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ABSTRACT
We explore the fundamental limits of distributed balls-into-
bins algorithms, i.e., algorithms where balls act in paral-
lel, as separate agents. This problem was introduced by
Adler et al., who showed that non-adaptive and symmetric
algorithms cannot reliably perform better than a maximum
bin load of Θ(log log n/ log log log n) within the same num-
ber of rounds. We present an adaptive symmetric algorithm
that achieves a bin load of two in log∗ n + O(1) commu-
nication rounds using O(n) messages in total. Moreover,
larger bin loads can be traded in for smaller time complex-
ities. We prove a matching lower bound of (1− o(1)) log∗ n
on the time complexity of symmetric algorithms that guar-
antee small bin loads at an asymptotically optimal message
complexity of O(n). The essential preconditions of the proof
are (i) a limit of O(n) on the total number of messages sent
by the algorithm and (ii) anonymity of bins, i.e., the port
numberings of balls are not globally consistent. In order to
show that our technique yields indeed tight bounds, we pro-
vide for each assumption an algorithm violating it, in turn
achieving a constant maximum bin load in constant time.

As an application, we consider the following problem.
Given a fully connected graph of n nodes, where each node
needs to send and receive up to n messages, and in each
round each node may send one message over each link, de-
liver all messages as quickly as possible to their destinations.
We give a simple and robust algorithm of time complexity
O(log∗ n) for this task and provide a generalization to the
case where all nodes initially hold arbitrary sets of messages.
Completing the picture, we give a less practical, but asymp-
totically optimal algorithm terminating within O(1) rounds.
All these bounds hold with high probability.

∗A full version of this paper is available as technical re-
port [23].
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1. INTRODUCTION
Some argue that in the future understanding parallelism

and concurrency will be as important as understanding se-
quential algorithms and data structures. Indeed, clock
speeds of microprocessors have flattened about 5-6 years ago.
Ever since, efficiency gains must be achieved by parallelism,
in particular using multi-core architectures and parallel clus-
ters.

Unfortunately, parallelism often incurs a coordination
overhead. To be truly scalable, also coordination must be
parallel, i.e., one cannot process information sequentially, or
collect the necessary coordination information at a single lo-
cation. A striking and fundamental example of coordination
is load balancing, which occurs on various levels: canonical
examples are job assignment tasks such as sharing work load
among multiple processors, servers, or storage locations, but
the problem also plays a vital role in e.g. low-congestion
circuit routing, channel bandwidth assignment, or hashing,
cf. [33].

A common archetype of all these tasks is the well-known
balls-into-bins problem: Given n balls and n bins, how can
one place the balls into the bins quickly while keeping the
maximum bin load small? As in other areas where cen-
tralized control must be avoided (sometimes because it is
impossible), the key to success is randomization. Adler et
al. [1] devised parallel randomized algorithms for the prob-
lem whose running times and maximum bin loads are es-
sentially doubly-logarithmic. They provide a lower bound
which is asymptotically matching the upper bound. How-
ever, their lower bound proof requires two critical restric-
tions: algorithms must (i) break ties symmetrically and (ii)
be non-adaptive, i.e., each ball restricts itself to a fixed num-
ber of candidate bins before communication starts.



In this work, we present a simple adaptive algorithm
achieving a maximum bin load of two within log∗ n + O(1)
rounds of communication, with high probability. This is
achieved with O(1) messages in expectation per ball and
bin, and O(n) messages in total. We show that our method
is robust to model variations. In particular, it seems that be-
ing adaptive helps solving some practical problems elegantly
and efficiently; bluntly, if messages are lost, they will simply
be retransmitted. Moreover, our algorithms can be general-
ized to the case where the number of balls differs from the
number of bins.

Complementing this result, we prove that—given the con-
straints on bin load and communication complexity—the
running time of our algorithm is (1+ o(1))-optimal for sym-
metric algorithms. Our bound necessitates a new proof tech-
nique; it is not a consequence of an impossibility to gather re-
liable information in time (e.g. due to asynchronicity, faults,
or explicitly limited local views of the system), rather it
emerges from bounding the total amount of communication.
Thus, we demonstrate that breaking symmetry to a certain
degree, i.e., reducing entropy far enough to guarantee small
bin loads, comes at a cost exceeding the apparent minimum
of Ω(n) total bits and Ω(1) rounds. In this light, a natu-
ral question to pose is how much initial entropy is required
for the lower bound to hold. We show that the crux of the
matter is that bins are initially anonymous, i.e., balls do not
know globally unique addresses of the bins. For the problem
where bins are consistently labeled 1, . . . , n, we give an algo-
rithm running in constant time that sends O(n) messages,
yet achieves a maximum bin load of three. Furthermore, if
a small-factor overhead in terms of messages is tolerated,
the same is also possible without a global address space.
Therefore, our work provides a complete classification of the
parallel complexity of the balls-into-bins problem.

