

≥ n− tv ≥ n− tc

≥ n− tc

≥ n− tc

≥ n− tc ≥ n− tc

k-receiving m

Figure 1 A visual representation of the LEVELS predicate.

More concretely, the predicate satisfies level l for parameters n, tv and tc if:

LEVELSn,tv,tc
(L1, . . . , Ll) = (∀ 1 ≤ k < k′ ≤ l : Lk ∩ Lk′ = ∅)∧(∣∣L1

∣∣ ≥ n− tv) ∧ (∀ 2 ≤ k ≤ l :
∣∣Lk

∣∣ ≥ 1
)
∧(

∀ 1 ≤ k ≤ l − 1 :
∣∣Lk

∣∣+
∣∣Lk+1

∣∣ ≥ n− tc)
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For l = 0, the predicate is true by default.
We add a few properties. Their proofs are enclosed in the full version of the paper.

I Lemma 9. If LEVELSn,tv,tc(L1, . . . , Ll) holds, then LEVELSn,tv,tc(L1, . . . , Lk) holds for any
0 ≤ k ≤ l.

We denote by λ(l) the minimum number of recipients that can be placed into sets L1, . . . , Ll

satisfying LEVELSn,tv,tc
(L1, . . . , Ll). That is, the minimum

∣∣⋃l
k=1 Lk

∣∣, for sets L1, . . . , Ll

satisfying LEVELSn,tv,tc
(L1, . . . , Ll). Naturally, λ(0) = 0. The next lemma computes λ(l),

l > 0.

I Lemma 10. Given 0 ≤ tc ≤ tv < n and l > 0, λ(l) can be computed as follows.
If tv = tc = t:

λ(l) =
{

l+1
2 (n− t) if l is odd,

l
2 (n− t) + 1 if l is even.

Otherwise, if tv > tc:

λ(l) =
{

(n− tv) + l−1
2 (n− tc) if l is odd,

l
2 (n− tc) if l is even.

5 Asymptotically Optimal Reliable Broadcast Protocol

We present a protocol for any finite input space achieving reliable broadcast in Nb that is:

for 3 ≤ b ≤ 4, secure up to t < n/2 corruptions;
for b > 4 even, secure up to t <

(
b−4
b−2n+ 8

b−2

)
corruptions;

for b > 4 odd, secure up to t <
(

b−3
b−1n+ 6

b−1

)
corruptions.

5.1 Protocol Description
The protocol generalizes the simple protocol for 3-cast presented in Section 3. In the region
of dishonest majority, n− t < t confirmations are not sufficient to make a decision since all
confirmations could come from dishonest parties. Instead, we store the recipients that send
confirmations and make use of the LEVELS predicate to evaluate the consistency level.

Initially, the sender forwards its input m to every subset of b−1 recipients via all available
b-cast channels. If S is honest, once a recipient Ri 1-receives m from S, it sends (READY,m)
via all b-cast channels to notify the other recipients. It outputs m when in addition it
1-receives (READY,m) from n− t− 1 other recipients, completing the protocol at level 1.

If S is corrupted, it is possible that Ri is the only honest recipient that 1-receives m
from S and 1-receives (READY,m) from the other n− t− 1 recipients, which are corrupted.
However, any other honest recipient Rj eventually 2-receives m from S, 2-receives (READY,m)
from the n− t− 1 corrupted recipients and 1-receives (READY,m) from Ri. Once Rj receives
these messages, it sends (READY,m) and outputs m, completing the protocol at level 2.

Following this line of reasoning, for l > 1, an honest recipient Ri that l-receives m from
S sends (READY,m) when it believes that an honest recipient Rj completed the protocol on
level l − 1. Then, Ri outputs m when it is sure that any honest recipient that eventually
(l + 1)-receives m from S will have enough evidence that Ri terminated at level l. This
guarantees that when an honest recipient Ri completes the protocol with output m, every
honest recipient eventually sends (READY,m). Additionally, we set the threshold so that it
ensures that honest recipients cannot send READY for different messages. Moreover, if all
honest recipients send (READY,m), all honest recipients eventually output m.

