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Abstract: Activity recognition using off-the-shelf smartwatches is an important problem in human
activity recognition. In this paper, we present an end-to-end deep learning approach, able to provide
probability distributions over activities from raw sensor data. We apply our methods to 10 complex
full-body exercises typical in CrossFit, and achieve a classification accuracy of 99.96%. We additionally
show that the same neural network used for exercise recognition can also be used in repetition
counting. To the best of our knowledge, our approach to repetition counting is novel and performs
well, counting correctly within an error of ±1 repetitions in 91% of the performed sets.

Keywords: human activity recognition; har; smartwatch; imu; deep learning; repetition counting;
exercise classification; sports analysis

1. Introduction

Physical exercise is an important part of many people’s every-day life. For example, on any given
day, around 20% of the U.S. population engaged in physical exercise in 2015 [1]. There are numerous
studies that have found benefits of physical activity on mental and physical health [2]. While it is
intuitively obvious to most people that physical exercise is beneficial, actually following a regular
workout regimen can be difficult [3]. Having a community can help with motivation, but not everyone
can/wants to join a club or participate in exercise classes. Luckily, there are now many wearable
devices, such as fitness trackers and smartwatches, that include workout tracking and coaching
features. Some of these devices even have entire ecosystems with the goal of increasing the motivation
to work out (e.g., through online communities and challenges), and helping users to keep track of their
progress. Most of the existing devices do well with tracking simple, long-lasting exercises, such as
running, cycling and swimming. However, more effort is required to cover a wider range of sports,
especially ones with fast-paced complex movements.

There has been a substantial range of work in the scientific community dealing with general
strength training, where the recognition of different exercise types and the counting of repetitions
is important. Automatically monitoring the performed exercises and number of repetitions is more
convenient than having to manually keep track. Also, through automatic exercise tracking, large
amounts of data are aggregated that can then be used to compute statistics to quantify progress over
time. In other cases, one might want to follow a strict exercise plan that specifies the type of exercises
and the number of repetitions to be performed. This is especially the case for CrossFit, where the
so-called workouts of the day (WOD) specify exactly which exercises are to be performed, either
for a fixed number of repetitions, or for as many repetitions as possible within a given time frame.
Exercise recognition and repetition counting can help athletes to follow the workout schedule and
automatically generate statistics about their progress. In this work, we therefore focus on 10 complex
full-body exercises, as they typically appear in the sport of CrossFit. We present a deep learning
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approach for exercise recognition and repetition counting, based on convolutional neural networks
(CNNs). In order to train and evaluate our models, we collect inertial data with two smartwatches,
one worn on the wrist and one on the ankle. We collect data from a total of 54 participants of varying
levels of athleticism and proficiency, yielding 230 min of data containing 5461 repetitions.

One major challenge with activity recognition is the collection of large amounts of accurately
labelled data. This is often only possible with considerable human effort, including direct supervision
during data collection, as well as analyzing video recordings to annotate the data. Therefore,
we design a data collection scheme that allows collection of high quality data with minimal supervision.
In particular, during this constrained workout, the smartwatch indicates the start of a new repetition
through a vibration signal. Thus, we automatically acquire labels for the workout type, as well as
the beginnings of repetitions. Such a constrained data collection approach decreases the difficulty of
data acquisition and could, therefore, enable large scale crowd-sourced data collection. For example,
fitness apps could include constrained workouts, thereby gathering an unprecedented amount of
labelled data from millions of users and improve their machine learning models. Furthermore,
such apps could also let users execute a few repetitions of exercises, which are then used to fine-tune
the basic models. This form of personalization is a type of transfer learning, which, in itself, is an active
area of research.

Our exercise recognition model achieves 99.96% accuracy. We further present a novel approach
for repetition counting, where we use a neural network to detect the beginning of exercise repetitions.
Our approach is straightforward and does not require any feature engineering, and we use the same
neural network architecture for recognition and counting. For repetition counting, we achieve an
error of ±1 for 91% of all sets. We also evaluate the importance of individual sensors and smartwatch
locations and show that data from a single smartwatch, worn on the wrist, is sufficient to achieve
a high accuracy for most exercises. However, we find that certain exercises clearly benefit from
the second smartwatch. Wearing a smartwatch on the ankle might seem impractical at first, however,
in a real-world setting, one could use lightweight inertial sensors like the Moov [4]. In order to
stimulate future research and ensure the reproducibility of our results, we make our data and code
publicly available (Data and Code: https://goo.gl/28w4FF).

2. Related Work

Human activity recognition (HAR) is an important sub-field of human-computer interaction
(HCI), with a rich body of work. HAR covers a broad range of tasks, including distinguishing activity
from non-activity [5,6], activity classification [7] and repetition counting [5,6,8–10]. These tasks are
interesting by themselves from a research perspective, but also have a wide range of potential real
world applications, especially in the fields of healthcare and personal fitness. This is exemplified by
the increasing number of commercially available wearable devices that include activity tracking and
coaching functionalities. For example, the Apple Watch [11] distinguishes between moving, exercising,
and standing, and there is also support for exercise tracking, especially through third-party apps.
Google’s Wear OS [12] also supports activity tracking natively and through third-party apps. Moov [4]
is a dedicated fitness tracking system that consists of separate lightweight motion and heart rate
trackers. One can also combine multiple motion sensors, e.g., wearing one on each wrist for boxing.
HAR can be based upon many different modalities, such as video [13,14], sound [15], electromagnetic
waves [16,17], and, probably most prevalent nowadays, body-worn inertial sensors [18,19], which we
employ in this work.

Until recently, most work on HAR has used classical supervised machine learning methods
to perform the tasks of segmentation and classification. The most widely used methods include
decision trees, random forests, naive Bayes classifiers, hidden Markov models, and support vector
machines. However, with the increased availability of data through off-the-shelf devices such as
smartphones, smartwatches, and fitness trackers, as well a general increase in computing power,
more work has focused on using deep learning methods [20]. In general, deep learning works

https://goo.gl/28w4FF


Sensors 2019, 19, 714 3 of 22

exceptionally well for HAR and, in contrast to classical machine learning methods, requires little feature
engineering. Convolutional Neural Networks (CNNs), variants of Recurrent Neural Networks (RNNs),
and combinations of both methods have been shown to work very well on a range of HAR benchmark
tasks [21–24]. In this work, we use a simple, yet effective, CNN architecture. One disadvantage of
deep learning methods is the high computational cost, which makes them challenging to use in an
online scenario on low power devices, such as smartwatches. Therefore, there has been considerable
effort to design efficient deep learning methods without sacrificing too much performance [25–27].
We are interested in the best possible performance and thus conduct all the computation offline on
GPUs. We leave the adaptation of our methods for efficient online computation as future work. For a
detailed overview of deep learning methods for HAR, see [20]. In the following, we are mostly going
to focus on HAR studies related to physical exercise.

