
Toehold DNA Languages are Regular

Sebastian Brandt, Nicolas Mattia, Jochen Seidel, and Roger Wattenhofer

ETH Zurich, Switzerland
{brandts, nmattia, seidelj, wattenhofer}@ethz.ch

Abstract. We explore a method of designing algorithms using two types
of DNA strands, namely rule strands (rules) and input strands. Rules
are fixed in advance, and their task is to bind with the input strands in
order to produce an output. We present algorithms for divisibility and
primality testing as well as for square root computation. We measure the
complexity of our algorithms in terms of the necessary rule strands. Our
three algorithms utilize a super-constant amount of complex rules.
Can one solve interesting problems using only few—or at least simple—
rule strands? Our main result proves that restricting oneself to a constant
number of rule strands is equivalent to deciding regular languages. More
precisely, we show that an algorithm (possibly using infinitely many rule
strands of arbitrary length) can merely decide regular languages if the
structure of the rules themselves is simple, i.e., if the rule strands con-
stitute a regular language.

1 Introduction

DNA is sometimes considered as an alternative to orthodox silicon-based tech-
nologies for computing. But how powerful can a DNA-based computer be? In
this paper, we analyze the computational expressiveness of toehold DNA com-
puting, c.f. [15,20]. In the toehold method, a DNA computation takes place in
a soup, i.e., a container filled with solution, in which DNA strands are floating
around and binding with each other. Designing a DNA algorithm is equivalent to
designing a set of DNA strands (the rule strands) such that, when strands rep-
resenting an input (input strands) are added, a desired output, e.g., an indicator
for yes or no, is produced. An “execution” of a DNA algorithm corresponds
to multiple steps of strand binding, where initially only rule and input strands
bind, incrementally forming larger and larger molecules that become available
for binding. To ensure that bindings occur in the desired manner, special care
must be taken when designing the DNA strands. The details are explained in
Section 2, where we also define how DNA algorithms formally operate.

We present DNA algorithms for square root computing, and primality testing
(based on a simple divisibility testing method) in Section 3. These algorithms are
expressed using a super-constant amount of rules. Moreover, the rules are rather
complex in the sense that the description of each strand relies on the ability to
count, and on the knowledge of an upper bound for the input. It is therefore
natural to ask whether this complexity is necessary. Our main contribution is
to answer this question affirmatively. Specifically, in Section 4 we show that if



the rule strands describing some algorithm A form a regular language (i.e., are
not complex), then A decides some regular language. We further establish that
a constant number of rules is sufficient to express any DNA algorithm deciding
a regular language.

Related Work. Utilizing DNA for the purpose of computation was first ex-
plored by Adleman [2], who solved a seven-city instance of the Hamiltonian path
problem, and Lipton [10], who suggested a method to solve the Satisfiability
problem. After these first algorithmic usages of DNA, the idea to use the compu-
tational capacity to control devices on a molecular level emerged (see, e.g., [5]).
These early techniques rely on enzymes to perform the desired task.

Our studies are motivated by the rise of the toehold exchange method [15],
which is a way to perform DNA computations without relying on enzymes. The
benefit of this method is that synthesizing the DNA strands needed for it (see,
e.g., [19], in particular the supplementary material) is a simpler process than
producing the building blocks for enzyme-based DNA computations. Strand dis-
placement using toehold exchange is described thoroughly in [20] and simulated
in [9]. The toehold technique enables the design of DNA circuits using only
DNA strands, thus disposing of the necessity of other molecules, like enzymes.
An essential building block in toehold-based computation is the seesaw gate [14],
which allows the design of arbitrary DNA circuits. The seesaw gate was used to,
e.g., compute approximate majority [6] with a protocol analyzed in [3]. Following
this line of work, we utilize toeholds to initiate strand binding.

It is well understood that DNA molecules can form complex structures (see,
e.g., [12,16] for an overview). For instance, Winfree [18] investigated how DNA
strands can bind to form linear duplex strands, or duplex “tree” strands using
junctions, which connect more than one strand in one point. He found that the
linear strands correspond to a transition sequence in a finite automaton, whereas
the trees correspond to a derivation tree of a context-free grammar. Note that
these two structures do not return an output in the classical sense—the only
“output” is a DNA molecule in which every base is bound. In contrast to that,
in our work, we add input to the strand binding process, and are interested in
an output, e.g., in the form of a yes or no answer.

The techniques used in Adleman’s construction inspired the study of so-called
sticker systems [7], which are a generalized version of binding processes where the
binding relation is not necessarily symmetric. Other studied language operations
that are motivated by DNA interactions encompass the superposition [4], the
PA-matching [8], and the hairpin [11,13] operator. This line of work examines
the effect of these operations on a language’s classification within the Chomsky
hierarchy. In our studies, we also utilize methods from formal language theory in
order to describe the strand binding process, which ultimately allows us to derive
a lower bound on the complexity of DNA algorithms for non-regular languages.



2 Model

DNA Basics. DNA strands consist of nucleotides (or bases), linked together in
a specific order. There are four types of nucleotides: Adenine, Cytosine, Guanine
and Thymine (or simply A, C, G, and T ). At an atomic level, DNA strands have
two types of extremities: a so-called 5’ end on one side, and a 3’ end on the other
side. The two extremities assign a direction to a DNA strand, and throughout
this paper we orient nucleotide sequences of DNA strands from the 5’ end towards
the 3’ end. When displayed, an arrow indicates the direction from the 5’ end to
the 3’ end, as in Fig. 1a.

An A can bind (via hydrogen bonds) with a T on a different strand, and sim-
ilarly a G can bind with a C. This is the process that gives DNA its stability, and
its helicoidal structure. Pairs of nucleotides which are able to bind in this manner
are called Watson-Crick-complementary (or simply WK-complementary). That
is, A and T are WK-complementary, and G and C are WK-complementary. Se-
quences of nucleotides can bind as well, given that those sequences have opposite
directions and are complementary. For instance, the strands ATCG and CGAT
from Fig. 1a can bind completely, whereas the two strands ATCG and TAGC
(reversed CGAT) cannot.

Notation. To ease readability, sequences of nucleotides are commonly grouped
into so-called domains. A domain is represented by a single character displayed
in teletype font. Two domains g and h are complementary to each other if the
nucleotide sequence of g is the WK-complement of h’s sequence. Complementary
domains will be represented as overlined, e.g., g = h. Note that for a sequence
gh, the WK-complementary gh is hg. Please refer to Fig. 1b for an illustration.

For a set S of strands we denote by S the set containing all WK-complements
of strands in S. For two strands σ, τ , the (concatenated) strand στ is the strand
obtained from concatenating the nucleotide sequences of σ and τ . For two sets
S, T of strands we write ST for the set {στ : σ ∈ S, τ ∈ T}. Similarly, when σ is
a strand, we also write σS and Sσ for the sets {σ}S and S{σ}, respectively. For
positive integers i, we write Si for the set SSi−1, and by convention S0 contains
only the empty strand ε. We denote by S∗ the set ∪i≥0Si. The notation for sets
of strands naturally extends to sets of domains, which can be viewed as sets
containing the corresponding strands.