DISC 2020
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Each recipient Ri keeps sets Ri(m, k), 1 ≤ k ≤ b, where it stores the recipients from whom
it k-received (READY,m). We define two predicates which will be helpful when describing
the protocol. Predicate DONEi(m, l) indicates that the l levels have been completed for the
message m, and hence Ri can complete the protocol. Predicate NOTIFYi(m, l) indicates that
there is a seemingly honest recipient Rj who satisfied the predicate DONEj(m, l− 1), meaning
that Ri should send a notification for level l and message m. In the following, we formally
describe the two predicates NOTIFY, DONE (see Figure 2).

NOTIFYi(m, 1) = true

NOTIFYi(m, l) = ∃ Li
1 ⊆ Ri(m, l), ..., Li

k ⊆ Ri(m, l − k + 1), ..., Li
l−1 ⊆ Ri(m, 2) s.t.(

∀ 1 ≤ k ≤ l − 1 : Li
k ∩Ri(m, l − k) 6= ∅

)
∧

LEVELSn,t,t(Li
1, ..., L

i
l−1) holds.

DONEi(m, l) = ∃ Li
1 ⊆ Ri(m, l), ..., Li

k ⊆ Ri(m, l − k + 1), ..., Li
l ⊆ Ri(m, 1) s.t.(

∀ 1 ≤ k ≤ l − 1 : Li
k ∩Ri(m, l − k) 6= ∅

)
∧

LEVELSn,t,t(Li
1, ..., L

i
l) holds.

. . .

≥ n− t ≥ n− t

≥ n− t

≥ n− t

≥ n− t

Li
2Li

1 Li
3 Li

l−1

. . .

≥ n− t ≥ n− t

≥ n− t

≥ n− t

≥ n− t

Li
2Li

1 Li
3 Li

l−1

Li
l

≥ n− t

NOTIFYi(m, l)

DONEi(m, l)

Figure 2 The condition NOTIFYi(m, l), in contrast to the condition DONEi(m, l).

Protocol Πn,b
RBC

Code for the sender S

1: On input m, send m to every subset of b−1 recipients via b-cast and terminate with output
m.

Code for recipient Ri

Initialize Ri(m, k) = ∅ for any m and 1 ≤ k ≤ b.
1: Upon k-receiving (READY,m) from Rj , add Rj to Ri(m, k).
2: As soon as NOTIFYi(m, l) holds and m was l-received from S (for a message m), send

(READY,m) to every set of b− 1 recipients via b-cast and add Ri to Ri(m, k) for 1 ≤ k ≤ b.
3: As soon as DONEi(m, l) holds and m was l-received from S (for a message m), output m

and terminate.

5.2 Resilience Proof
We divide the proof in two cases: when 3 ≤ b ≤ 4, and when b > 4. We first state a number
of intermediate lemmas that help in the proofs of both cases. Note that in our protocol,
corrupted recipients can send inconsistent READY messages. However, they are limited by the
following property implied by Lemmas 7 and 8.
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I Lemma 11. If R ∈ Ri(m, k) for an honest recipient Ri and for k < b, then for any honest
recipient Rj , eventually R ∈ Rj(m, k+ 1) and R /∈ Rj(m′, k′), where m′ 6= m and k′ < b−k.

Intuitively, the following property ensures that if no honest recipient can place itself on
level b− 2 for a message m, then the honest recipient cannot send (READY,m) or output m.
The proof is enclosed in the full version of the paper.

I Lemma 12. Assume that t < λ(b − 2) and let U denote the smallest set containing an
honest recipient such that the sender U-sends m. If

∣∣U ∣∣ ≥ b− 1, then no honest recipient
can send (READY,m) or complete the protocol with output m.