Shoaib et al. [7] classified 13 activities from daily life using smartphone inertial measurement units
(IMUs). Similar to us, they placed smartphones in two different locations (forearm, pocket) and found
that using both devices improved recognition performance. O’reilly et al. [28] used a combination of
5 IMUs attached to the lower body to classify five different lower body exercises. They achieved 99%
accuracy using a Random Forest. We considered twice as many exercises and achieved even higher
accuracies, using only two IMUs. Also, our exercises included more complex compound movements,
such as burpees and wall balls. Um et al. [29] used CNNs to classify 50 gym exercises and achieved
92.1% accuracy. The data they used were collected using the special-purpose PUSH [30] forearm-worn
sensor that included an accelerometer and gyroscope. They used a large data set, provided by PUSH
Inc., while we collected our own data and used off-the-shelf general purpose hardware. Ebert et al. [31]
classified eight different body weight exercises, using an accelerometer on each arm plus a smartphone
mounted to the chest. They used a naive Bayes classifier and achieved around 95% accuracy. In contrast,
we considered more exercises, some of which were arguably more complex (burpees, wall balls), used
fewer sensor devices, and achieved higher accuracies. Burns et al. [32] evaluated multiple machine
learning algorithms to distinguish between shoulder exercises, based on inertial signals. They found
that a Convolutional RNN (CRNN) outperformed classical approaches, and similar to us, they only
used one off-the-shelf smartwatch. We additionally evaluated the benefit of using a second smartwatch
attached to the ankle for detecting whole-body movements.

In the following, we will discuss a range of HAR approaches for sports and exercise recognition
which are most closely related to our work, as they perform not only exercise recognition, but also
repetition counting. Chang et al. [8] collected data using hand- and waist-mounted accelerometers
and achieved 90% recognition accuracy on 9 typical strength training exercises. They also performed
repetition counting, where they achieved a relative error rate of 5%. The authors used classical
techniques such as naive Bayes, hidden Markov models, and peak detection, whereas we exclusively
employed neural networks for recognition as well as counting. Seeger et al. [9] classified 16 typical daily,
cardio, and strength training activities with 92% accuracy. They used data from three accelerometers
(hand, arm, leg) and modeled each sensor axis as a Gaussian distribution (mean and variance) that was
then directly used for recognition. They performed repetition counting using autocorrelation for slower
exercises, and a variant of peak detection for faster exercises. Muehlbauer et al. [5] classified 10 different
upper body exercises, with an accuracy of 93.6%, using a smartphone placed in an arm holster.
They evaluated multiple classical algorithms for recognition and found k-nearest neighbours (kNN)
to work best. Similar to [9], they also used auto-correlation for repetition counting. Morris et al. [6]
built and improved on the aforementioned works. They used an arm-mounted inertial measurement
unit and achieved up to 99% recognition accuracy across 14 gym exercises (plus walking and running).
They also used an auto-correlation based peak detection algorithm for repetition counting and achieved
impressive results, with an accuracy of±1 in 93% of sets. Shen et al. [10] introduced a workout tracking
application called MiLift. MiLift also performed segmentation, recognition, and repetition counting
using similar approaches to the previously mentioned works.
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In contrast to the aforementioned works, we used off-the-shelf smartwatches instead of
smartphones or dedicated IMU units. We compared using a single smartwatch worn on the wrist
to using an additional smartwatch worn on the ankle. With the exception of [6], most previous
works mainly focused on single-joint exercises (e.g., bicep curl) or other, mostly stationary, exercises
(e.g., bench press), while we chose ten full body exercises that included complex movements, such as
burpees which consist of multiple “sub-exercises”. The exercises we chose vary greatly in execution
time and form across athletes, making this a challenging task. The most crucial difference to previous
work is that we employed an end-to-end deep learning pipeline for recognition as well as counting.
To the best of our knowledge, we present a novel approach to repetition counting. One advantage
of our approach is that it does not require any feature engineering at any stage in the pipeline.
For recognition, we achieve a very high accuracy of 99.96% when using both smartwatches, and 98.91%
when only using the wrist mounted watch. For counting, we are within ±1 for 91% of sets. Note that
direct comparison with related work is difficult, since there are many differing factors such as sensor
hardware, sensor placement, exercises, amount of data, nature of annotations, and so on. Nevertheless,
we believe that our results are strong and they can only improve with more data.

3. Data

Currently there exist no publicly available data sets of sensor recordings for CrossFit. Therefore,
we designed different workouts and collected data from volunteers. The data was collected using two
smartwatches, one worn on the wrist and one on the ankle. This sensor data was then used for training
and testing of the different models.

3.1. Exercise Selection

We picked ten of the most frequent movements performed in CrossFit, as listed in Table 1. As the
reader might not be familiar with some of the more CrossFit-specific exercises, Figure 1 shows the
execution of the kettlebell press (E9), kettlebell thruster (E10), wall ball (E8) and burpee (E3).

(a) KB press (b) KB thruster (c) Wall ball (d) Burpee

Figure 1. Execution of four typical CrossFit exercises. In our setting, the kettlebell (KB) thruster (b) is
performed with only the right hand.

Table 1. List of all exercises with respective code and equipment used.

Ex. Code Exercise Equipment

E1 Push-up Body weight
E2 Pull-up Pull-up bar
E3 Burpee Body weight
E4 Kettlebell deadlift Kettlebell
E5 Box jump Box
E6 Air squat Body weight
E7 Sit-up Body weight
E8 Wall ball Medicine ball
E9 Kettlebell press Kettlebell

E10 Kettlebell thruster Kettlebell
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Several typical CrossFit exercises are Olympic lifts, and can only be performed safely with
knowledge about their correct execution. To allow CrossFit beginners to participate in our study,
exercises requiring a barbell were replaced by beginner-friendly unilateral versions using a kettlebell
(exercises E4, E9, and E10 in Table 1). The kettlebell versions of these exercises are also widely used
across all experience levels. They are less likely to cause injuries than the barbell versions, and are
technically easier to execute. During the one-handed kettlebell exercises (E9 and E10), the kettlebell
was held in the right hand, where the smartwatch was worn.