ATCG

TAGC

(a) Two complementary
DNA strands. The arrow-
head shows the 3’ end.

ATCGATTCTC

TAGCTAAGAG

abc

abc cba abc

≡
≡ ≡ ≡

(b) The strand abc composed of the three domains
a ≡ ATCG, b ≡ ATT, and c ≡ CTC binds with its
complement abc.

Fig. 1



+
ι

x x x x x x x ø

+

ρ1

x x x
++
ρ2

x x x
+

Fig. 2: Checking whether 7 is divisible by 3 using DNA strands. The upper strand
ι represents the input in unary. Both strands ρ1 and ρ2 of the form ρ = +x

3
+ bind

to ι, first ρ1 and then ρ2. The unmatched domains +xø represent the remainder
1 of the division.

Example. Consider, as an example, the question whether some integer d is
divisible by another integer q (see Fig. 2). To answer this question, let +, ø, and
x be domains, and denote by ι = +xdø the strand composed of d repetitions of
x, delimited by + and ø. We refer to ι as the input strand for our question.

The idea is to successively let ι bind with multiple copies of the strand ρ =
+x
q
+. Note that ρ can only partially bind to ι. In particular, the first copy of

ρ interacting with ι will bind with one + and q x domains. Since DNA is not
completely rigid, the unmatched + domain of ρ becomes available for binding. In
the next step, a new copy of ρ binds with the + part from the previous ρ-strand
and the next q x domains of the input strand. Each such step corresponds to
subtracting q, and we end the process when the remainder of the division is left.
An “output” can now be obtained by checking for all possible remainders of
the division. In particular, if q divides d, then the above process results in the
observable strand +ø. Please refer to Fig. 2 for an illustration.

Rule Strands and DNA Algorithms. Let U be a universe of domains so
that U ∩ U = ∅, i.e., if some domain x is in U , then x is not. Let Σ∪̇∆∪̇Λ be a
partition of U . We refer to Σ as the set of input domains, to ∆∪∆ as the set of
delimiter domains (delimiters for short), and to Ψ = Σ ∪Σ ∪Λ∪Λ as the set of
rule domains. In the strand binding process, the delimiter domains will function
as toeholds that initiate the binding. A strand ρ ∈ d1Ψ

∗d2, where d1 and d2 are
delimiters, is referred to as a rule strand. A collection A of rule strands is called
a DNA algorithm. The input to a DNA algorithm is specified in the form of an
input strand, which is a strand ι of the form +Σ∗ø, where + and ø are two fixed
delimiters chosen from the set ∆.

A DNA algorithm is “executed” in a soup, i.e., a container filled with solution,
in which the rule strands of some algorithm A are floating around. The execution
is initiated by adding the input strand ι. We assume that all strands in the soup,
i.e., the rule strands and the input strand, are present sufficiently many times.

All strands in the soup share the property of starting and ending with delim-
iters, and that delimiters appear only at the ends of a strand. When two strands
σ and τ meet, they may bind and form a new strand which we call an effective
strand, see Fig. 3. The binding occurs along some prefix of σ and a corresponding
complementary suffix of τ (or the other way around, when the roles of σ and τ



+ a b c c d e f ø

+ a b c

c

x

+

Effective
strand

+ a b c c d e f ø

+ a b c c

x

+

Effective
strand

Fig. 3: Two examples of strand binding. On the left, not all possible domain
bindings are involved, since one more c on the upper strand could bind with one
more c of the lower strand; the resulting effective strand is +xccdefø. On the
right, all domains have bound; the resulting effective strand is +xdefø;

are switched). This means that two strands always bind (at least) at two com-
plementary delimiters. The effective strand resulting of this binding is composed
of the unmatched prefix of τ and the unmatched suffix of σ, in this order. Note
that the new effective strand also has the form of a rule strand. Effective strands
behave like any other strand, and from now on we will not distinguish between
strands and effective strands. We will use the terms rule strand and input strand
to stress when a strand is not an effective one.

The process of strands binding with each other represents the computation
performed byA. The structure formed by such a binding process can be described
as a tree, see Fig. 4.

Definition 1. Fix a set S of strands. Let T = (V,E, forth,back) be a rooted
ordered1 tree, with nodes and edges in V and E, respectively, and two functions
forth,back, each assigning a label from (U ∪ U)∗∪̇{OPEN} to every edge in E,
where OPEN is a special value. Denote by r the root of t, and for convenience
consider r to also be a leaf. We say that T is an S-assembly for σ (or just
assembly for σ when S is clear from the context) if T satisfies the following three
conditions.
(i) For all e ∈ E, if back(e) 6= OPEN, then back(e) = forth(e).

(ii) There is a unique path p from r to its rightmost descendant, s.t. the concate-
nated forth labels on p are σ, all edges e on p have the label back(e) = OPEN,
and no other edges in T have an OPEN label.

(iii) Consider any two leafs t1, t2 with t2 6= r, so that t1 is the last leaf visited
before t2 in a pre-order traversal of T , and denote by t1,2 their nearest com-
mon ancestor. The word g obtained by concatenating the back labels on the
path from t1 to t1,2 and the forth labels on the path from t1,2 to t2 is in S.

In this work, we focus on decision problems, i.e., problems where the output
is either yes or no. Let ι be an input strand. We say that A accepts ι if there is a
(A∪{ι})-assembly for +ø. Thus, the ability to produce the strand +ø corresponds
to a yes output of A, whereas the absence thereof corresponds to a no output.

1 A tree is ordered if the children of every node are ordered, e.g., from left to right.



r

t1
+

+

abc

abc

c
c

t2

de
fø

de
fø t3

OPENyzø

x OPEN

+ OPEN
ρ1

ρ2 ρ3

σ

forth() back()

Fig. 4: An assembly T for σ = +xyzø with root r. The strands read in a pre-order
traversal between the leaf pairs (r, t1), (t1, t2), and (t2, t3) are ρ1 = +xccba+,
ρ2 = +abccdefø, and ρ3 = øfedyzø, respectively.

We denote by L(A) the set of input strands accepted by A, and say that A
decides L(A).

Biological Realization. The assumptions made above are justified from a bio-
logical perspective. The ready availability of DNA duplicating technology makes
it possible to produce all initially required rule strands (and the input strand) in
sufficient numbers. This ensures that all possible bindings between two strands
in the soup, originally present as well as effective, occur eventually. Moreover,
the strands are fabricated so that all non-delimiter domains are covered with
single domain strands prior to introducing the strands in the soup. The covers
prevent any binding that does not involve two WK-complementary delimiter do-
mains. Furthermore, these covers can be designed so that they lift off one by one
when the strands bind past the delimiter. Our delimiters take on the function
of toeholds, i.e., docking locations, that initiate binding between two strands,
cf. [15,20].

Regarding transcription of domains into nucleotide sequences, special care
must be taken. For instance, some (sub)sequences are problematic to manufac-
ture. Please refer to [19], in particular the supplementary material, for a detailed
description of this process. As in [15,19,20] we assume that single domains bind
either completely or not at all.