The next property ensures that if an honest recipient outputs m on level l, then all the
honest recipients can place themselves on level at most l + 1 for m and send (READY,m). It
is proven in the full version of the paper.

I Lemma 13. If t < λ(b− 2) and an honest recipient Ri completes the protocol with output
m, then any other honest recipient eventually sends (READY,m).

We now show that once an honest recipient has terminated with output m on level l,
every honest recipient can output m, intuitively by placing itself on level at most l + 1.

I Lemma 14. If t < λ(b−2) and every honest recipient sends (READY,m), then every honest
recipient can output m.

Proof. Let Ri denote the first honest recipient that sends (READY,m). Then, Ri l-receives m
and NOTIFYi(m, l) holds for l < b− 1, according to Lemma 12. According to the definition
of NOTIFYi(m, l), ∃ Li

1 ⊆ Ri(m, l), ..., Li
k ⊆ Ri(m, l − k + 1), ..., Li

l−1 ⊆ Ri(m, 2) such that
Li

k ∩Ri(m, l − k) 6= ∅ for every 1 ≤ k ≤ l − 1 and LEVELSn,t,t(Li
1, ..., L

i
l−1) holds. Since Ri

is the first honest recipient to send (READY,m), every recipient in
⋃l−1

k=1 L
i
k is corrupted.

. . .Li
1

corrupted recipients

Li
l−1 Li

l

Ri

Rj

Rk

Rp

. . .

n− t− 1 other honest
recipients that sent (READY,m)

Figure 3 All the honest recipients have sent (READY,m).

As shown in Figure 3, since every honest recipient sends (READY,m), eventually
∣∣Rj(m, 1)\(⋃l−1

k=1 L
i
k

)∣∣ ≥ n−t for any honest recipient Rj . We can assign n−t−
∣∣Li

l−1
∣∣ honest recipients

to Li
l. Then, DONEi(m, l) holds and Ri can output m. Every honest recipient Rj can achieve

DONEj(m, l + 1) by assigning Lj
k = Li

k, according to Lemma 11, and by assigning to Lj
l+1 the

honest recipients that are not in Li
l. Then,

∣∣Lj
l ∪ L

j
l+1
∣∣ ≥ n− t and DONEj(m, l + 1) holds.

Additionally, from Lemma 7, Rj (l + 1)-receives m and therefore it can output m. J

5.2.1 Resilience for 3 ≤ b ≤ 4
I Lemma 15. If t < λ(1), validity is satisfied.

Proof. Let m denote the input of the honest sender and let m′ 6= m. Since the recipients
only b-receive m and t < λ(1) ≤ λ(b− 2), no honest recipient sends (READY,m′) or outputs
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m′, according to Lemma 12. Every recipient can 1-receive m from S, hence every honest
recipient eventually sends (READY,m). From Lemma 14, we obtain that every honest recipient
eventually outputs m. J

I Lemma 16. If t < λ(1), consistency is satisfied.

Proof. Assume that an honest recipient Ri completes the protocol with output m. Since
t < λ(1), we can assume without loss of generality that Ri has 1-received m.

According to Lemma 8, no honest recipient can (b − 2)-receive m′ 6= m and since
t < λ(1) ≤ λ(b− 2), we obtain from Lemma 12 that no honest recipient sends (READY,m′)
or outputs m′. According to Lemma 13, every honest recipient sends (READY,m). It follows
from Lemma 14 that every honest recipient outputs m. J

We immediately obtain the following result from lemmas 15 and 16.

I Theorem 17. Let 3 ≤ b ≤ 4. Πn,b
RBC is a reliable broadcast protocol secure up to t < λ(1)

corruptions in Nb.

From Lemma 10, which states that t < λ(1) = n− t, and Theorem 17 we obtain:

I Corollary 18. If 3 ≤ b ≤ 4, Πn,b
RBC is a reliable broadcast protocol secure up to t < n

2
corruptions in Nb.