The exercises were chosen to have a large variety in execution time and body part engagement
between different exercises. Additionally, some exercises with similar movements were included,
to investigate how well they could be distinguished by the models. For example, in both the kettlebell
thruster and wall ball, one first lowers into a squat and then straightens the arms when standing back
up. Similarly, the end of the kettlebell thruster and kettlebell press are both essentially a shoulder press.
Furthermore, the burpee contains a push-up and a jump, similar to a box jump.

3.1.1. Constrained Workout

The constrained workout was designed to give accurately labeled sensor data, including the type
of exercise and the start of each repetition. This was achieved by indicating the start of the repetitions
to the participant, using vibrations of the smartwatch (worn on the wrist). Note that this makes
additional data labeling steps, such as taking a video of the workouts for subsequent refinement of
the annotations, superfluous. This is advantageous as it reduced the data collection effort, but also
made it easier to find willing participants, since many people do not like being recorded on video.
Drawbacks might be a loss of generality since participants had to wait for the vibration signal before
starting the next repetition. However, we tried to keep the negative effects of this choice to a minimum
by setting a personalized vibration interval for each participant and exercise. The vibration interval
was set such as to reflect the natural execution speed of the exercises by the participant, as closely
as possible.

For some exercises (e.g., E3, E8, E10) waiting for the next vibration interrupted the natural flow
of the exercise. In these exercises, the end of one repetition normally tended to overlap with the
beginning of the next. This is especially the case in CrossFit, where exercises are usually performed as
fast as possible and the form is less strict than in the case of normal strength training. For example,
when push-ups are executed strictly, there is a short but distinctive pause at the top where both arms
are fully extended. In CrossFit, athletes tend to stop just short of full extension and fluidly drop back
down for the next repetition. This holds true for all exercises, albeit to varying degrees. Therefore,
this could affect the performance of the models when used on data recorded without a fixed execution
speed. However, there would be no issue when applying our models to strength training done in sets
and repetitions, and hence with “normal” speed, instead of for time.

The participants were asked to perform one set of 15 repetitions of each exercise. However,
they were free to stop earlier and were encouraged to do extra repetitions in the case that they were
not over-fatigued. This allowed us to collect as much data as possible of the exercises performed with
good form. After each set, the participants were free to rest before moving on to the next exercise.

3.1.2. Unconstrained Workout

In the unconstrained setting, we let the participants freely execute the exercises with a focus on
fast execution, as is typical in CrossFit. In this case, the smartwatch did not vibrate to indicate the start
of a new repetition. The data collected in the unconstrained setting was only used for testing, and not
for training.

We define two workout types. The first type is similar to the constrained case. Here the
participants performed all of the 10 exercises with 10 repetitions each. This setting allows us to test
how our models perform on data that is not paced by the vibrations of the wrist watch. In particular,
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the clear beginning and ending of single repetitions are not present anymore and, instead, consecutive
repetitions have smooth transitions. This especially poses a challenge for repetition counting.

The second unconstrained workout type follows a 1-2-3 scheme, where in the first round all
10 exercises were performed for one repetition, in the second round for two repetitions, and in the third
round for three repetitions. This scenario enables us to evaluate how many consecutive repetitions are
needed for robust classification. In general, the shorter a single exercise was performed for, the harder
it is to recognize.

3.1.3. Null Class

The unconstrained workouts were done in a circuit fashion, where participants moved freely
from one exercise to the next. Additionally, some of the exercises required kettlebells and medicine
balls, which the participants had to pick up. Therefore, it was crucial to include non-exercise, or null
class, training data to correctly identify periods where no exercise was performed. In order to collect
null class data, we had participants sit, stand, and walk around for 90 to 120 s.

3.2. Data Collection App

The sensor data was collected with an app that ran on two smartwatches in communication
with each other, over Bluetooth low-energy (BLE). The main menu of the app can be seen in Figure 2.
This screen was displayed when the app started and allowed choice of one of the workouts, connection
of the two smartwatches over Bluetooth, and synchronization of the clocks. Additionally, the time
interval of the vibrations that signalled the start of a repetition could be set.

Figure 2. Main menu screen. Participants choose the workout type and set the vibration
interval duration.

Once the Bluetooth connection between the two devices was established, the wrist watch sent
commands to the ankle watch and no further user interaction on the ankle watch was needed.
The screen on the ankle watch was then just used to check that everything was working correctly
during the workout, and touch interactions were disabled.

To start the recording of the sensor data simultaneously on both watches, they had to be
synchronized in time. For simplicity, we solved this with the NTP library TrueTime [33]. Both watches
were connected to a WiFi network and obtained the correct time from the NTP servers.

The workout screen, shown in Figure 3, was displayed during the data collection. This screen
showed the current exercise and a button for starting and stopping the recording of the sensor data.
The watch started recording after a 5 s countdown, to allow the participant to get into position. After
stopping an exercise, the participant input how many repetitions they had performed. The app ran on
two Huawei Watch 2 smartwatches with Android Wear 2.9. The two watches were always worn in the
same orientation on the right ankle and the right wrist and were tightened enough to avoid rotation.
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Figure 3. Workout screen. The left image shows the state before starting the recording. The right image
shows the state during the exercise.

The data of the accelerometer, the gyroscope, and the rotation vector sensor were recorded during
all exercises with a frequency of approximately 100 Hz. The rotation vector sensor is a software sensor
that gives the orientation of the watch. The other two are hardware sensors that measure raw data
about the linear and rotational forces that are applied to the watch. We directly used the raw data
provided by these sensors without applying any post-processing, such as low-pass filtering or drift
compensation. An overview of all the motion sensors on the Android platform and how to access them
can be found here [34]. The accelerometer measures the acceleration (including gravity) along the x, y,
and z axes, in m/s2 . The axes are defined in relation to the device, where the z axis is perpendicular to
the screen (see [35]). Figure A1 shows an example of raw acceleration data. The gyroscope measures
the rotational velocity, in rad/s, around the x, y, and z axes, where the coordinate system is the same as
for the accelerometer. Figure A2 shows an example of raw gyroscope data. Finally, the rotation vector
sensor measures the orientation of the watch (azimuth, pitch, roll) in the earth’s frame of reference.
The orientation angles are computed by combining data from the geomagnetic field sensor (compass)
and the accelerometer. Figure A3 shows an example of orientation sensor data.

During the data collection process, the data streams from the three sensors were annotated
with the performed exercise type, and repetition starts were indicated using the vibrations of the
wrist watch.