If an algorithm is executed, and an output is created in the soup, how does
one detect it? It is a standard technique in biochemistry to use fluorescence for
such detection purposes. Chemical compounds can be crafted to react with a
given strand type and activate a fluorescent (see, e.g., [1]). Thus, the strand +ø

can be detected by the emitted light.

Regular Languages. A well established concept we use throughout this paper
are deterministic finite automata (DFA). A DFA B is a 5-tuple (Q,Γ, δ, s, F ),
where the elements in the tuple are the set of states, the alphabet, the state



transition function, the initial state, and the set of accepting states, respectively.
The state transition function δ : Q×Γ → Q is extended to words g = g1 . . . gl ∈
Γ ∗ by setting δ(q, g1 . . . gl) = δ(δ(q, g1), g2 . . . gl). An automaton B accepts a
word g ∈ Γ ∗ if δ(s, g) ∈ F , and L(B) is the regular language accepted by
the automaton B. It is known that regular languages are closed under regular
operations, which include finite intersections, unions, and complements. We note
that for a regular language L, the language L obtained by taking the WK-
complement of each word in L, is also regular. Finite automata are known to be
robust to certain variations. One variation we will use is to permit ε-transitions,
i.e., δ(q, ε) = q′ can happen “spontaneously”.

Transition Sequences in Finite Automata. Let B be a deterministic fi-
nite automaton (DFA) with starting state s, accepting states F , and transition
function δ. For any two states p and q in B, the word g is a q-prefix (of B) if
δ(s, g) = q; g is a (p, q)-infix (of B) if δ(p, g) = q; and g is a p-suffix (of B) if
δ(p, g) ∈ F . Consider a word g and a decomposition g0 . . . gl of g into smaller
words gi. In that case, g is accepted by B if and only if there is a sequence of
states q1, . . . , ql such that g0 is a q1-prefix, gl is a ql-suffix, and for 1 ≤ i ≤ l− 1,
gi is a (qi, qi+1)-infix. We denote by L(B) the regular language accepted by the
automaton B. Please refer to a standard textbook (e.g., [17]) for a thorough
introduction to formal language theory.

3 DNA Algorithms

When designing (DNA) algorithms it is convenient to use building blocks for
solving reoccurring tasks. We will now introduce three such building blocks which
we use in our algorithms, namely gluing, substituting, and aggregating. For that,
in the remainder of this section, let di, 1 ≤ i ≤ 4, be delimiters, and let p, x, s, y
be arbitrary sequences of domains from Ψ∗.

Gluing. The gluing building block transforms the two strands σ1 = d1pxd2 and
σ2 = d3ysd4 into the new strand d1psd4, formed of the prefix d1p of σ1 and the
suffix sd4 of σ2. This is achieved by using the gluing strand d2xyd3. The strand
binding is illustrated in Fig. 5a.

Substituting. The purpose of the substituting building block is to substitute a
whole strand σ1 = d1xd2 with a strand σ2 = d3yd4. In general, this cannot be
achieved with a single rule strand since more than two delimiter domains would
be required to appear on it. Instead, in our algorithms, we introduce two new
domains u and v for every substitution from x to y of the above form.

The replacement is now performed in three steps using three rule strands
τ1, τ2, and τ3 (illustrated in Fig. 5b) as follows. First, the strand τ1 = d3uxd1
binds with σ1 to form the intermediate strand ι1 = d3ud2. Next, the strand
τ2 = d2uvd4 is used to form the intermediate strand ι2 = d3vd4 by binding with
ι1. In the last step, the strand τ3 = d3yvd3 binds with ι2 to form the desired



+

σ1

a

b

c

d

ø
ø

Glue

d w

+
+

σ2

w

x

y

z

ø

σ3

(a) Gluing the two strands σ1

and σ2 with ødw+ yields the
effective strand σ3.

+

σ1

a

b

c

ø

+ τ1
a

b

c u

+

ø

τ2

u v

ø

+
τ3

v
z +

σ2

(b) Substituting the strand σ1 = +abcø by σ2 = +zø

using the three strands τ1, τ2, and τ3. The effective
strand indicated by the dashed line is σ2, as desired.

Fig. 5

strand σ2. As a short-hand for these three rule strands, we write the substitution
rule σ1 → σ2, e.g., +abcø→ +zø.

The above rule strands ensure that if only τ1, or only τ1 and τ2 are applied,
but not τ3, then either u or v remain on the effective strand. Since for each
substitution rule new domains u and v are introduced, they cannot be matched
by any strand that is not from this substitution. Thus, we may assume that
substitutions are either applied in full, or not at all. (The strands obtained by
applying at most two of the three rules have no effect on the soup’s output.)

Aggregating. By combining the two building blocks, it is possible to aggregate
two whole strands σ1 = d1xd2 and σ2 = d3yd4 into a strand σ3 = d5zd6, i.e.,
σ3 is only obtained if both σ1 and σ2 are present. For that, let u and v be new
domains. We add the following strands: (1) the substitution σ1 → +uzd6, (2)
the substitution σ2 → d5vø, and (3) the gluing strand øvu+. We abbreviate this
set of rules by writing σ1 ∧ σ2 → σ3, and note that also larger aggregations are
possible by applying the principle inductively.

Input Encoding. For the sake of simplicity we consider only unary inputs. That
is, we fix a domain a ∈ Σ and represent an input number k by the input strand
ιk = +akø. We note that it is possible to design algorithms for the presented
problems to work with binary inputs, i.e., input strands of the form +{0, 1}∗ø.

Primality Testing. Using the above techniques, the idea for divisibility testing
explained in Section 2 can be extended to obtain a DNA algorithm for primality
testing. Let n be the largest possible input number, and let a ∈ Σ and b, f ∈ Λ be
domains. Our algorithm that tests any number k ≤ n for primality is composed
of four kinds of rule strands.

Specifically, for any integer 2 ≤ j ≤
√
n and integer k ≤ j − 1, we add the

following: (1) the initialization rule strands +bjaa+, (2) the division rule strands
+bjajbj+, (3) the remainder rule strands +bjakø → +bjfø, and (4) the test



rules strands +b2fø ∧ +b3fø ∧ · · · ∧ +b
√
nfø→ +ø. The task of the initialization

rules (1) is to mark all input strands with one possible divisor j, thus creating
an intermediate strand of the form +bjakø. The division rules (2) then divide
the so marked intermediate strands by the divisor, by subtracting j once per
application of the division rule strand +bjajbj+. Should the division of k by j
leave a remainder, the remainder rules (3) will create a strand indicating that j
does not divide k. Finally, if j is not divisible by any such j, the test rules (4)
will produce the desired yes-output.

This unary algorithm consists of O(n) rules. Note that with this many rules
it is possible to describe a simple DNA algorithm that matches every strand
ιp, with p prime, to produce a yes-output. With binary inputs it is possible to
devise a primality testing algorithm using O(

√
n log n) rules, i.e., less than the

number of primes p ≤ n, which is Θ(n/ log n). Regardless of the way the input
is presented, enumerating the rules for our primality testing algorithm requires
knowledge of

√
n. Next, we present an algorithm to actually compute

√
n using

DNA strands.