Our improvements on parallel balls-into-bins are devel-
oped in the context of a parallel load balancing application
involving an even larger amount of concurrency. We con-
sider a system with n well-connected processors, i.e., each
processor can communicate directly with every other pro-
cessor.1 However, there is a bandwidth limitation of one
message per unit of time on each connection. Assume that
each processor needs to send (and receive) up to n messages,
to arbitrary destinations. In other words, there are up to n2

messages that must be delivered, and there is a communi-
cation system with a capacity of n2 messages per time unit.
What looks trivial from an “information theoretic” point of
view becomes complicated if message load is not well bal-
anced, i.e., if only few processors hold all the n messages
for a single recipient. If the processors knew of each oth-
ers’ intentions, they could coordinatedly send exactly one of
these messages to each processor, which would subsequently
relay it to the target node. However, this simple scheme is
infeasible for reasonable message sizes: In order to collect
the necessary information at a single node, it must receive
up to n2 numbers over its n communication links.

In an abstract sense, the task can be seen as consisting of
n balls-into-bins problems which have to be solved concur-
rently. We show that this parallel load balancing problem
can be solved in O(log∗ n) time, with high probability, by
a generalization of our symmetric balls-into-bins algorithm.
The resulting algorithm inherits the robustness of our balls-

1This way, we can study the task of load balancing indepen-
dently of routing issues.

into-bins technique, for instance it can tolerate a constant
fraction of failing edges. Analogously to the balls-into-bins
setting, an optimal bound of O(1) on the time complexity
can be attained, however, the respective algorithm is rather
impractical and will be faster only for entirely unrealistic
values of n. We believe that the parallel load balancing
problem will be at the heart of future distributed systems
and networks, with applications from scientific computing
to overlay networks.

2. RELATED WORK
Probably one of the earliest applications of randomized

load balancing has been hashing. In this context, Gonnet
[15] proved that when throwing n balls uniformly and inde-
pendently at random (u.i.r.) into n bins, the fullest bin has
load (1 + o(1)) log n/ log log n in expectation. It is also
common knowledge that the maximum bin load of this
simple approach is Θ(log n/ log logn) with high probability
(w.h.p.)2 [10].

With the growing interest in parallel computing, since the
beginning of the nineties the topic received increasingly more
attention. Karp et al. [17] demonstrated for the first time
that two random choices are superior to one. By combin-
ing two (possibly not fully independent) hashing functions,
they simulated a parallel random access machine (PRAM)
on a distributed memory machine (DMM) with a factor
O(log log n log∗ n) overhead; in essence, their result was
a solution to balls-into-bins with maximum bin load of
O(log log n) w.h.p. Azar et al. [3] generalized their result
by showing that if the balls choose sequentially from d ≥ 2
u.i.r. bins greedily the currently least loaded one, the maxi-
mum load is log log n/ log d+O(1) w.h.p.3 They prove that
this bound is stochastically optimal in the sense that any
other strategy to assign the balls majorizes4 their approach.
The expected number of bins each ball queries during the
execution of the algorithm was later improved to 1 + ε (for
any constant ε > 0) by Czumaj and Stemann [8]. This is
achieved by placing each ball immediately if the load of an
inspected bin is not too large, rather then always querying
d bins.