3.3. Collected Data Summary

A total of 61 people volunteered to take part in the data collection. The data of 7 participants had
to be excluded, because of technical problems with the smartwatches—sometimes, the ankle watch
stopped recording data or the watches did not stay synchronized. Out of the remaining 54 people, 50
participated in the constrained workout. The unconstrained workout was performed by five people, of
which four also participated in the constrained workout. The null class data was collected from seven
individuals, of which four also took part in the constrained workout. The participants are between
their early 20’s and early 40’s. Of the participants, 43 were men and 11 were women. The CrossFit
experience level of the participants could be divided into three levels: Beginner, intermediate, and
advanced. Beginners are participants that have had less than 6 months of practice, intermediate ranges
from 6 up to 24 months of weekly or semi-regular practice, and advanced practitioners have performed
the sport for at least 2 years with high frequency. Of the people that participated in the constrained
workout, 16 were beginners, 22 intermediate, and 12 advanced. Six of the advanced participants were
certified CrossFit coaches. In the unconstrained workout, three participants were intermediate and
two were advanced. Having data from participants with such different experience levels helps to
obtain a model that adapts well to many users. Some of the beginners in the study have never before
performed some of the movements. Table 2 gives an overview of the collected data.
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Table 2. Statistics of the collected data.

Exercise Participants Time [min] Repetitions Fraction of Time

Push-up 50 25.05 718 11%
Pull-up 43 13.63 300 6%
Burpee 47 30.97 551 13%

Kettlebell deadlift 48 28.43 689 12%
Box jump 47 19.2 546 8%
Air squat 44 22.27 642 10%

Sit-up 42 26.5 555 12%
Wall ball 42 23.42 529 10%

Kettlebell press 44 19.7 482 9%
Kettlebell thruster 39 20.88 449 9%

Total - 230.05 5,461 100%

4. Methods

Figure 4 shows a high-level overview of our pipeline. Windows of raw sensor data are fed into
an exercise classification neural network that predicts the exercise type for each window. We use
overlapping input windows, majority voting, and subsequent smoothing. For repetition counting,
we use separate neural networks, one for each exercise type. Thus, in order to choose the right neural
network for counting, correct exercise recognition is crucial. The repetition counting neural network
outputs a series of 1’s and 0’s, where 1’s designate the start of a repetition. We, then, apply smoothing
to this binary series and count the number of 1-sequences, which gives the final repetition count.
In the following, we will describe the individual steps of the pipeline in more detail.

 KB DeadliftPull-up
KB DeadliftKB Deadlift

Exercise classification

Majority voting and
smoothing 

KB
Deadlift

KB
Deadlift

KB
Deadlift

KB
Deadlift

Recognition
Repetition start
classification

1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0

Repetition counting
function

KB Deadlifts 
3 Reps

Repetition
Counting

Figure 4. System pipeline. For exercise recognition, raw sensor data is split up into windows and fed to
a CNN that performs exercise classification. For repetition counting, the windowed raw sensor data is
fed into the repetition counting CNN, which corresponds to the exercise that was previously detected
by the recognition CNN.

4.1. Neural Network Architecture

We use the same base architecture for both exercise recognition and repetition counting, as
shown in Figure 5. All our classifiers consist of a series of 2D convolutions and two fully connected
layers. We fine-tune our models through hyper-parameter grid searches. Table 3 summarizes the
hyper-parameter search for the recognition model, and indicates the best values that were found. We
note that the results are, overall, robust to these hyper-parameter choices and we thus refrained from
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further tuning. A complete list of the architecture parameters can be found in Table A1 in Appendix A.
We further tuned the models for each exercise type individually, according to the values in Table 4.
The final hyper-parameters of the repetition counting models for each of the exercises can be found in
Table A2 in Appendix B.

Push-up

KB thruster

Flatten

Raw Sensor 
Data

Convolutional Layers Fully Connected 
Layers

Output 
Layer

Figure 5. Neural network architecture for recognition and counting. Windows of raw sensor data from
up to six sensors are passed through several convolutional layers, before a fully connected layer with
a softmax activation outputs the final predictions.

Table 3. Parameters of the grid search for the recognition model.

Parameter Candidates Best

Number of convolutional layers 1, 2, 3, 5 5
Filter convolutional layer 1 25, 50, 75, 100 100
Filter convolutional layer 2 25, 50, 75, 100 75
Filter convolutional layer 3 25, 50, 75, 100 25
Filter convolutional layer 4 25, 50, 75, 100 25
Filter convolutional layer 5 25, 50, 75, 100 75

Dropout for all layers 0.25, 0.50, 0.75 0.50
First layer kernel size (15, 3), (15, 6), (15, 12), (15, 18) (15, 3)

Table 4. Parameters of the grid search for the repetition counting model.

Parameter Candidates

Batch normalization Yes, No
Normalized input Yes, No

Activation function relu, elu
Two extra dense layers Yes, No

Input shape W × 18, W × 3× 6

The sensor readings were obtained at irregular intervals, therefore the signals are first interpolated
and resampled. The resampling is performed with a frequency of 100 Hz, which represents the average
frequency of the watch sensors. The input to the neural networks consists of the resampled sensor
data from multiple sensors, where each sensor has three axes. Since we record the signals of
the accelerometer, gyroscope, and orientation sensor of two smartwatches, this results in a total
of 18 inputs. One input window Xi is a matrix of dimensions T × 100 × 3 × S, where S denotes
the number of sensors that were used, and T is the length of the input window in seconds. This
means that we stack the sensors on top of each other in a single channel. In the first convolutional
layer, we therefore use a stride of 3 along the vertical axis, in order not to arbitrarily mix together
neighbouring axes of different sensors. In our experiments, we evaluate the importance of sensor
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types and locations, thus S ranges from 1 (when only using one sensor of one smartwatch) to 6 (when
using all sensors from both smartwatches). The choice of the input window length W, defined as
W = T× 100, was crucial, especially when dealing with activities of different lengths. In general HAR,
one might want to recognize long-running activities such as reading, but also detect short actions, such
as taking a sip of water, which might require operating at different time scales (i.e., using multiple
different window lengths). In our case, the differences in duration between the shortest (push-up) and
longest exercise (burpee) are relatively small, which should allow for use of a single window size. We
evaluated different choices for W, ranging from 100 to 1000 sensor samples (1 to 10 s).

Our neural network models are implemented with Keras [36] using the Tensorflow [37] backend.
We use a batch size of 30, and train for a maximum of 100 epochs. For each batch, the input windows Xi
are sampled independently and uniformly at random from the training data set. We use early stopping,
where training is finished early if the test error does not decrease for a number of epochs. For training,
we use stochastic gradient descent with a learning rate of 0.0001 to minimize the cross-entropy loss.
We experimented with different optimizers, but did not find a significant difference in performance.