Square Testing. To design the rule strands for our primality testing algorithm
required knowledge of

√
n. Therefore we tackle the problem of deciding the

language of square numbers next.
Our algorithm is based on the observation that for any m, it holds that∑m−1
j=1 2j = m2 −m. In other words, if a number n is a square, then it can be

written as the sum of
√
n and the even numbers smaller than 2

√
n. The following

algorithm reverses these steps and subtracts even numbers to find
√
n, using the

following rules: (1) the initialization rule strand +baa+, (2) the subtraction rule
strands +bj+1a2jbj+ for every j, and (3) the test rule strands +bjajø→ +ø. The
total number of rule strands is thus O(

√
n).

The first strand that can bind to an input is the initialization rule (1), which
just adds a b prefix to the input. The subtraction rules (2) then bind one after
the other, starting with the strand obtained for j = 1; binding the subtraction
rule containing j bs corresponds to subtracting 2j from ι. The same rule marks
the resulting strand with (j+1) b domains, so that the next subtraction rule (or
the test rule) can bind. Last, the test rule binds when no subtraction rule can
bind with the strand obtained from this process. Note that this algorithm can be
adapted to return the actual square root of the tested number (rounded down).
This is achieved by adding the rules +bjalø→ +xjø for l ≤ j, i.e., a strand +xjø

is interpreted as the output j.

4 Regular DNA Algorithms

The algorithms we presented above use at most O(n) rule strands, or O(
√
n log n)

when binary input encoding is used. While the rule strands we use are of uniform
nature, our algorithms’ descriptions require an upper bound on the input size.
Moreover, the corresponding rule sets form context-free or even context-sensitive
languages, i.e., the rules for the two algorithms are “complex”. One might hope



that this complexity is not necessary. However, in this section we show that such
complex rule sets cannot be avoided (for the aforementioned problems), and that
in fact rule sets that form a regular language are not very powerful algorithms.
Specifically, we are going to establish the following theorem.

Theorem 1. Let A be a DNA algorithm. If A, interpreted as a set of strands,
is a regular language, then L(A) is regular.

For the remainder of this section, fix some DNA algorithm A such that A
is a regular language. It will be convenient to assume that ++ and øø are both
in A. While this changes neither the language detected by A nor the fact that
A is a regular language, the assumption allows us to consider only (A ∪ {ι})-
assemblies for +ø that begin and end with strands from A. We denote by B =
(Q,U ∪ U , δ, s, F ) a DFA satisfying L(B) = A.

Consider any accepted input strand ι and an (A ∪ {ι})-assembly T of +ø.
Note that forth(e) contains a delimiter if and only if one endpoint of e is a leaf
or the root. By definition, in a pre-order traversal of T the paths between two
successive leafs are labeled with strands (ρ1, . . . , ρl) in A. For each strand ρi ∈ A
there is an accepting transition sequence in B, which consequently corresponds
to the path in T from which ρi was obtained. Our life would be simple if ρi ∈ A
for all i, since we would have to deal only with strands from a regular language.
The main difficulty in our proof of Theorem 1 is to handle the case where ρi = ι.

In our proof of Theorem 1 we use assemblies to investigate how exactly the
strands from A and the input strands bind to form +ø. To describe the language
L(A), we consider all possible assemblies for +ø that can be formed with some
input strand and strands from A. More precisely, we ask the question: What are
the possible input strands with which +ø can be assembled? A key ingredient to
answering this question is the notion of a junction, which will allow us to answer
the question in a recursive manner.

Definition 2. Let Q be a set of states, let v, w ∈ Q, and let J ⊆ Q × Q with
(v, w) 6∈ J . The triple (v, w, J) is called a junction. An instance of the junction
(v, w, J) is a sequence q = (q1, . . . , q`) with entries in Q∪̇{NULL}, where NULL
is a special value not contained in Q, satisfying

(i) q1 = v and q` = w,
(ii) for all i, if qi 6= NULL, then either (qi, qi+1) ∈ J ∪{(v, w)}, or qi+1 = NULL

and (qi, qi+2) ∈ J ∪ {(v, w)}, and
(iii) all entries in q are pairwise distinct, except possibly q1 and q` (when v = w).

The basic idea behind our proof is to define a language I such that (1) I
is regular, (2) every ι ∈ I is accepted by A, and (3) every ι accepted by A is
in I. The definition of I is encapsulated in the recursive sealing operator X ,
which we will define shortly. Claim (1) will then be established by the fact that
the recursion X is finite. Claims (2) and (3) will be confirmed by relating the
recursion X with appropriate assemblies, for which we will identify nodes in an
assembly with junctions.



For the definition of X , we set the empty union to ∅ and the empty intersec-
tion to +Σ∗ø, i.e., all valid input strands. Let I(v, w, J) be the set of instances
of the junction (v, w, J). The sealing operator is defined using two sub-operators
C and D as follows.

X (v, w, J) :=
⋃

q∈I(v,w,J)

 ⋂
(qi,qi+1):

qi 6=NULL 6=qi+1

C(qi, qi+1, J) ∩
⋂

i:qi=NULL

D(qi−1, qi+1, J)


For C(x, y, J), we denote by Hx,y,J the set of pairs (z1, z2) ∈ J \ {(x, y)} for

which there are two transition sequences x → z1, z2 → y in B such that the
corresponding words w1 and w2 satisfy w1 = w2. Note that in particular Hx,y,J

is finite, since it is contained in J . Now, the sets C are defined as follows.

C(x, y, J) :=


+Σ∗ø , if ∃(z1, z2) ∈ Hx,y,J s.t. z2 = s and z1 ∈ F⋃
(z1,z2)∈Hx,y,J

X (z1, z2, J \ {(x, y), (z1, z2)}) , otherwise.

For D(x, y, J), we construct a finite automaton BK,x,y with ε-transitions
as follows: Let BK be the automaton B supplemented with the transitions
δ(k1, ε) = k2 for all (k1, k2) ∈ K. Next, let B′K be a copy of BK , and de-
note by x′ the copy of the state x in B′K . The automaton BK,x,y is now obtained
by taking BK ’s starting state, B′K ’s accepting states, and adding the transition
δ(y, ε) = x′. With this, the sets D are defined as follows.

D(x, y, J) :=
⋃

K⊆J\{(x,y)}

L(BK,x,y) ∩
⋂

(z1,z2)∈K

X (z1, z2, J \ {(x, y), (z1, z2)})

 .

Basically, X assigns a language to any junction (v, w, J). The intricate choice
of X provides that X (v, w, J) contains exactly the input strands that “seal” the
junction (v, w, J) with a sub-tree T ′ of some assembly T , such that in T ′ only
junctions (v′, w′, J ′) with (v′, w′) 6∈ J and J ′ = J \ {(v′, w′)} appear.

We set the language I to

I :=
⋃

w:δ(w,ø)∈F

X (δ(s, +), w,Q×Q \ {(δ(s, +), w)}) ,

and follow the plan to prove Theorem 1 as outlined above. The first step is to
show that I is regular, which is asserted by the following lemma.

Lemma 1. For any v, w ∈ Q and J ⊆ Q×Q\{(v, w)}, the language X (v, w, J)
is regular.