So far the question remained open whether strong upper
bounds can be achieved in a parallel setting. Adler et al. [1]
answered this affirmatively by devising a parallel greedy al-
gorithm obtaining a maximum load of O(d+log log n/ log d)
within the same number of rounds w.h.p. Thus, choos-
ing d ∈ Θ(log log n/ log log log n), the best possible maxi-
mum bin load of their algorithm is O(log log n/ log log log n).
On the other hand, they prove that a certain subclass of
algorithms cannot perform better with probability larger

2I.e., with probability at least 1−1/nc for a freely choosable
constant c > 0.
3There is no common agreement on the notion of w.h.p.
Frequently it refers to probabilities of at least 1 − 1/n or
1 − o(1), as so in the work of Azar et al.; however, their
proof also provides their result w.h.p. in the sense we use
throughout this paper.
4Roughly speaking, this means that any other algorithm is
as least as likely to produce bad load vectors as the greedy
algorithm. An n-dimensional load vector is worse than an-
other, if after reordering the components of both vectors de-
scendingly, any partial sum of the first i ∈ {1, . . . , n} entries
of the one vector is greater or equal to the corresponding
partial sum of the other.



Table 1: Comparison of parallel algorithms for m = n balls. Committing balls into bins counts as half a round

with regard to time complexity.

algorithm symmetric adaptive choices rounds maximum bin load messages

naive [15] yes no 1 0.5 O
(

log n
log log n

)

n

par. greedy [1] yes no 2 2.5 O
(√

log n
log log n

)

O(n)

par. greedy [1] yes no Θ
(

log log n
log log log n

)

Θ
(

log log n
log log log n

)

O
(

log log n
log log log n

)

O
(

n log log n
log log log n

)

collision [38] yes no 2 r + 0.5 O
(

(

logn
log logn

)1/r
)

O(n)

A2
b yes yes O(1) (exp.) log∗ n+O(1) 2 O(n)

Ab(r) yes yes O(1) (exp.) r +O(1) log(r) n

log(r+1) n
+ r +O(1) O(n)

Ac(l) yes yes O(l) (exp.) log∗ n− log∗ l +O(1) O(1) O(ln)

A(
√
log n) no yes O(1) (exp.) O(1) 3 O(n)

than 1− 1/ polylog n. The main characteristics of this sub-
class are that algorithms are non-adaptive, i.e., balls have
to choose a fixed number of d candidate bins before commu-
nication starts, and symmetric, i.e., these bins are chosen
u.i.r. Moreover, communication takes place only between
balls and their candidate bins. In this setting, Adler et al.
show also that for any constant values of d and the number
of rounds r the maximum bin load is Ω((log n/ log log n)1/r)
with constant probability. Recently, Even and Medina ex-
tended their bounds to a larger spectrum of algorithms by
removing some artificial assumptions [12]. A matching algo-
rithm was proposed by Stemann [38], which for d = 2 and

r ∈ O(log log n) achieves a load of O((logn/ log log n)1/r)
w.h.p.; for r ∈ Θ(log log n/ log log log n) this implies a con-
stantly bounded bin load. Even and Medina also proposed
a 2.5-round “adaptive” algorithm [11].5 Their synchronous
algorithm uses a constant number of choices and exhibits a
maximum bin load of Θ(

√

log n/ log log n) w.h.p., i.e., ex-
actly the same characteristics as parallel greedy with 2.5
rounds and two choices. In comparison, within this number
of rounds our technique is capable of achieving bin loads of
(1 + o(1)) log log n/ log log log n w.h.p.6 See Table 1 for a
comparison of our results to parallel algorithms. Our adap-
tive algorithms outperform all previous solutions for the
whole range of parameters.

Given the existing lower bounds, since then the only pos-
sibility for further improvement has been to search for non-
adaptive or asymmetric algorithms. Vöcking [40] introduced
the sequential “always-go-left” algorithm which employs
asymmetric tie-breaking in order to improve the impact of
the number of possible choices d from logarithmic to linear.
Furthermore, he proved that dependency of random choices
does not offer asymptotically better bounds. His upper
bound holds also true if only two bins are chosen randomly,
but for each choice d/2 consecutive bins are queried [18]. Ta-

5If balls cannot be allocated, they get an additional random
choice. However, one could also give all balls this additional
choice and let some of them ignore it, i.e., this kind of adap-
tivity cannot circumvent the lower bound.
6This follows by setting a := (1 + ε) log log n/ log log log n
(for arbitrary small ε > 0) in the proof of Corollary 3.4; we
get that merely n/(log n)1+ε balls remain after one round,
which then can be delivered in 1.5 more rounds w.h.p. using
O(log n) requests per ball.

ble 2 summarizes sequential balls-into-bins algorithms. Note
that not all parallel algorithms can also be run sequentially.7

However, this is true for our protocols; our approach trans-
lates to a simple sequential algorithm competing in perfor-
mance with the best known results [8, 40]. This algorithm
could be interpreted as a greedy algorithm with d = ∞.