To evaluate the performance of our models we either use 5-fold cross validation with a 80/20 split
for each fold, or leave-one-subject-out (LOSO) training. In both cases, we make sure that all exercises
of each participant either end up in the training or the test set. In the case of 5-fold cross validation,
only 5 models are trained, whereas, for LOSO, the number of trained models equals the number of
participants, which was 51 in our case. Therefore, we only use LOSO for the repetition counting, where
each model is effectively trained on only 1/10 of the training data, and we thus use LOSO to get a
more robust estimate of the model performance and maximize the amount of available training data.

Note that we do not use a separate validation set for tuning the hyper-parameters, as is standard
in machine learning for most supervised learning tasks. One of the biggest challenges we are facing is
that, even though our data set contains a relatively large amount of data (13,800 s, 5461 repetition),
the data of any given participant is highly correlated. Therefore, data from one participant must
entirely be either in the train or in the test set. This is different to most supervised learning settings,
where the train and test sets are uniformly sampled from the entire data set. Assume we were to use a
standard 80/20 train/test split (and then split the train set again into train/validation). This would
mean assigning all the data from 40 participants to the train set, and the data from the remaining
10 participants to the test set. If we, now, train a single model and test it on this particular test
set, the resulting performance estimate would be highly dependent on which 10 individuals were
assigned to the test set. For example, let us assume we have two groups of participants that are quite
different from one another (e.g., 40 beginners and 10 advanced athletes). If, by chance, the 10 advanced
participants end up in the test set, the performance on the test set will likely be low, because the model
never saw advanced athletes during training. This is, of course, a simplified example, but it shows
that, in order to get a robust estimate of performance, it is necessary to average over many possible
choices of train/test splits. This is why we perform 5-fold cross validation, and even LOSO training
for the case of repetition counting, in order to get a performance estimate that is independent of the
particular choice for the train/test split. If we, now, wanted to use a validation set for hyper-parameter
tuning in order to avoid overfitting the hyper-parameters on the test set, we would additionally need
to split every train set into separate train and validation sets. The same reasoning as above applies (i.e.,
we need to consider many such train/validation splits in order to get robust performance estimates for
each hyper-parameter setting). Therefore, we would need to perform nested k-fold cross-validation,
which, for a choice of k = 5, would result in having to train 25 models for a single hyper-parameter
setting. Clearly, this becomes prohibitive even for small search grids, especially since we would need
to perform this process a total of 11 times (once for the recognition model, 10 times for the repetition
counting models).

In order to reduce the risk of overfitting hyper-parameters on the test set, we only perform
minimal hyper parameter tuning. We start with a sensible architecture, based on which we perform a
limited grid search. We want to emphasize that many hyper-parameter combinations perform almost



Sensors 2019, 19, 714 11 of 22

equally well across the data from all participants. Therefore, we conclude that it is unlikely that we
significantly over-estimate the generalization performance.

4.2. Exercise Recognition

For exercise recognition, each input window Xi is labeled with one of the 10 exercises,
and the neural network tries to predict the correct label. For the unconstrained workout data, there is
an additional label for the null class. During test time, we overlap consecutive windows by a factor of γ,
with 0 ≤ γ < 1. If γ is greater than zero, we use majority voting to get a single prediction for each point
in time. Intuitively, the larger the overlap, the more accurate and robust the final predictions should
be. The output of the neural network is a sequence of predicted exercise labels (..., Et−1

i , Et
j , Et+1

k , ...)
with i, j, k ∈ {0, ..., 9}, and where Et

j denotes that exercise Ej is predicted at time t. In order to further
improve the final results, we smooth the predicted sequence. We, first, look up the minimum repetition
duration Tmin

i for each exercise in our data set, which is equal to the shortest vibration-interval for
that exercise used during data collection. We, then, go through the output of the neural network and
find all sequences of the form (..., Et−1

j , Et
k, Et+1

j , ...), where j 6= k. For each of these sequences, we then

replace Ek with Ej if the duration of Ek is shorter than Tmin
k .

4.3. Repetition Counting

Since we have used a vibration signal during data collection that signals the start of each repetition,
we obtain labels for the beginnings of repetitions. We then train a neural network to recognize whether
an input window contains a repetition start. As explained in Section 4.1, we use the same basic
architecture as for exercise recognition. In contrast to exercise recognition, where we use a single
window size, we use a separate window size for each exercise. The length of the window for exercise
Ei is set to the shortest vibration-interval Tmin

i . This ensures that one window will never fully contain
two repetition beginnings. We, then, define the start of a repetition as the first Tmin

i /2 samples after the
vibration signal. We label the input windows Xi with 1 if and only if the entire start of the repetition is
contained in Xi, and with 0 otherwise. Thus, the problem of counting repetitions is reduced to a binary
classification problem. The output of the repetition counting network is a binary sequence (e.g., as
in Figure 4). If the network output was perfect, counting the number of 1-sequences would yield the
repetition count. However, as this is not always the case and many errors can be easily recognized by
inspection, we further smooth the binary sequence to improve the results. Thus, we first determine the
repetition mode M1 by finding the most frequent 1-sequence length. This gives us a good estimate
of how many consecutive 1’s constitute an actual repetition. We, then, find all 1-sequences that are
shorter than M1/2 and mark them as candidates for removal. All 1-sequences of length at least M1/2
are considered as confirmed repetition starts. We, then, determine the repetition mode M0 of the
0-sequences in the same manner. For each of the candidates, we check if they are at realistic distances
from a confirmed repetition start and, if not, we set that candidate to 0. We define a candidate as
realistic if there is no confirmed repetition starting M0/2 before and after it. Finally, we count the
remaining 1-sequences, which yields the repetition count.

5. Experimental Results

In this section, we present the results of exercise classification and repetition counting on
the constrained and unconstrained workouts.

5.1. Recognition

5.1.1. Constrained Workout

We evaluate the recognition of the performed exercises using 5-fold cross validation and achieve
a test accuracy of 99.96%, shown in Table 5. To evaluate which sensors are most useful for recognizing
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the exercises, Table 5 further shows the performance of different sensor combinations. This also shows
us the benefit of the second smartwatch on the ankle. All the models are evaluated using 5-fold cross
validation. The best performance is achieved using the data from all sensors combined. Using only the
sensors of the wrist watch, the performance drops slightly, whereas using only the ankle watch results
in significantly lower accuracy. Therefore, only using a single wrist-worn smartwatch, which is the
most practical case for everyday use, it is possible to achieve very high accuracy. When it comes to
sensor types, the most information is gained from the accelerometer. Adding the gyroscope improves
accuracy significantly, as well. The orientation sensor generally does not help or hurt the performance.