Proof. Note first that +Σ∗ø, L(BK,x,y), and ∅ are all regular languages. The
language X (v, w, J) is obtained using finitely many regular operations on these
languages, since the size of J decreases in every recursive step. ut

To ease readability, the proofs for the remaining lemmas are deferred to the
appendix. In our effort to establish Theorem 1, the following lemma confirms
the aforementioned claim (2).

Lemma 2. If ι ∈ I, then ι is accepted by A.

To obtain the opposite direction of the statement in Lemma 2, consider any
(A ∪ {ι})-assembly T for +ø. We now describe a procedure that assigns an ad-
ditional label to T , thus obtaining the state-marked assembly T ′. Specifically, to
each node u in T , we assign deg(u)+1 labels qmark(u, 1), . . . , qmark(u,deg(u)+
1) from Q∪̇{NULL}, where deg(u) denotes the number of u’s children.

To obtain the labels, we traverse T “together with B”, feeding to B the
forth labels when traversing an edge to the ith child the first time (in forward
direction), and set qmark(u, i) to B’s current state. On the way back to u’s
parent, we assign the label qmark(u,deg(u) + 1), respectively. At leaf nodes, the
DFA B is reset to its starting state.

We will later use the sequence defined for a node u by the qmark labels
to obtain junctions and junction instances corresponding to u. For that, it is
convenient to define two short-hands for reading the labels qmark. Consider any
node u and denote by u1, . . . , udeg(u) the children of u. The first short-hand,
qpair, assigns to each edge (u, ui) a pair of states as follows.

qpair(u, ui) :=


(qmark(u, i− 1), qmark(u, i+ 1)), if qmark(u, i) = NULL

(qmark(u, i), qmark(u, i+ 2)), if qmark(u, i+ 1) = NULL

(qmark(u, i), qmark(u, i+ 1)), otherwise,

where we set qmark(u, 0) = qmark(u,deg(u) + 2) = NULL.
The second short-hand junct(u) assigns a junction to every node u. If u is a

leaf, then the assignment depends on qmark(u′, i+ 1), where u′ is the parent of
u, and u is the ith child of u′. Specifically, junct(u) = (qmark(u), x, ∅), where x
is s if qmark(u′, i+ 1) ∈ Q and NULL otherwise. If u is not a leaf, denote by v
and w the first and the last non-NULL entry in the sequence of qmark labels for
node u, respectively. Let further p be the path from T ’s root to u, and denote
by P ⊆ Q×Q the set {qpair(e) : e ∈ p and qpair(e) has no NULL entries}. The
junction junct(u) is now (v, w,Q×Q \ (P ∪ {(v, w)})).

Lemma 3. Let T be a state-marked assembly for some strand σ. There is a
state-marked assembly T ′ for σ such that
(i) all nodes v in T have deg(v) 6= 1, except the root,

(ii) at every node v in T ′, the sequence (qmark(v, i), . . . , qmark(v, j)) is an in-
stance of the junction (qmark(v, i), qmark(v, j), J) for some J , where i and
j are the first and last index for which qmark(v, i) and qmark(v, j) are not
NULL, and i ∈ {1, 2}, j ∈ {deg(v),deg(v) + 1}, and



(iii) on every simple path P in T ′ from the root to a leaf, for every two edges e, e′

on P , if all entries in qpair(e) and qpair(e′) are from Q (i.e., not NULL),
then it holds that qpair(e) 6= qpair(e′).

The above technical Lemma 3 essentially states the existence of a normal
form for assemblies. This normal form is key in our proof for the next lemma,
which establishes the missing part of Theorem 1.

Lemma 4. If ι ∈ L(A), then ι ∈ I.

Theorem 1 is now established with help of Lemmas 1, 2 and 4. Since finite
languages are regular, it follows from Theorem 1 that L(A) is regular if the size
of A is finite. Lastly, we also establish the following.

Theorem 2. Let L be a language over the alphabet Σ with ε 6∈ L. If L is regular,
then there is a constant size DNA algorithm that decides +Lø.

Proof. Let B = (Q,Γ, δ, s, F ) be a deterministic finite automaton that accepts
L. Our goal is to construct an algorithm A that decides L by simulating B. The
idea behind our construction of A is to mimic the transition function δ. For each
possible transition δ(q, x) = q′, with q, q′ ∈ Q and x ∈ Σ, the set A contains
the transition strand +q′xq+. Additionally, A contains the starting strand +s+,
for the starting state s, and the accepting strands øfø, for each state f ∈ F . For
correctness we have to show two things. Firstly, that for every word w ∈ L the
algorithm A accepts the word +wø, and secondly that any word +wø accepted
by A, the word w is also accepted by B.

For the first part, let t = (q0, . . . , ql) be the transition sequence in B for any
word w ∈ L with q0 = s and ql ∈ F . Denote by w1 . . . wl the characters in w. We
now argue that the effective strand +ø can be obtained by binding the strand
ι = +wø with strands from A, mimicking the transition sequence t. First, the
starting strand +s+ binds to ι, forming the new effective strand ι0 = +sw1 . . . wlø.
We obtain the next effective strand ιi+1 by binding ιi with the transition strand
+qi+1wiqi+, so that ιi+1 has the form +qi+1wi+1 . . . wlø. This is repeated until
the strand +qlø is obtained, which then binds with øqlø, yielding the desired
effective strand +ø.

We begin our argument for the second part with the observation that strands
in A cannot form the effective strand +ø by themselves. Therefore, any assembly
T for +ø must involve at least one instance of the input strand. Moreover, such a
T cannot involve more than one input strand, since each input strand introduces
a delimiter ø, but the only strands that can match with ø, namely the accepting
strands, also introduce a new unmatched delimiter ø. For this reason T must use
exactly one accepting strand, and similarly exactly one starting strand.

Let ι = +w1 . . . wlø be an input strand accepted by A, and consider an
assembly T for +ø. For any instance of ι in T , all symbols in w = w1 . . . wl
must be matched, since only +ø remains as effective strand. The only strands
that contain domains from Γ are the transition strands, thus transition strands
must be used to bind with each wi. In particular, exactly l transition strands



must be used in T , since less would leave unmatched symbols from Γ , whereas
more would leave unmatched symbols from Γ . Each transition strand ti that
binds with wi introduces exactly two domains p and q corresponding to states.
To reach a valid assembly, two neighboring strands ti, ti+1 must therefore bind
along these domains. Since the first strand to match with ι is the starting strand,
and because an accepting state can only be matched with an accepting strand,
the assembly T therefore corresponds to a transition sequence in B for w. ut

References

1. DNA technology. In: Lakowicz, J.R. (ed.) Principles of Fluorescence Spectroscopy,
pp. 705–740. Springer US (2006)

2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266(5187), 1021–1024 (1994)

3. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distributed Computing 21(2), 87–102 (2008)

4. Bottoni, P., Labella, A., Manca, V., Mitrana, V.: Superposition based on Watson–
Crick-like complementarity. Theory of Computing Systems 39(4), 503–524 (2006)

5. Breaker, R.R.: Engineered allosteric ribozymes as biosensor components. Current
Opinion in Biotechnology 13(1), 31 – 39 (2002)

6. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Scientific Reports 2 (Sep 2012)