5.2.2 Resilience for b > 4
We firstly add a few properties that will be useful in proving that our protocol achieves
asynchronous broadcast. For certain thresholds, the READY messages the honest recipients
send are unique and consistent with respect to the messages that the honest parties output
upon termination. That is, if an honest recipient outputs m, then it sent (READY,m), while
if an honest party sends (READY,m), no honest party can output m′ 6= m.

The proofs of the following lemmas are enclosed in the full version of the paper.

I Lemma 19. Assume that t < λ(l− 1) +λ(l′− 1)−λ(l+ l′− b+ 1) + 2 for any l > 0, l′ > 0
such that l + l′ ≥ b. Then, if NOTIFYi(m, l) holds for an honest recipient Ri, NOTIFYj(m′, l′)
is false for any honest recipient Rj, where m 6= m′.

I Lemma 20. Assume that t < λ(l− 1) +λ(l′− 1)−λ(l+ l′− b+ 1) + 2 for any l > 0, l′ > 0
such that l + l′ ≥ b. Then, if an honest recipient Ri outputs m, it sent (READY,m).

I Lemma 21. Assume that t < λ(l− 1) +λ(l′− 1)−λ(l+ l′− b+ 1) + 2 for any l > 0, l′ > 0
such that l + l′ ≥ b. Then, if an honest recipient Ri sends (READY,m), no honest recipient
completes the protocol with output m′ 6= m.

We now show the conditions for our protocol to achieve validity and consistency.

I Lemma 22. If t < λ(b− 2), validity is satisfied.

Proof. Let m denote the input of the honest sender and let m′ 6= m. According to Lemma 12
and since the recipients only b-receive m′, no honest recipient sends (READY,m′) or outputs
m′. Every honest recipient eventually sends (READY,m), as they can 1-receive m from S.
From Lemma 14, we obtain that every honest recipient eventually outputs m. J

I Lemma 23. If t < λ(b− 2) and t < λ(l − 1) + λ(l′ − 1)− λ(l + l′ − b+ 1) + 2 for every
l, l′ > 0 such that l + l′ ≥ b, consistency holds.
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Proof. Assume that an honest recipient Ri completes the protocol with output m. According
to Lemmas 19 and 21, no honest recipient sends (READY,m′) or outputs m′, where m′ 6= m.
Consequently, it follows from Lemmas 20 and 13, that every honest recipient sends (READY,m).
Then, we obtain from Lemma 14 that every honest recipient outputs m. J

The next result follows immediately from Lemmas 22 and 23.

I Theorem 24. If b > 4, t < λ(b− 2) and t < λ(l− 1) + λ(l′ − 1)− λ(l + l′ − b+ 1) + 2 for
any l, l′ > 0 such that l + l′ ≥ b, Πn,b

RBC achieves reliable broadcast in Nb.

In the full version of the paper, we show that t < b−4
b−2n + 8

b−2 (resp. t < b−3
b−1n + 6

b−1 )
implies the hypothesis of Theorem 24. Hence, we obtain the following:

I Corollary 25. Let b > 4. If b is even (resp. odd), Πn,b
RBC achieves resilient reliable broadcast

in Nb secure against t < b−4
b−2n+ 8

b−2 (resp. t < b−3
b−1n+ 6

b−1) corruptions.

6 Optimal Nonstop Broadcast

In this section, we present a protocol that achieves nonstop reliable broadcast secure against
t < b−1

b+1n corruptions. In the full version of the paper, we show that the construction is
optimal with respect to the corruption threshold.

The construction follows an information gathering approach, where parties recursively
invoke a two-threshold nonstop reliable broadcast, along the lines of [6]. The main difference
relies on the fact that our construction needs to handle the fact that not all partial channels
need to give output. As a consequence, instead of relying on the intermediate abstraction
proxcast, which provides a fixed level of consistency at a known point in time, parties need to
keep track of the received messages, and continue sending messages whenever the consistency
level increases, which makes the overall combinatorial analysis substantially more complex.