Table 5. Comparison of 5-fold cross validation test accuracy for different combinations of sensors, with
T = 4 s and γ = 0.95.

Inputs 5-cv Test acc

All 99.96%
Hand 95.90%
Foot 86.30%

Hand accelerometer 95.73%
Hand gyroscope 28.60%

Hand gyroscope and accelerometer 98.91%
Hand orientation 11.28%

The confusion matrix, shown in Figure 6, shows that the recognition performance when using
all sensors from both watches is nearly perfect. The additional information provided by the
ankle-mounted watch can help distinguish between exercises with similar arm movements, such
as kettlebell (KB) thrusters and KB presses. This can be seen in the confusion matrix, in Figure 7a,
where those two exercises are confused. Adding the ankle watch completely solves this ambiguity.
On the other hand, Figure 7b shows the confusion matrix when only using the ankle watch. Half of
the exercises are recognized with an accuracy above 97%. As one might expect, the exercises where
participants are standing with both feet solidly on the ground are confused here (KB deadlift, air squat,
wall ball, KB thruster, and KB press).

Figure 6. Confusion matrix of exercise recognition using all sensors from both smartwatches.

While adding the sensor data from the ankle watch improves the overall results, it also causes
the recognition accuracy for pull-ups to drop slightly. This could simply be due to the inherent variance
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between training runs of neural networks. Re-training the networks with a different random seed,
or stopping the training process at a different time, would likely result in the optimization algorithm
finding in a different local minimum, which in turn could produce slightly different results.

(a) (b)

Figure 7. Comparison of recognition performance when only using the wrist or ankle watch respectively.
(a) Confusion matrix of exercise recognition using only the sensors of the wrist watch. (b) Confusion
matrix of exercise recognition using only the sensors of the ankle watch.

Additionally, we investigate the effect of the input window length and overlap of the test windows
on the detection accuracy. The best accuracy is achieved with a window length of 7 s, as is shown in
Figure 8. This makes sense since during the constrained workout participants are performing the same
exercise for long periods of time, similar to swimming or walking. However, we also want our models
to perform well when exercises are only performed for short periods of time, such as in our 1-2-3 style
unconstrained workout setting. We therefore select a final window length of 4s for all further exercise
recognition experiments. Using overlapping windows and majority voting at test time also improves
the results, which is shown in Figure 9. Overall, our model seems to be robust against these hyper
parameter choices, as the differences between the worst and best performance are within less than 1%.

Sensors 2019, xx, 5 13 of 22

between training runs of neural networks. Re-training the networks with a different random seed,
or stopping the training process at a different time, would likely result in the optimization algorithm
finding in a different local minimum, which in turn could produce slightly different results.

(a) (b)

Figure 7. Comparison of recognition performance when only using the wrist or ankle watch respectively.
(a) Confusion matrix of exercise recognition using only the sensors of the wrist watch. (b) Confusion
matrix of exercise recognition using only the sensors of the ankle watch.

Additionally, we investigate the effect of the input window length and overlap of the test windows
on the detection accuracy. The best accuracy is achieved with a window length of 7 s, as is shown in
Figure 8. This makes sense since during the constrained workout participants are performing the same
exercise for long periods of time, similar to swimming or walking. However, we also want our models
to perform well when exercises are only performed for short periods of time, such as in our 1-2-3 style
unconstrained workout setting. We therefore select a final window length of 4s for all further exercise
recognition experiments. Using overlapping windows and majority voting at test time also improves
the results, which is shown in Figure 9. Overall, our model seems to be robust against these hyper
parameter choices, as the differences between the worst and best performance are within less than 1%.

1 2 3 4 5 6 7 8 9 10

0.980

0.990

1.000

Window length T [s]

A
cc

ur
ac

y

Figure 8. Five-fold cross validation test accuracies for various input window lengths T.

0.0 0.2 0.4 0.6 0.8 1.0

0.996

0.997

0.998

0.999

Overlap factor γ

A
cc

ur
ac

y

Figure 9. Five-fold cross validation test accuracies for various overlap factors γ.

Figure 8. Five-fold cross validation test accuracies for various input window lengths T.

Sensors 2019, xx, 5 13 of 22

between training runs of neural networks. Re-training the networks with a different random seed,
or stopping the training process at a different time, would likely result in the optimization algorithm
finding in a different local minimum, which in turn could produce slightly different results.

(a) (b)

Figure 7. Comparison of recognition performance when only using the wrist or ankle watch respectively.
(a) Confusion matrix of exercise recognition using only the sensors of the wrist watch. (b) Confusion
matrix of exercise recognition using only the sensors of the ankle watch.

Additionally, we investigate the effect of the input window length and overlap of the test windows
on the detection accuracy. The best accuracy is achieved with a window length of 7 s, as is shown in
Figure 8. This makes sense since during the constrained workout participants are performing the same
exercise for long periods of time, similar to swimming or walking. However, we also want our models
to perform well when exercises are only performed for short periods of time, such as in our 1-2-3 style
unconstrained workout setting. We therefore select a final window length of 4s for all further exercise
recognition experiments. Using overlapping windows and majority voting at test time also improves
the results, which is shown in Figure 9. Overall, our model seems to be robust against these hyper
parameter choices, as the differences between the worst and best performance are within less than 1%.

1 2 3 4 5 6 7 8 9 10

0.980

0.990

1.000

Window length T [s]

A
cc

ur
ac

y

Figure 8. Five-fold cross validation test accuracies for various input window lengths T.

0.0 0.2 0.4 0.6 0.8 1.0

0.996

0.997

0.998

0.999

Overlap factor γ

A
cc

ur
ac

y

Figure 9. Five-fold cross validation test accuracies for various overlap factors γ.Figure 9. Five-fold cross validation test accuracies for various overlap factors γ.



Sensors 2019, 19, 714 14 of 22

5.1.2. Unconstrained Workout

We investigate how our method performs, when tested on two forms of unconstrained workouts.
In the first workout, participants were asked to freely perform all 10 exercises in a row for 10 repetitions.
We collected data from five participants, and used this data for testing only. We observe that our model
generalizes well to the unconstrained setting, and is able to correctly classify almost all 10 exercises
for all 5 participants, as can be seen in Table 8. Only for participant P4 did the model fail to correctly
recognize the air squat exercise, and classified the movements as wall-balls instead. However, this is an
understandable mistake, since wall-balls basically consist of an air squat with a slightly different arm
motion in order to throw the ball. More training data could solve this problem. Note that, since we do
not have the exact repetition start times, we cannot verify how accurate the predictions are in time. As
ground truth, we only know the correct order of the exercises and the number of repetitions. However,
together with the repetition counting, discussed later (see Section 5.2.2), we get a good estimate of how
well our model generalizes to the unconstrained setting.