7. Kari, L., Păun, G., Rozenberg, G., Salomaa, A., Yu, S.: DNA computing, sticker
systems, and universality. Acta Informatica 35(5), 401–420 (1998)

8. Kobayashi, S., Mitrana, V., Păun, G., Rozenberg, G.: Formal properties of PA-
matching. Theoretical Computer Science 262(1-2), 117 – 131 (2001)

9. Lakin, M.R., Phillips, A.: Modelling, simulating and verifying turing-powerful
strand displacement systems. In: Proc. of DNA Computing and Molecular Pro-
gramming (2011)

10. Lipton, R.J.: DNA solution of hard computational problems. Science 268(5210),
542–545 (1995)

11. Manea, F., Mart́ın-Vide, C., Mitrana, V.: Hairpin lengthening: language theoretic
and algorithmic results. J. of Logic and Computation (2013)

12. Patitz, M.: An introduction to tile-based self-assembly and a survey of recent re-
sults. Natural Computing 13(2), 195–224 (2014)

13. Păun, G., Rozenberg, G., Yokomori, T.: Hairpin languages. Int. J. of Foundations
of Computer Science 12(06), 837–847 (2001)

14. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196–1201 (2011)

15. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314(5805), 1585–1588 (2006)

16. Seeman, N.C.: An overview of structural DNA nanotechnology. Molecular Biotech-
nology 37(3), 246–257 (2007)

17. Sipser, M.: Introduction to the Theory of Computation. International Thomson
Publishing (1996)

18. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of
DNA: Some theory and experiments. In: DNA Based Computers II, volume 44 of
DIMACS. pp. 191–213. American Mathematical Society (1996)



19. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven
reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)

20. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toe-
hold exchange. J. of the American Chemical Society 131(47), 17303–17314 (2009)



Appendix

A Omitted Proof of Lemma 2

Proof (of Lemma 2). Let v = δ(s, +), let W = {w : δ(w, ø) ∈ F}, and let ι be
an input strand. If ι ∈ I, then there is some w ∈ W such that ι ∈ X (v, w,Q ×
Q \ {(v, w)}). Fix any such w, and denote by L and R the two intersections in
X (v, w, J), i.e.,

L =
⋂

(qi,qi+1):
qi 6=NULL 6=qi+1

C(qi, qi+1, J) and R =
⋂

i:qi=NULL

D(qi−1, qi+1, J) .

By the definition of X , there is an instance q of the junction (v, w, J) such
that ι is contained in both L and R. Our goal now is to recursively construct a
(A ∪ {ι})-assembly T for +ø.

The construction of the assembly T begins as follows (depicted in Fig. 6). We
first add three nodes t1, t2, t3 and the edges e1,2 = (t1, t2), and e2,3 = (t2, t3) to
T . The labels are forth(e1,2) = +, forth(e2,3) = ø, and back(e1,2) = back(e2,3) =
OPEN. We now consider the node t2 as corresponding to the single instance q
of the junction (v, w, J).

The remaining parts of T are constructed recursively. The construction fol-
lows the recursive definition of X and is therefore finite for the same reason the
recursion X is finite, namely, because J decreases in every step. In the recur-
sion, we will assign to every node t in T a sequence (φ1, . . . , φm), where each φk
consists of a junction (v, w, J) and a matching instance q. After assigning the
sequence to t, the recursion enters t, and we handle each item φk in the sequence
separately. The first sequence we consider is the one consisting of only q, which
we assigned to node t2. For an item φk, denote by q = (q1, . . . , ql) the instance
of the corresponding junction (v, w, J). For qi 6= NULL, we say that qi is a path
case if qi+1 6= NULL, and that qi is a branch case if qi+1 = NULL. We will
consider these two cases for the states qi in the order in which they appear.

To show that our construction is indeed an assembly, we consider three things.
Firstly, we ensure that the edge labels forth and back are complementary (except

t1 t2 t3
OPEN

forth(t1, t2) = +

OPEN

forth(t2, t3) = ø

Sub-tree inserted at t2

Fig. 6: Base case construction for the proof of Lemma 2. Starting at t2, the rest
of the assembly is created recursively. In the recursion, t2 is considered as the
junction (v, w,Q × Q \ {(v, w)}), where v and w are such that v = δ(s, +) and
δ(w, ø) ∈ F .



for the two edges e1,2 and e2,3, which have an OPEN back label), which guar-
antees requirement (i) in Definition 1. Secondly, an OPEN label is assigned only
in the base of the construction, thus ensuring requirement (ii) in Definition 1.
Lastly, we guarantee requirement (iii) in Definition 1 inductively. For that, we
consider T as being traversed in pre-order during the recursive construction.

For the base of the induction it is important to note that in the base con-
struction involving the nodes t1, t2, and t3, the label forth(e1,2) is a v-prefix,
and the label forth(e2,3) is a w-suffix. The induction hypothesis for a node t and
each considered pair (x, y) of states in a junction instance at t is thus that the
labels read on the way from the previous leaf (or root) to t (in the pre-order
traversal) form an x-prefix. To ensure the same for the next induction step, we
need to show that the labels read on the way from the next leaf to t form a
y-prefix. Moreover, we ensure that the last state in φk is the first state in φk+1.
The induction is completed by the fact that w is the last state in the junction
considered at t2, so that the w-prefix and the w-suffix can be combined to form
a strand in A.

Path Cases. For every path case qi, we have that ι ∈ C(qi, qi+1, J). According
to the case distinction in C’s definition, this can happen in two sub-cases. In the
first sub-case, there is a pair (z1, s) ∈ Hqi,qi+1,J with z1 ∈ F . This means that
there is a qi-suffix g1 and a qi+1-prefix g2 in B with g1 = g2. The qi branch of
the current junction can be completed (or sealed) by adding a node t′ and an
edge (t, t′), and setting forth(t, t′) = g1 and back(t, t′) = g2. Correctness of this
first sub-case now immediately follows from the induction hypothesis and the
properties of g1 and g2.

In the second sub-case, there is a pair (z1, z2) ∈ Hqi,qi+1,J such that ι ∈
X (z1, z2, J

′), where J ′ = J \ {(qi, qi+1), (z1, z2)}. This means that there is a
(qi, z1)-infix g1 and a (z2, qi+1)-infix g2 in B with g1 = g2. Again, we append to
t a node t′ and an edge (t, t′), and set forth(t, t′) = g1 and back(t, t′) = g2. Since
ι ∈ X (z1, z2, J

′), there is an instance q′ of the junction (z1, z2, J
′) such that ι

is in both intersections in X (z1, z2, J
′). We recursively consider the node t′ as

corresponding to the single junction instance q′.
The fact that g1 is a (qi, z1)-infix together with the induction hypothesis

guarantees the induction hypothesis for the recursive step with q′. The induction
at q′ together with the promise that g2 is a (z2, qi+1)-infix now guarantees the
induction hypothesis at t for the next branch or path case.

Branch Cases. For every branch case qi, we have that ι ∈ D(qi, qi+2, J). This
means that there is a subset K of J \ {(qi, qi+2)} such that ι ∈ L(BK,qi,qi+2

)
and that for all pairs (z1, z2) ∈ K it holds that ι ∈ X (z1, z2, J

′), where J ′ =
J \ {(qi, qi+2), (z1, z2)}.