We denote a (tv, tc)-nonstop reliable broadcast a protocol achieving validity (resp. con-
sistency) up to tv (resp. tc) corrupted recipients. For simplicity, in this section, we focus
on protocols with binary input domain. One can always extend it to any finite domain by
invoking the protocol in parallel for each bit of the message to be sent.

6.1 Protocol Description
Initially, the sender forwards his input via b-cast to every subset of b− 1 recipients. Each
recipient Ri, now as sender, recursively invokes the two-threshold broadcast protocol with
parameters t′v = min(tv, n− 2) and t′c = tc − 1 towards the n− 1 left recipients, to distribute
messages. The idea is that if Ri is honest, then validity holds in the recursive calls up to tv
corruptions if tv < n− 1, and up to n− 2 corruptions out of the n− 1 recipients otherwise.
On the other hand, if Ri is dishonest, then among the n − 1 recipients there is one less
corrupted party, and so resilience up to t′c corruptions is enough.

The message that each Ri distributes indicates a level l of confidence for a message m,
meaning that it l-receives m from the sender, and did not send a message for (b− l)-receiving
m′ 6= m. In particular, Ri sends (READY, k,mk, lk) to announce that it lk-received mk from
the sender and that this is the k-th message that it sends. We think about the protocol
as the recipients having available a designated channel for each level, so that any receiver
can verify the order of the messages. Following the reasoning presented in Section 4.1, a
recipient outputs once it receives enough confirmations that other recipients achieved the
same consistency level. Given that the recursive broadcast works, it is then guaranteed that
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when an honest recipient outputs m with level l, all the other honest recipients confirm
with level l + 1, and eventually every honest recipient outputs at level l + 1. Intuitively, the
protocol does not allow parties to terminate because recipients do not know whether they
will need to confirm messages for other recursive calls of the protocol (there might be some
honest recipient still waiting for a confirmation message to terminate).

Formal condition to output. Formally, a recipient Ri outputs m on level l when it
l-receives m from the sender and the following predicate is satisfied:

DONEi(m, l) = ∃ L1 ⊆ Ri(m, 1), . . . , Ll ⊆ Ri(m, l) s.t. LEVELSn,tv,tc
(L1, . . . , Ll) holds.

I Definition 26. A message (READY, k,mk, lk) is consistent with respect to the set of messages
{(READY, k′,mk′ , lk′) | 1 ≤ k′ < k} if for every such k′, lk + lk′ > b when mk′ 6= mk and
lk 6= lk′ when mk′ = mk.

I Definition 27. A recipient Ri accepts a message (READY, k,mk, lk) from a recipient Rj if it
has received the messages {(READY, k′,mk′ , lk′) | 1 ≤ k′ ≤ k} from Rj and (READY, k,mk, lk)
is consistent with respect to them.

I Definition 28. Ri(m, l) ⊆ R denotes the set of recipients that Ri has accepted a message
(READY, ·,m, l) from. We use Ri(m, ≤ l) to denote

⋃l
j=1 Ri(m, j).

We now formally present our protocol Πn,b
nRBC(tv, tc, S,R) for n recipients in the communi-

cation network Nb, where S is the sender, and R is the set of recipients.

Protocol Πn,b
nRBC(tv, tc, S,R)

Code for the sender S

1: On input m, send m via b-cast to every subset of b− 1 recipients.
Code for recipient Ri ∈ R
Initialize k = 0 and Ri(m, l) = ∅ for every m and 1 ≤ l ≤ b.
1: if n = b then
2: Upon receiving a value from the b-cast with sender S and recipient set R, output m.
3: end if
4: When receiving (READY, p,mp, lp) from Rj , wait until receiving Mj =
{(READY, p′,mp′ , lp′) | 1 ≤ p′ < p} from Rj . If (READY, p,mp, lp) is consistent with
respect to Mj , add Rj to Ri(mp, lp).