Most of the mentioned work considers also the general case
of m 6= n. If m > n, this basically changes expected loads to
m/n, whereas values considerably smaller than n (e.g. n1−ε)
admit constant maximum bin load. It is noteworthy that for
d ≥ 2 the imbalance between the most loaded bins and the
average load is O(log log n/ log d) w.h.p. irrespective of m.
Recently, Peres et al. [36] proved a similar result for the
case where “d = 1 + β” bins are queried, i.e., balls choose
with constant probability β ∈ (0, 1) the least loaded of two
bins, otherwise uniformly at random. In this setting, the
imbalance becomes Θ((log n)/β) w.h.p.

In addition, quite a few variations of the basic problem
have been studied. Since resources often need to be assigned
to dynamically arriving tasks, infinite processes have been
considered (e.g. [3, 8, 29, 30, 31, 38, 40]). In [32] it is shown
that, in the sequential setting, memorizing good choices from
previous balls has similar impact as increasing the number of
fresh random choices. Awerbuch et al. [2] studied arbitrary
Lp norms instead of the maximum bin load (i.e., the L∞
norm) as quality measure, showing that the greedy strat-
egy is p-competitive to an offline algorithm. Several works
addressed weighted balls (e.g. [6, 7, 20, 36, 39]) in order
to model tasks of varying resource consumption. The case
of heterogeneous bins was examined as well [41]. In recent
years, balls-into-bins has also been considered from a game
theoretic point of view [5, 19].

Results related to ours have been discovered before for
hashing problems. A number of publications presents algo-
rithms with running times of O(log∗ n) (or very close) in
PRAM models [4, 14, 27, 28]. At the heart of these rou-
tines as well as our balls-into-bins solutions lies the idea to
use an in each iteration exponentially growing share of the
available resources to deal with the remaining keys or bins,

7Stemann’s collision protocol, for instance, requires bins to
accept balls only if a certain number of pending requests is
not exceeded. Thus the protocol cannot place balls until all
random choices are communicated.



Table 2: Comparison of sequential algorithms for m = n balls.

algorithm symmetric adaptive choices maximum bin load bin queries

naive [15] yes no 1 O
(

log n
log log n

)

n

greedy [3] yes no d ≥ 2 log log n
log d

+O(1) O(dn)

always-go-left [40] no no d ≥ 2 O
(

log log n
d

)

O(dn)

adpt. greedy [8] yes yes 1 + o(1) (exp.); at most d ≥ 2 O
(

log log n
log d

)

(1 + o(1))n

Aseq yes yes O(1) (exp.) 2 (2 + o(1))n

respectively. Implicitely, this approach already occured in
previous work by Raman [37]. For a more detailed review of
these papers, we refer the interested reader to [16]. Despite
differences in the models, our algorithms and proofs exhibit
quite a few structural similarities to the ones applicable to
hashing in PRAM models. From our point of view, there are
two main differences distinguishing our upper bound results
on symmetric algorithms. Firstly, the parallel balls-into-bins
model permits to use the algorithmic idea in its most basic
form. Hence, our presentation focuses on the properties de-
cisive for the log∗ n + O(1) complexity bound of the basic
symmetric algorithm. Secondly, our analysis shows that the
core technique is highly robust and can therefore tolerate a
large number of faults.

The lower bound by Adler et al. (and the generalization by
Even and Medina) is stronger than our lower bound, but it
applies to algorithms which are severely restricted in their
abilities only. Essentially, these restrictions uncouple the
algorithm’s decisions from the communication pattern; in
particular, communication is restricted to an initially fixed
random graph, where each ball contributes d edges to u.i.r.
bins. This prerequisite seems reasonable for systems where
the initial communication overhead is large. In general, we
find it difficult to motivate that a non-constant number of
communication rounds is feasible, but an initially fixed set
of bins may be contacted only. In contrast, our lower bound
also holds for adaptive algorithms. In fact, it even holds for
algorithms that allow for address forwarding, i.e., balls may
contact any bin deterministically after obtaining its globally
unique address.8 In other words, it arises from the assump-
tion that bins are (initially) anonymous (cf. Problems 4.1
and 4.2), which fits a wide range of real-world systems.