Since ι ∈ L(BK,qi,qi+2), there is a transition sequence in BK,qi,qi+2 for ι , the
WK-complement of ι. Consider any such sequence a, and observe that due to the
construction of BK,qi,qi+2

, the transition δ(qi+2, ε) = q′i must be taken exactly
once in a, and that the first occurrence of q′i is after that transition. Let b be
the suffix of a starting at the first occurrence of q′i. We partition b into ε-blocks



t

t′

. . . qi qi+1

forth(t, t′) = g1 back(t, t′) = g2

z1 z2

q1

Fig. 7: The edge e = (t, t′) is inserted when qi is a path case. The labels g1 and g2
are a (qi, z1)-infix and a (z2, qi+1)-infix, respectively. In the recursion, all edges
left of e were added to the assembly before inserting e, namely when treating qj
with j < i.

t

u1 u′
1

u2

uh

u′
h′

. . . qi

g1
g1z1

zm
g2 g2

...

z′1

z′m′

qi+2

g′1

g′1

...

NULL

q1

ι

Fig. 8: The paths u1, . . . , uh and u′1, . . . , u
′
h′ are inserted when qi is a branch case.

The triangles indicate the sub-trees that are inserted recursively.

and non-ε-blocks. An ε-block consists of contiguous ε-transitions, preceded and
succeeded by non-ε-transitions. The remaining contiguous parts of b form the
non-ε-blocks.

Let n1, ε1, . . . , nh−1, εh−1, nh be the partition of b. We add to T the path t =
u0, u1, . . . , uh. Let g be the word corresponding to the transition sequence b, and
let g = g1g2 . . . gh be a division of g into smaller words such that gi corresponds
to the sub-sequence ni. The labels forth(u0, u1), . . . , forth(uh−1, uh) are set to
g1, . . . , gh, respectively, and the labels back(uj , uj+1) are set to forth(uj , uj+1),
thus corresponding to a prefix of ι.

The idea is now to transform each ε-block into a sequence of junctions on a
single node on the path u0, u1, . . . , uh. Consider an ε-block εj , 1 ≤ j ≤ h − 1,
and let δ(z1, ε) = z2, δ(z2, ε) = z3, . . . , δ(zm−1, ε) = zm be the ε-transitions
in εj . Recall that for all 1 ≤ k ≤ m, the pair (zk, zk+1) is in K. Therefore,



ι ∈ X (zk, zk+1, J
′
k) with J ′k = J \{(qi, qi+2), (zk, zk+1)}. This in turn means that

for each k, there is some instance of the junction (zk, zk+1, J
′
k) such that ι is in

both intersections in X (zk, zk+1, J
′
k). Denote by φk these junction-instance-pairs.

We recursively consider the node uj as corresponding to the junction instance
sequence (φ1, . . . , φm), so that edges added to uj in the recursion are inserted
to the left of (uj , uj+1).

To see that the induction holds at node u1, first observe that the last state
in φk is equal to the first state in φk+1. Next, consider the first node u1 at
which junctions are inserted. The path from u0 to u1 is labeled with g1 by forth.
Let g0 be the qi-prefix in B guaranteed by the induction hypothesis. Due to
the construction of BK,qi,qi+1 , the transition sequence n1 in BK,qi,qi+1 is also a
transition sequence in B. Thus, the word g0g1 is a z1-prefix. This guarantees the
induction hypothesis for the recursive step with φ1. Inductively, it holds that the
word y1 read on the way to u1 (in the pre-order traversal) from the previous leaf
in the sub-tree corresponding to φm is a zm-prefix in B. We may thus inductively
consider u2, . . . , uh−1 to obtain that at uh−1, there is a z′m′ -prefix yh−1 in B,
where z′m′ is the last state considered when handling the junction sequence for
uh−1. Moreover, yh−1 is read on the way to uh−1 (in the pre-order traversal)
from the previous leaf in the sub-tree corresponding to the pair (z′m′−1, z

′
m′).

The induction at uh−1 is completed by the fact that zm′ matches the first state
in nh, so that the zm′ -prefix yh−1 can be combined with the zm′ -suffix wh to
form a strand in A.

The prefix of a (up to the transition δ(qi+2, ε) = q′i) can be treated anal-
ogously, by inserting a path (u′0 = t, u′1, . . . , u

′
h′). The induction for the path

(u0, . . . , uh) together with the induction for (u′0 = t, u′1, . . . , u
′
h′) yields two

things. Firstly, that the back labels on the path from uh’s rightmost leaf to t
concatenated with the forth labels on the path from t to u′h′ ’s leftmost leaf form
ι; and secondly, that the path from u′1’s rightmost leaf to u′1 is back-labeled with
a qi+2-prefix. This concludes our effort to establish Lemma 2.

B Omitted Proof of Lemma 3

Before presenting the missing proof, we describe precisely how the labels qmark
are obtained. Consider a pre-order traversal of T . For convenience, we extend
the transition function δ and set δ(NULL, x) = NULL for all x ∈ Γ ∗ and
δ(q,OPEN) = NULL for all q ∈ Q. During the traversal, we keep track of a
variable cur state which holds either a state from the set Q, or the value
NULL. Initially, cur state is s, the starting state of B.

Before traversing an edge e = (u, ui) leading to the ith child ui of u (i.e., e is
traversed in the direction away from the root), we assign the label qmark(u, i) =
cur state. Then, we update cur state← δ(cur state, forth(e)) to continue
our traversal at ui. Before traversing an edge e = (ui, u) leading to ui’s par-
ent in T (i.e., e is traversed in the direction back to the root) we assign the
label qmark(ui,deg(ui) + 1) = cur state. Then, if ui is not a leaf, we update
cur state ← δ(cur state,back(e)). Otherwise ui is a leaf, and we update



cur state ← δ(s,back(e)) if the strand obtained by reading the labels on the
path to the next leaf is in A, or cur state ← NULL otherwise. The pre-order
traversal then continues, visiting u again.

Proof (of Lemma 3). Part (i) is readily established by the observation that a
path (u1, u2, u3) with deg(u2) = 1 can be replaced by the edge e = (u1, u2). The
label forth(e) is the concatenation of forth(u1, u2) with forth(u2, u3), and the
label back(e) is the concatenation of back(u2, u3) with back(u1, u2). To repair
the state marks, simply apply the marking algorithm again.

To establish part (ii), let u be an inner node in T so that qmark(u, i) =
qmark(u, j) 6= NULL for some 1 ≤ i < j ≤ deg(u)+1, where (i, j) 6= (1,deg(u)+
1). Denote by e1, . . . , ed the edges to u’s children, and consider the tree T ′

obtained by removing all the sub-trees connected to u by ei+1, . . . , ej . We claim
that T ′ is an assembly of σ.

To see that this is true, consider the last leaf t1 visited before ei and the first
leaf t2 visited after ej in a pre-order traversal of T . The back labels of the edges
from t1 to u correspond to a transition sequence from s to qmark(u, i) in B, and
the forth labels of the edges from u to t2 correspond to a transition sequence
in B from qmark(u, j) to some f ∈ F . Since qmark(u, i) = qmark(u, j), there
is also a transition sequence from s to f labeled with the corresponding labels
on the path from t1 to t2 (via u). Applying this technique inductively yields the
desired claim. To repair the state marks, simply apply the marking algorithm
again.