5: When l-receiving m from the sender such that (READY, k+ 1,m, l) is consistent with respect
to your previously sent messages, send (READY, k+1,m, l) to the other recipients by invoking
Πn−1,b

nRBC (min(tv, |R \ {Ri}| − 1), tc − 1, Ri,R \ {Ri}), add Ri to Ri(m, l), and increment k.
6: When observing for the first time that DONEi(m, l) holds and you have l-received m from

the sender, output m.

6.2 Resilience Proof
In this section, we define a predicate Qb

n(tv, tc) which reflects the conditions that tv and tc
must satisfy such that Πn,b

nRBC achieves (tv, tc)-nonstop reliable broadcast.
Qb

b(tv, tc) = true since Πn,b
nRBC implements an ideal b-cast. Then, for n > b, Qb

n(tv, tc) =∧n−b−1
k=0 Pb

n−k(min(tv, n− k − 1), tc), where Pb
n(tv, tc) denotes a local predicate enclosing the

conditions that tv and tc must satisfy assuming that Πn−1,b
nRBC achieves (tv, tc)-nonstop reliable
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broadcast. We prove that Pb
n(tv, tc) can be defined as follows.

Pb
n(tv, tc) = [tv < λ(b− 1) ∨ n < λ(b)] ∧[

∀1 ≤ l ≤ b : (tc < λ(l − 1) + λ(b− l − 1) ∨ n < λ(l) + λ(b− l))
]

6.2.1 Validity
In each result enclosed in this subsection, we assume that the sender is honest, that there
are at most tv corrupted recipients, and that Qb

n−1(min(tv, |R| − 2), tc − 1) holds, i.e., that
Πn−1,b

nRBC (min(tv, |R\{Ri}|−1), tc−1, Ri,R\{Ri}) achieves validity (resp. consistency) up to
min(tv, |R \ {Ri}| − 1) (resp. tc − 1) corruptions. We show that satisfying Pb

n(tv, tc) suffices
for Πn,b

nRBC to achieve validity.

I Lemma 29. If an honest recipient Ri sends (READY, i,m, l), then eventually Ri ∈ Rj(m, l)
for any honest recipient Rj.

Proof. Ri invokes Πn−1,b
nRBC (min(tv, |R\{Ri}|−1), tc−1, Ri,R\{Ri}) with at most min(tv,

∣∣R∣∣−
2) corrupted recipients. It follows that Πn−1,b

nRBC achieves validity. Hence, every honest recipient
Rj eventually receives the messages sent by Ri and, since Ri is honest, Rj accepts each such
message and adds Ri to Rj(m, l). J

I Lemma 30. If m is the input of the honest sender, then every honest recipient can
output m.

Proof. Let m denote the input of the honest sender. Hence, the recipients eventually 1-
receive m from S and never l-receive m′ 6= m for l < b. Then, the honest recipients can
send (READY, ·,m, 1) as it is consistent with respect to any messages they sent beforehand.
Eventually,

∣∣Ri(m, 1)
∣∣ ≥ n− tv and therefore DONEi(m, 1) holds according to Lemma 29 for

every honest recipient Ri. It follows that every honest recipient Ri eventually outputs m. J

I Lemma 31. If Pb
n(tv, tc) holds and m is the input of the honest sender, then no honest

recipient outputs m′ 6= m.

Proof. Assume that an honest recipient Ri outputs m′. DONEi(m′, b) must hold since no
recipient l-receives m′ from the sender for l < b, implying that n ≥ λ(b). Additionally,
Ri(m′, ≤ b − 1) consists entirely of corrupted recipients, and since DONEi(m′, b) implies
DONEi(m′, b − 1), it follows that tv ≥ λ(b − 1). Hence, tv ≥ λ(b − 1) ∧ n ≥ λ(b), which
contradicts Pb

n(tv, tc). J

Finally, using Lemmas 30 and 31, we conclude the following.