Like Linial in his seminal work on 3-coloring the ring [24],
we attain a lower bound of Ω(log∗ n) on the time required to
solve the task efficiently. This connection is more than su-
perficial, as both bounds essentially arise from a symmetry
breaking problem. However, Linial’s argument uses a highly
symmetric ring topology.9 This is entirely different from our
setting, where any two parties may potentially exchange in-
formation. Therefore, we cannot argue on the basis that
nodes will learn about a specific subset of the global state
contained within their local horizon only. Instead, the ran-
dom decisions of a balls-into-bins algorithm define a graph
describing the flow of information. This graph is not a sim-
ple random graph, as the information gained by this com-
munication feeds back to its evolution over time, i.e., future

8This address is initially known to the respective bin only,
but it may be forwarded during the course of an algorithm.
9This general approach to argue about a simple topology
has been popular when proving lower bounds [9, 22, 34].

communication may take the local topology of its current
state into account.

A different lower bound technique is by Kuhn et al. [21],
where a specific locally symmetric, but globally asymmetric
graph is constructed to render a problem hard. Like in our
work, [21] restricts its arguments to graphs which are locally
trees. The structure of the graphs we consider imposes to ex-
amine subgraphs which are trees as well; subgraphs contain-
ing cycles occur too infrequently to constitute a lower bound.
The bound of Ω(log∗ n) from [14], applicable to hashing in
a certain model, which also argues about trees, has even
more in common with our result. However, neither of these
bounds needs to deal with the difficulty that the algorithm
may influence the evolution of the communication graph in
a complex manner. In [21], input and communication graph
are identical and fixed; in [14], there is also no adaptive com-
munication pattern, as essentially the algorithm may merely
decide on how to further separate elements that share the
same image under the hash functions applied to them so far.

Various other techniques for obtaining distributed lower
bounds exist [13, 26], however, they are not related to our
work. If graph-based, the arguments are often purely infor-
mation theoretic, in the sense that some information must be
exchanged over some bottleneck link or node in a carefully
constructed network with diameter larger than two [25, 35].
In our setting, such information theoretic lower bounds will
not work: Any two balls may exchange information along
n edge-disjoint paths of length two, as the graph describing
which edges could potentially be used to transmit a message
is complete bipartite. In some sense, this is the main contri-
bution of this paper: We show the existence of a coordina-
tion bottleneck in a system without a physical bottleneck.

The remainder of this extended abstract is organized as
follows. We start out with the presentation of a simple
symmetric balls-into-bins algorithm achieving a time com-
plexity of log∗ n + O(1) at the same maximum bin load.
From this basic technique a number of results are inferred.
In particular, the applied proof method allows for solving
the aforementioned load balancing problem (Problem 3.6)
in O(log∗ n) rounds. In Section 4, after classifying some
parallel balls-into-bins models, we sketch the proof of the
lower bound demonstrating the (1 + o(1))-optimality of the
given symmetric algorithm. Subsequently, in Section 5, we
show that if any of the prerequisites of the lower bound is
dropped, an according constant-time constant-load solution
can be devised. As a consequence, also Problem 3.6 permits
a constant-time randomized algorithm. Finally, Section 6
draws some conclusions. Due to lack of space, in the forth-
coming we will omit all formal proofs in favor of an informal



presentation of the key ideas and concepts. The proofs are
available in the accompanying technical report [23].

3. SYMMETRIC ALGORITHMS
In this section, we are going to present our basic symmet-

ric balls-into-bins technique and related results. “Symmet-
ric” here essentially means that initially all bins “look the
same”, i.e., there is no consistent labeling of the bins that is
known to all balls.

3.1 Model
The system consists of n bins and n balls, and we assume it

to be fault-free. We employ a synchronous message passing
model, where one round consists of the following steps:

1. Balls perform (finite, but otherwise unrestricted) local
computations and send messages to arbitrary bins.

2. Bins receive these messages, do local computations,
and send messages to any balls they have been con-
tacted by in this or earlier rounds.

3. Balls receive these messages and may commit to a bin
(and terminate).10

Moreover, balls and bins each have access to an unlimited
source of unbiased random bits, i.e., all algorithms are ran-
domized. The considered task now can be stated concisely.

Problem 3.1 (Parallel Balls-into-Bins).
We want to place each ball into a bin. The goals are to mini-
mize the total number of rounds until all balls are placed, the
maximum number of balls placed into a bin, and the amount
of involved communication.