To establish part (iii), let T ′ be a state-marked assembly for σ satisfying
both (i) and (ii) with the minimum number of nodes. Assume for the sake of
contradiction that (iii) is false. This means that there is a path p = (t0, t1, . . . , tl)
in T ′ from the root t0 to some leaf tl such that qpair(e) = qpair(e′) for two edges
e, e′ on p, and NULL does not appear as an entry in qpair(e). We argue that
such a T ′ does not have a minimal number of nodes. Denote by e = (x, y) and
e′ = (x′, y′) the endpoints of the edges e and e′, respectively, and assume w.l.o.g.
that e comes before e′ on p. Denote by i and i′ the index of e and e′ among
the edges to x’s and x′’s children, respectively. There are four cases, since one of
qmark(x, i), qmark(x, i+ 1), and one of qmark(x′, i′), qmark(x′, i′ + 1) could be
NULL. We show how to deal with the case where none of the four is void; the
other three cases can be handled in a similar manner.

Consider the tree T ′′ obtained by removing e, e′, and the now disconnected
sub-tree rooted at y, and inserting a new edge f = (x, y′) in the place of e among
x’s edges. The new edge is labeled forth(f) = forth(e′) and back(f) = back(e′).
Clearly T ′′ has less nodes than T ′. We claim that T ′′ is an assembly for σ. To see
that, we only need to argue that the assembly properties hold at the modified
nodes x and y′. Let (v, w, J) denote the junction junct(y′) corresponding to y′ in
T ′, and let qi, qi+1 be qmark(x, i) and qmark(x, i+ 1), where i is so that e is the
ith edge of x. Since forth(e′) is a (qi, v)-infix, and back(e′) is a (w, qi+1)-infix, so
are the labels assigned to f . This suffices to ensure that T ′′ is a state-marked
assembly for σ, since no other parts in T ′′ are different from T ′. Moreover, T ′′ still
satisfies (i) and (ii), since node degrees only increased and the labels qmark were



changed for neither x nor y′. This contradicts our assumption, thus concluding
our proof for all three parts of Lemma 3.

C Omitted Proof of Lemma 4

Proof (of Lemma 4). Let T be an assembly for +ø in A ∪ {ι} as promised by
Lemma 3. It is sufficient to show that ι ∈ X (δ(s, +), w,Q × Q \ {(v, w)}) for
some w with δ(w, ø) ∈ F . To see that this is true, denote by (t1, t2, t3) the open
path in T , i.e., the edges are labeled forth(t1, t2) = + and forth(t2, t3) = ø. It
holds that the marking is qmark(t1, 1) = s, qmark(t3, 1) = f for some f ∈ F .
Denote by (v2, w2, J2) the junction junct(t2), and observe that δ(s, +) = v2 and
δ(w2, ø) = f , as desired, since T is an assembly. We establish the claim by
showing that ι ∈ X (v2, w2, Q×Q \ {(v2, w2)}). For that, we associate with each
node x a junction instance, delivered by qmark(x, ◦), of the junction junct(x).

Again, the proof is by induction. For a node t in T , denote by Ξ(t) the set of
all descendants of t that are not leafs. The induction hypothesis at any node t
is that for all d ∈ Ξ(t), it holds that ι ∈ X (junct(d)). The induction is based at
all leaf nodes and their parents in T , for which the hypothesis holds vacuously.

For the induction step, consider a non-leaf node t. By the induction hypoth-
esis, we have that ι ∈ X (junct(d)) for all d ∈ Ξ(t). Let (v, w, J) denote junct(t),
and denote by q = (q1, . . . , ql) the corresponding junction instance guaranteed
for t by property (ii) of Lemma 3. The goal is now to show that ι ∈ X (v, w, J).
For that, it suffices to show that ι ∈ L and ι ∈ R, with

L =
⋂

1≤i≤l−1:
qi 6=NULL 6=qi+1

C(qi, qi+1, J)

and
R =

⋂
2≤i≤l−1:
qi=NULL

D(qi−1, qi+1, J)

If qi 6= NULL 6= qi+1, then we say that (qi, qi+1) is a C-case. If qi = NULL,
then qi−1 and qi+1 are both not NULL and we say that (qi−1, qi+1) is a D-case.

We first show that for every C-case (qi, qi+1), it holds that ι ∈ C(qi, qi+1).
Associated with a C-case (qi, qi+1) in the sequence q, there is an edge e =
(t, d) so that qpair(e) = (qi, qi+1). Denote by (z1, z2, J

′) the triple junct(d). If
d is a leaf, then z1 ∈ F and z2 = s, and thus ι ∈ C(qi, qi+1, J) = +Σ∗ø, as
desired. Otherwise, if d is not a leaf, then forth(e) and back(e) are (qi, z1)- and
(z2, qi+1)-infixes, respectively. Thus, (z1, z2) is a pair in Hqi,qi+1,J , and since
ι ∈ X (z1, z2, J

′), the input strand ι is also in the union C(qi, qi+1, J).
It is left to show that for every D-case pair (qi−1, qi+1), it holds that ι ∈

D(qi−1, qi+1). Associated with a D-case (qi−1, qi+1) in the sequence q, there are
two successive edges e = (t, d) and e′ = (t, d′) so that qpair(e) = qpair(e′) =
(qi, qi+1). Let x denote the rightmost leaf in the sub-tree rooted at d, and let y
denote the leftmost leaf in the sub-tree rooted at d′, correspondingly. Denote by



p the simple path (x = u1, u2, . . . , uj−1 = d, uj = t, uj+1 = d′, . . . , uk = y). We
choose K = {(z1, z2) : there is some J ′ so that (z1, z2, J

′) is a junction junct(ui)
for 2 ≤ i ≤ k− 1}. Note that indeed K ⊆ J \ {(qi−1, qi+1)} due to property (iii)
of Lemma 3.

We have to show two things, namely that ι ∈ L(BK,qi−1,qi+1
), and that

ι ∈ X (z1, z2, J \ {(qi−1, qi+1), (z1, z2)}) for all (z1, z2) ∈ K. The first claim can
be established by considering the word ι , which can be obtained from concate-
nating the back labels from y to t, and the forth labels from t to x. From the con-
struction of BK,qi−1,qi+1 we obtain that ι is in L(BK,qi−1,qi+1), and therefore ι ∈
L(BK,qi−1,qi+1

). For the second claim consider a pair (z1, z2) ∈ K. There is a node
uh on p for which junct(uh) = (z1, z2, J

′), where J ′ = J \ {(qi−1, qi+1), (z1, z2)}.
Thus, ι ∈ X (z1, z2, J

′) by applying the induction hypothesis. We have estab-
lished that the strand ι is in the intersections in D(qi−1, qi+1, J) for K as chosen
above. It thus follows that ι is also in the union. Since we have considered the
whole sequence q, this concludes our proof of the lemma.


	Toehold DNA Languages are Regular