I Lemma 32. If Pb
n(tv, tc) holds, then Πn,b

nRBC(tv, tc, S,R) achieves validity.

6.2.2 Consistency
In each result enclosed in this section, we assume that there are at most tc corrupted
recipients, and that Qb

n−1(min(tv, |R| − 2), tc − 1) holds. We show that Pb
n(tv, tc) suffices for

Πn,b
nRBC to achieve consistency.

Properties of READY Messages
Intuitively, the following lemma shows that the honest recipients eventually receive the

same messages after an invocation of the subprotocol.
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I Lemma 33. If an honest recipient receives m from Ri, all the other honest recipients
eventually receive m. Additionally, if Ri is honest, m is the message that Ri sent.

Proof. Ri invokes Πn−1,b
nRBC (min(tv, |R\{Ri}|−1), tc−1, Ri,R\{Ri}). There are at most tc ≤

min(tv, |R|− 2) corrupted recipients in R\{Ri} if Ri is honest, and at most tc− 1 otherwise.
Since Qb

n−1(min(tv, |R| − 2), tc − 1) holds, Πn−1,b
nRBC achieves (tv, tc)-nonstop broadcast. J

Lemma 33 immediately implies that the honest parties eventually accept the same
messages from the other recipients. The proof is enclosed in the full version of the paper.

I Lemma 34. If Rj ∈ Ri(m, l) for an honest recipient Ri, then eventually Rj ∈ Rk(m, l)
for any honest recipient Rk.

The following lemma provides a range of levels on which the honest recipients can place
themselves for a message m. The result is proven in the full version of the paper.

I Lemma 35. Let U ⊆ R be the smallest set containing an honest recipient such that S U -
sends m. Then, for any honest Ri ∈ R, there is no honest party in Ri(m, ≤ l−1)∪Ri(m′, ≤
b− l − 1), where l =

∣∣U ∣∣.
If l is the smallest level on which an honest recipient can place himself based on the

messages of the sender, then eventually the n− tc honest recipients will place themselves on
levels l and l + 1, as they continue to run the protocol even after they obtain an output.

I Lemma 36. Let U ⊆ R be the smallest set containing an honest recipient such that S
U-sends m and let l =

∣∣U ∣∣. Then, it eventually holds that
∣∣Ri(m, ≤ l + 1) \ Ri(m, ≤

l − 1)
∣∣ ≥ n− tc for any honest recipient Ri.

Proof. Let Rj denote an arbitrary honest recipient. From Lemma 35, Rj /∈ Ri(m, ≤
l − 1) ∪Ri(m′, ≤ b− l − 1). Rj eventually (l + 1)-receives m according to Lemma 7, and
it sends (READY, ·,m, l + 1) since it is consistent with respect to any messages it previously
sent. Consequently, Rj ∈ Ri(m, ≤ l+ 1) \Ri(m, ≤ l− 1) since according to Lemma 33, Ri

eventually receives each message that Rj sends. J

Our protocol ensures that the notifications of the recipients satisfy the following condition.
The proof is enclosed in the full version of the paper.

I Lemma 37. If m 6= m′ and l + l′ ≤ b, Ri(m, ≤ l) ∩Ri(m′, ≤ l′) = ∅ for any honest Ri.

Properties of the DONE Predicate

I Lemma 38. If DONEi(m, l) holds for an honest recipient Ri, then DONEj(m, l) eventually
holds for any other honest Rj.

Proof. Follows from Lemma 34, as Rj eventually receives the same messages as Ri. J

I Lemma 39. Let U ⊆ R be the smallest set containing an honest recipient such that S
U -sends m and let l =

∣∣U ∣∣. Assume that DONEi(m, l) holds for an honest Ri.
If Pb

n(tv, tc) holds, then DONEi(m′, b− l) cannot be satisfied for m′ 6= m.