Essentially, our model is the one of Adler et al. [1], but
without the assumption that balls need to choose a fixed
set of communication partners in advance, i.e., we consider
adaptive algorithms.

3.2 Basic Algorithm
Our first algorithm illustrates the fundamental difference

introduced by adaptivity best. The strategy is very simple.
First, we try to place the balls with caution, i.e., a small
number of messages per ball. A large fraction of the balls
will be successfully placed even if bins accept only a single
ball. This holds w.h.p., i.e., essentially it is guaranteed.
Thus, it is safe with regard to message complexity to increase
the number of bins each remaining ball contacts in order to
find a suitable bin. It turns out that this trivial observation
already leads to an efficient algorithm.

Set k(1) := 1 and i := 1. Algorithm Ab executes the
following loop until termination:

1. Balls contact ⌊k(i)⌋ u.i.r. bins, requesting permission
to be placed into them.

2. Each bin admits permission to one of the requesting
balls (if it received any) and declines all other requests.

10Note that (for reasonable algorithms) this step does not
interfere with the other two. Hence, the literature typically
takes each execution of the first to steps as one round and
accounts for this step as “half a round” when stating the
time complexity of balls-into-bins algorithms; we adopted
this convention in the related work section.

3. Any ball receiving at least one permission chooses an
arbitrary of the respective bins to be placed into, in-
forms it, and terminates.

4. Set k(i + 1) := min
{

k(i)e⌊k(i)⌋/5,
√
log n

}

and i :=

i+ 1.

Theorem 3.2. Ab solves Problem 3.1, guaranteeing the
following properties:

• It terminates after log∗ n+O(1) rounds w.h.p.

• Each bin in the end contains at most log∗ n + O(1)
balls w.h.p.

• The total number of messages is in O(n) w.h.p.

• Balls send and receive O(1) messages in expectation
and O(

√
log n) many w.h.p.

• Bins send and receive O(1) messages in expectation
and O(log n/ log log n) many w.h.p.

To see why the algorithm terminates this fast, assume for
the moment that in each round, a constant fraction of all
requests issued in Step 1 of the algorithm is chosen uniformly
at random and accepted in Step 2. Thus, each request a
single ball sends has an independent constant probability of
being answered affirmatively, implying that the probability
of a ball surviving round i of the algorithm is exponentially
small in k(i). As long as the number of balls still is fairly
large, this implies that the number of surviving balls drops
by a factor of e−Ω(k(i)) w.h.p. This explains the choice of
k(i+1) in the last step, as we can increase k rapidly without
risking to generate too many messages in total. We can cap

the growth of k at
√
log n because if merely e−Ω(

√
log n)n

balls need still to be placed, the success probability of a

single request is 1 − e−Ω(
√
log n). Thus each residual ball

is placed with probability 1 − e−Ω(log n) in each subsequent
round, implying termination within a constant number of
rounds w.h.p.

The formal proof is mostly dealing with the technical-
ity that the considered random events are not (entirely) in-
dependent. Nonetheless, it reveals a remarkable property.
We show that a uniformly random constant fraction of all
requests is accepted, and that this is the case even if we
consider the bins that receive a single request only. This
observation implies that Theorem 3.2 (and its corollaries)
are highly resilient to model variations and faults. For in-
stance, the asymptotic bounds hold if a constant fraction
of all messages is lost11 or if whenever a bin receives more
than one request all respective messages are lost,12 and all
our algorithms work equally well in asynchronous systems.

3.3 Variations
Next, we discuss a number of variations of the basic al-

gorithm. For instance, we can ensure a bin load of at most
two without increasing the time complexity.

11As long as these faults are not correlated in a bad way, e.g.
completely cutting off individual balls from communication.

12This could e.g. model interference in a system employing
wireless communication.



Corollary 3.3. We modify Ab into A2
b by ruling that

any bins having already accepted two balls refuse any further
requests in Step 2, and in Step 4 we set

k(i+ 1) := min
{

k(i)e⌊k(i)⌋/10, log n
}

.

Then the statements of Theorem 3.2 remain true except
that balls now send w.h.p. O(log n) messages instead of
O(

√
log n). In turn, the maximum bin load of the algorithm

becomes two.

On the other hand, we can enforce a constant time com-
plexity at the expense of an increase in maximum bin load.