In order to show the importance of including null class data, we look at the predictions for one
participant. Figure 10 shows the predictions of all exercises and transition periods, without having
trained on null class data. Clearly, the exercises were recognized correctly without any discontinuities
within the 10 repetitions. However, the transitions were sometimes recognized as different exercises,
especially when transitioning between exercises that required moving around or changing equipment.
For this participant, our model recognized a deadlift before the burpees, a box jump before the wall
balls, and a squat before the kettlebell press. Figure 11 shows what happened when we included
the null class. We now see a clear separation between exercises, and most of the aforementioned
mistakes were avoided. Finally, Figure 12 shows the final predictions after smoothing out unrealistically
short exercise sequences. This got rid of the short box jump after the pull-up sequence. The final
mistake, that was still left, is the box jump before the pull-up. However, this mistake can be easily
explained, since the participant jumped up to the pull-up bar, which was falsely recognized as a box
jump. This error could potentially be avoided by including this kind of transition in the null data.

Figure 10. Chronological sequence of recognized exercises during free workout one for participant
1 (P1). The recognition is done without including the non-exercise class, thus causing the model to
interpret transition as exercises.

Figure 11. Chronological sequence of recognized exercises during free workout one for P1.
The recognition is done including the non-exercise class, but without filtering out short-duration
predictions. Most transitions are now correctly identified as such.
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Figure 12. Chronological sequence of recognized exercises during free workout 1 for P1.
The recognition is done including the non-exercise class and filtering out short-duration predictions.
Most transitions are now correctly identified, and the short box jump after the pull-up is filtered out.

The second unconstrained workout type follows a 1-2-3 scheme. Table 6 shows how many of
the 10 exercises were correctly recognized. Clearly, when the participants only performed a single
repetition, recognition is more difficult, as every exercise was only performed for a short time period.
Starting from two consecutive repetitions, our model already recognizes nearly all exercises correctly
for all participants. As performing a single repetition of an exercise is a rather exotic case, even in the
context of CrossFit, we conclude that our model generalizes well to realistic unconstrained workouts.

Table 6. Recognized exercises in the 1-2-3 scheme workouts. P1 performed the workout with
a 1-3-5 scheme.

Participant 1-rep 2-rep 3-rep 5-rep

P1 4/10 - 9/10 10/10
P3 10/10 10/10 9/10 -
P4 7/9 9/9 9/9 -
P5 7/10 10/10 10/10 -

5.2. Repetition Counting

The repetition counting is evaluated using leave-one-subject-out (LOSO) training to maximize
the amount of training data. We use various statistics to show the performance of the repetition
counting: The mean absolute error (MAE), the mean relative error (MRE), and the percentages of
exercises for which the number of counted repetitions is off by 0, 1, 2, or more than 2. The MAE is the
average over all sets of one exercise of the absolute error between the predicted and the actual number
of repetitions, and the MRE is the average of the relative error over the sets of one exercise.

5.2.1. Constrained Workout

Table 7 shows the repetition counting results for the constrained workout. We achieved a mean
absolute error (MAE) of 0.7 repetitions per set, and a mean relative error (MRE) of 6.1%. In 74%
of the sets, the model perfectly predicts the number of repetitions performed. In 91% of the sets, it
is off by at most 1 repetition. For 7% of the sets, the count is off by more than 2. We can see that
the performance varies significantly between the different exercises. The repetition counting is very
accurate for burpees, KB deadlifts, box jumps, sit-ups, and wall balls. For some exercises, such as
push-ups, air squats, and kettlebell thrusters, however, the performance is worse. The length of
the individual repetitions could have an influence on the performance. Many of the exercises with
good performance had longer durations. However, KB deadlifts also perform well and had rather
short repetitions. Figure 13 visualizes the number of errors for each exercise.
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Table 7. Repetition counting performance for the constrained setting. For each exercise, we indicate
the mean absolute error (MAE), mean relative error (MRE), and error distribution.

Exercise MAE MRE |e| = 0 |e| = 1 |e| = 2 |e| > 2

Push-up 1.22 8.5% 58.0% 28.0% 4.0% 10.0%
Pull-up 0.91 14.0% 65.1% 23.3% 0.0% 11.6%
Burpee 0.27 2.3% 85.1% 8.5% 2.1% 4.3%

Kettlebell deadlift 0.19 1.4% 87.5% 6.3% 6.3% 0.0%
Box jump 0.47 3.9% 78.7% 12.8% 0.0% 8.5%
Air squat 1.82 12.2% 54.5% 25.0% 2.3% 18.2%

Sit-up 0.02 0.2% 97.6% 2.4% 0.0% 0.0%
Wall ball 0.26 2.3% 95.2% 0.0% 0.0% 4.8%

Kettlebell press 0.61 6.6% 54.5% 38.6% 4.5% 2.3%
Kettlebell thruster 1.18 9.2% 59.0% 28.2% 2.6% 10.3%

Total 0.70 6.1% 73.5% 17.3% 2.2% 7.0%
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5.2.2. Unconstrained Workout

We also test the repetition counting model on the unconstrained workout, where each participant
performed 10 repetitions. The results are shown in Table 8. In most cases, the model is off by at
most 2 repetitions. Again, the performance depends on the exercise. The repetition counting model
performs slightly worse on the data than the unconstrained workout. The decrease in performance for
wall balls and push-ups was to be expected. The waiti for the next repetition, signalled by vibrations
in the constrained workout, interrupted the flow of these exercises. In the unconstrained workout,
however, the end of one repetition flowed into the beginning of the next. Therefore, the model
trained on the data from the constrained workout performs worse, when tested on data from the
unconstrained workout.
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5.2.2. Unconstrained Workout

We also test the repetition counting model on the unconstrained workout, where each participant
performed 10 repetitions. The results are shown in Table 8. In most cases, the model is off by at
most 2 repetitions. Again, the performance depends on the exercise. The repetition counting model
performs slightly worse on the data than the unconstrained workout. The decrease in performance for
wall balls and push-ups was to be expected. The waiti for the next repetition, signalled by vibrations
in the constrained workout, interrupted the flow of these exercises. In the unconstrained workout,
however, the end of one repetition flowed into the beginning of the next. Therefore, the model
trained on the data from the constrained workout performs worse, when tested on data from the
unconstrained workout.
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Table 8. Predicted repetition number versus actual number of repetitions of the unconstrained workout
for five participants. n.r.: Not recognized, -: Not performed.