Proof. Assume that DONEi(m′, b− l) holds. Note that, according to Lemma 37, Ri(m, ≤
l) ∩ Ri(m′, ≤ b − l) = ∅. Then, n ≥

∣∣Ri(m, ≤ l) ∪ Ri(m′, ≤ b − l)
∣∣ ≥ λ(l) + λ(b − l),

as shown in Figure 4. Additionally, using Lemma 35, we obtain that every recipient in
Ri(m, ≤ l−1)∪Ri(m′, ≤ b−l−1) is corrupted. It follows that t ≥

∣∣Ri(m, ≤ l−1)∪Ri(m′, ≤
b− l − 1)

∣∣ ≥ λ(l − 1) + λ(b− l − 1), contradicting Pb
n(tv, tc).

J
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. . .

. . .
Li

m′,b−l−1Li
m′,b−l

Li
m,l−1

Li
m′,1

Li
m,l

Li
m,1

recipients≥ λ(l)

≥ λ(b− l) recipients

≥ λ(l − 1) corrupted recipients

≥ λ(b− l − 1) corrupted recipients

k-receiving m

k-receiving m′

Figure 4 Levels if both DONEi(m, l) and DONEi(m′, b− l) hold.

Achieving Consistency

I Lemma 40. If an honest recipient Ri outputs m, every honest recipient eventually outputs
m.

Proof. Since Ri has output m, it l-received m such that DONEi(m, l) holds. If every honest
recipient can l-receive m, DONEi(m, l) is enough to guarantee their output, by Lemma 38.

Otherwise, l must be the size of the smallest set U ⊆ R containing an honest recipient
such that S U -sends m, and there is at least one honest recipient that does not belong to any
V ⊆ R such that S V -sends m and

∣∣V ∣∣ = l. This recipient however eventually (l+ 1)-receives
m, by Lemma 7.

According to Lemma 36,
∣∣Rj(m, ≤ l + 1) \Rj(m, ≤ l − 1)

∣∣ ≥ n− t eventually holds for
any honest Rj , and, since

∣∣Rj(m, l + 1)
∣∣ ≥ 1, DONEj(m, l + 1) holds. It follows that every

honest recipient eventually outputs m. J

I Lemma 41. If Pb
n(tv, tc) and an honest recipient Ri outputs m, then no honest recipient

outputs m′ 6= m.

Proof. Assume that an honest recipient Rj outputs m′ 6= m. Let U ⊆ R be the smallest set
containing an honest recipient such that S U -sends m and let l =

∣∣U ∣∣. Since Ri completed
the protocol, and according to Lemma 9, DONEi(m, l) holds. It follows from Lemma 38 that
DONEj(m, l) eventually holds as well. According to Lemma 39, DONEj(m, b− l) must be false.
Then, Rj has completed the protocol by (b− l− 1)-receiving m′, contradicting Lemma 8. J

Using Lemmas 40 and 41, we conclude the following.

I Lemma 42. If Pb
n(tv, tc) holds, then Πn,b

nRBC(tv, tc, S,R) achieves consistency.

6.2.3 Corruption Threshold
We assemble the results proved in the sections 6.2.1 and 6.2.2. The next result follows
immediately from Lemmas 32 and 42.

I Theorem 43. If Qb
n(tv, tc) holds, then Πn,b

nRBC achieves (tv, tc)-nonstop reliable broadcast.

In the full version of the paper, we show the technical lemmas that prove that if 2tv +
(b− 1)tc < (b− 1)n, then predicate Qb

n(tv, tc) holds, leaving us with the next theorem.

I Theorem 44. If 2tv + (b − 1)tc < (b − 1)n, then Πn,b
nRBC(tv, tc) achieves (tv, tc)-nonstop

reliable broadcast in Nb. Additionally, Πn,b
nRBC(t, t) is a t-resilient nonstop reliable broadcast

protocol in Nb, for any t <
(

b−1
b+1n

)
.
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