Corollary 3.4. For any r ∈ N, Ab can be modified into
an Algorithm Ab(r) that guarantees a maximum bin load of

log(r) n/ log(r+1) n+ r + O(1) w.h.p. and terminates within
r + O(1) rounds w.h.p. Its message complexity respects the
same bounds as the one of Ab.

Algorithm A2
b is related to a simple sequential greedy al-

gorithm that queries for each ball sufficiently many bins to
find one that has load less than two.

Lemma 3.5. An adaptive sequential balls-into-bins algo-
rithm Aseq exists guaranteeing a maximum bin load of two,
requiring at most (2+o(1))n random choices and bin queries
w.h.p.

3.4 An Application: Information Distribution
Consider a fully connected system of n nodes. We want

to solve the following problem.

Problem 3.6 (Information Distribution Task).
Each node v ∈ V is given a (finite) set of messages

Sv =
{

mi
v | i ∈ Iv

}

with destinations d(mi
v) ∈ V , i ∈ Iv. Each such message

explicitly contains d(mi
v), i.e., messages have size Ω(log n).

Moreover, messages can be distinguished (e.g., by also in-
cluding the sender’s identifier and the position in an inter-
nal ordering of the messages of that sender). The goal is
to deliver all messages to their destinations, minimizing the
total number of rounds. By

Rv :=

{

mi
w ∈

⋃

w∈V

Sw

∣

∣ d(mi
w) = v

}

we denote the set of messages a node v ∈ V shall receive.
We abbreviate Ms := maxv∈V |Sv| and Mr := maxv∈V |Rv |,
i.e., the maximum numbers of messages a single node needs
to send or receive, respectively.

This problem can be solved efficiently by basically applying
Algorithm Ab in parallel to each set of messages Rv with the
goal to distribute these messages as evenly as possible. Sub-
sequently they can be sent to their destinations quickly. For
the purpose of this extended abstract, we state the following
bound only and refer the interested reader to the technical
report for more details.

Theorem 3.7. Problem 3.6 can be solved in

O
(

Ms +Mr

n

)

rounds w.h.p.

4. LOWER BOUND
In this section, we will derive our lower bound on the par-

allel complexity of the balls-into-bins problem. After clas-
sifying different degrees of anonymity of bins, we proceed
by sketching the proof technique, which we believe to be of
independent interest.

4.1 Bin Anonymity
A natural restriction for algorithms solving Problem 3.1 is

to assume that random choices cannot be biased, i.e., bins
are completely anonymous. This is formalized by the fol-
lowing definition.

Problem 4.1 (Symmetric Balls-into-Bins).
We call an instance of Problem 3.1 symmetric parallel balls-
into-bins problem, if balls and bins identify each other by
u.i.r. port numberings. We call an algorithm solving this
problem symmetric.

Thus, whenever a ball executing a symmetric balls-into-bins
algorithm contacts a new bin, it essentially draws uniformly
at random. This is a formalization of the central aspect of
the notion of symmetry used by Adler et al. [1]. Note that
all algorithms from Section 3 are symmetric.

The main result states that the time complexity of sym-
metric algorithms cannot be improved by any constant fac-
tor.13 What is more, our lower bound holds for a communi-
cation model that is even stronger.

Problem 4.2 (Acquaintance Balls-into-Bins).
We call an instance of Problem 3.1 acquaintance balls-into-
bins problem, if the following holds. Initially, bins are anon-
ymous, i.e., balls identify bins by u.i.r. port numberings.
However, once a ball contacts a bin, it learns its globally
unique address, by which it can be contacted reliably. Thus,
by means of forwarding addresses, balls can learn to con-
tact specific bins directly. The addresses are abstract in the
sense that they can be used for this purpose only.14 We call
an algorithm solving this problem acquaintance algorithm.

For this class of algorithm the following lower bound can be
shown.

Theorem 4.3. Any acquaintance algorithm sending O(n)
messages in total and no more than λn messages per node
w.h.p. (where λ < 1 is a constant) either incurs a maxi-
mum bin load of more than L ∈ N w.h.p. or runs for at least
(1 − o(1)) log∗ n − log∗ L rounds, irrespective of the size of
messages. This holds also if bins may contact other bins.

