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Disentanglement Learning is at the forefront of unsupervised learning, as disentangled
representations of data are thought to improve generalization, interpretability, and perfor-
mance in downstream tasks. It works on the assumption of the existence of low-dimensional
data generating factors for high-dimensional data and tries to recover these factors in an
unsupervised fashion. Unfortunately, this is not possible without the use of any inductive
biases [2]. Different examples of such biases can be found in successful architectures for
disentanglement learning. The simplest example is the use of a higher KL-Divergence weight
in the loss function of a β-VAE [1].
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In this thesis, we are interested in quantify-
ing the effects some of the inductive biases have
on the learned representations. We want to rig-
orously evaluate whether some common assump-
tions in the field hold true and analyze the con-
sequences for the learning of disentangled repre-
sentations with variational auto-encoders.

Requirements: Strong motivation, program-
ming skills, and basic knowledge of machine and
deep learning.

Interested? Please contact us for more de-
tails!

Contact

• Benjamin Estermann: besterma@ethz.ch, ETZ G60.1

• Peter Belcák: pbelcak@ethz.ch, ETZ G61.3
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