Exercise P1 P2 P3 P4 P5 MAE MRE

Push-up 10/10 10/10 1/10 9/10 10/10 2.0 20%
Pull-up 9/10 9/10 8/10 6/7 11/10 1.2 13%
Burpee 11/10 10/10 10/10 10/10 10/10 0.2 2%

Kettlebell deadlift 9/10 10/10 10/10 10/10 12/10 0.6 6%
Box jump 8/10 10/10 9/10 - 9/10 1.0 10%
Air squat 11/10 12/10 9/10 n.r. 10/10 1.0 10%

Sit-up 11/10 10/10 10/10 10/10 10/10 0.2 2%
Wall ball 10/10 8/10 9/10 10/10 10/10 0.6 6%

Kettlebell press 10/10 9/10 10/10 10/10 8/10 0.6 6%
Kettlebell thurster 10/10 10/10 8/10 8/10 10/10 0.8 8%

The repetition counting performs similarly in the unconstrained 1-2-3 scheme. The repetition
scheme should not affect the repetition counting, as long as the exercise is correctly recognized. This is
confirmed by the results in Table 9. Note that the first participant followed a 1-3-5 scheme.

Table 9. Predicted number of repetitions for 1, 2, 3, and 5 performed repetitions. n.r.: Not recognized,
-: Not performed

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

1 repetition

P1 n.r. n.r. 2/1 n.r. n.r. n.r. 2/1 1/1 n.r. 1/1
P3 0/1 1/1. 2/1 2/1 1/1 0/1 2/1 2/1 0/1 1/1
P4 1/1 n.r. 1/1 n.r. - 1/1/ 1/1 1/1 1/1 1/1
P5 n.r. 0/1 1/1 2/1 1/1 n.r. 2/1 1/1 n.r. 2/1

2 repetitions

P3 0/1 1/2 3/2 3/2 2/2 2/2 0/2 3/2 1/2 2/2
P4 1/2 1/2 2/2 2/2 - 2/2 2/2 2/2 2/2 1/2
P5 1/2 1/2 3/2 2/2 2/2 1/2 3/2 1/2 1/2 0/2

3 repetitions

P1 1/3 1/3 3/3 3/3 2/3 3/3 4/3 3/3 n.r. 3/3
P3 1/3 3/3 4/3 n.r. 3/3 2/3 4/3 4/3 2/3 3/3
P4 2/3 2/3 3/3 2/3 - 2/3 3/3 2/3 3/3 1/3
P5 2/3 0/3 3/3 3/3 1/3 0/3 5/3 1/3 3/3 0/3

5 repetitions

P1 0/5 4/5 5/5 4/5 5/5 5/5 5/5 5/5 3/5 5/5

6. Conclusions and Future Work

In this paper, we present a deep learning method for exercise recognition and repetition counting
for complex full-body movements. We reached 99.96% recognition accuracy on the constrained exercise
data, and we showed that our model generalized to two different types of realistic unconstrained
workouts. Our counting method was based on recognizing the beginning of exercises and we achieved
±1 error for 91% of sets. This approach is straightforward and does not require any feature engineering
or post processing, and we showed that it works well with relatively small amounts of training data.

In the future, we plan to collect more data, especially for the unconstrained workouts, so we can
improve the evaluation of the constrained models, and potentially incorporate it during the training.
We found that repetition counting did not generalize well from the constrained to the unconstrained
setting for certain exercises. This is especially true when exercises were executed in fast succession,
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such that the transitions between repetitions became smooth. In order to remedy this, we plan to
annotate exercise repetition starts during unconstrained workouts by using video recordings.

Even though we plan to collect more unconstrained data, data collected in the constrained setting
will still make up the majority of our data. Therefore, we plan to gain a better understanding of
the impact of the constrained data collection on generalization performance. By doing so, we will
be able to improve the data collection to mitigate negative effects. In order to take full advantage of
the possibilities of the constrained data collection approach, we plan to publish an app to crowdsource
the data collection.

In this paper, we built a pipeline to classify exercises and count repetitions in an offline manner.
In order to make our system accessible to many people, one could implement it as an Android Wear OS
application. This would bring numerous engineering challenges, in order to be able to run our neural
network models on limited memory and computation resources. To reduce resource consumption,
one could, for example, compress the neural networks or down-sample the sensor data. Reducing the
overlap of consecutive input windows would reduce the computation cost, as well. Running neural
networks on embedded platforms is an active area of research in itself. Alternatively, the computations
could be performed in the cloud.
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Appendix A. Exercise Recognition Model Hyper-Parameters

Table A1. All architecture parameters for the recognition model. CL: Convolution layer, DL: Dense layer.

Parameter Value

Input shape 500× 18× 1
Convolutional filters CL1 100

Kernel size CL1 (15, 3)
Strides CL1 (1, 3)

Convolutional filters CL2 25
Kernel size CL2 (15, 18)

Strides CL2 (3, 1)
Convolutional filters CL3 75

Kernel size CL3 (15, 18)
Strides CL3 (3, 1)

Convolutional filters CL4 75
Kernel size CL4 (15, 18)

Strides CL4 (3, 1)
Convolutional filters CL5 25

Kernel size CL5 (15, 18)
Strides CL5 (3, 1)

Activation function CL1, CL2, CL3, CL4, CL5 relu
Dropout CL1, CL2, CL3, CL4, CL5 0.50

DL1 neurons 250
DL2 neurons 10

Activation function DL2 softmax
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Appendix B. Repetition Counting Model Hyper-Parameters

Table A2. Final hyper-parameters for the repetition counting models.

Parameters E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Convolutional layers 5 5 5 3 5 5 5 5 5 5
Input normalization No yes No No No Yes No No No No
Input shape W×3×6 W×3×6 W×18 W×3×6 W×3×6 W×18 W×3×6 W×18 W×3×6 W×18
Batch normalization No No No No No No No No Yes No
Activation function relu relu relu relu relu elu relu elu relu relu
W = T × 100 [samples] 120 200 250 200 200 150 200 200 150 150
Convolutional strides (1, 1) (3, 1) (3, 1) (1, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1)
Dropout Yes Yes Yes No Yes Yes Yes No Yes No

Appendix C. Raw Sensor Signal Plots

Raw sensor readings of all 10 exercises for the wrist-worn smartwatch of one participant.
The vertical lines indicate the vibration signals.
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Raw sensor readings of all 10 exercises for the wrist-worn smartwatch of one participant.
The vertical lines indicate the vibration signals.
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