4.2 Proof Outline
We need to bound the amount of information balls can

collect during the course of the algorithm. As balls may
contact any bins they heard of, this is described by expo-
nentially growing neighborhoods in the graph where edges
are created whenever a ball picks a communication partner
at random.

13Unless considerably more communication is used; this is
discussed in Section 5 in more detail.

14This requirement is introduced to prohibit the use of these
addresses for symmetry breaking, as is possible for asym-
metric algorithms. One may think of the addresses e.g. as
being random from a large universe, or the address space
might be entirely unknown to the balls.



Definition 4.4 (Balls-into-Bins Graphs).
The (bipartite and simple) balls-into-bins graph GA(r) as-
sociated with an execution of the acquaintance algorithm A
running for r ∈ N rounds is constructed as follows. The
node set V := V◦ ∪ V⊔ consists of |V◦| = |V⊔| = n bins and
balls. In each round i ∈ {1, . . . , r}, each ball b ∈ V◦ adds
an edge connecting itself to bin v ∈ V⊔ if b contacts v by a
random choice in that round. By EA(i) we denote the edges
added in round i and GA(t) = (V,∪t

i=1EA(i)) is the graph
containing all edges added until and including round t.

The proof argues about certain symmetric subgraphs in
which not all balls can decide on bins concurrently without
incurring large bin loads. As can be seen by a quick calcula-
tion, any connected subgraph containing a cycle is unlikely
to occur frequently. For an adaptive algorithm, it is possible
that balls make a larger effort in terms of sent messages to
break symmetry once they observe a “rare” neighborhood.
Therefore, it is mandatory to reason about subgraphs which
are trees.

We would like to argue that any algorithm suffers from
generating a large number of trees of uniform ball and bin
degrees. If we root such a tree at an arbitrary bin, balls can-
not distinguish between their parents and children according
to this orientation. Thus, they will decide on a bin that is
closer to the root with probability inverse proportional to
their degree. If bin degrees are by factor f(n) larger than
ball degrees, this will result in an expected bin load of the
root of f(n). However, this line of reasoning is too simple.
As edges are added to G in different rounds, these edges
can be distinguished by the balls. Moreover, even if several
balls observe the same local topology in a given round, they
may randomize the number of bins they contact during that
round, destroying the uniformity of degrees. For these rea-
sons, we (i) rely on a more complicated tree in which the
degrees are a function of the round number and (ii) show
that for every acquaintance algorithm a stronger algorithm
exists that indeed generates many such trees w.h.p.

Due to space constraints and the fact that the definition of
these derived algorithms is very technical, in this extended
abstract we confine ourselves to the presentation of the con-
sidered trees. In these structures, all involved balls up to a
certain distance from the root see exactly the same topology.
This means that (i) in each round, all involved balls created
exactly the same number of edges by contacting bins ran-
domly, (ii) each bin has a degree that depends on the round
when it was contacted first only, (iii) all edges of such bin
are formed in exactly this round, and (iv) this scheme re-
peats itself up to a distance that is sufficiently large for the
balls not to see any irregularities that might help in break-
ing symmetry. These properties are satisfied by the following
recursively defined tree structure.

Definition 4.5 (Layered (∆⊔,∆◦, D)-Trees).
A layered (∆⊔,∆◦, D)-tree of ℓ ∈ N0 levels rooted at bin R
is defined as follows, where ∆⊔ = (∆⊔

1 , . . . ,∆
⊔
ℓ ) and ∆◦ =

(∆◦
1, . . . ,∆

◦
ℓ ) are the vectors of bins’ and balls’ degrees on

different levels, respectively.
If ℓ = 0, the “tree” is simply a single bin. If ℓ > 0, the

subgraph of GA(ℓ) induced by N (2D)
R is a tree, where ball

degrees are uniformly
∑ℓ

i=1 ∆
◦
i . Except for leaves, a bin

that is added to the structure in round i ∈ {1, . . . , ℓ} has
degree ∆⊔

i with all its edges in EA(i). See Figure 1 for an
illustration.

Intuitively, layered trees are crafted to present symmetric
neighborhoods to nodes which are not aware of leaves. Thus,
if bins’ degrees are large compared to balls’ degrees, not all
balls can decide simultaneously without risking to overload
bins.

For the notion of layered trees to be of any use, one needs
to show that these structures indeed occur for a non-trivial
number of rounds when one of the aforementioned stronger
algorithms is run. This is an intricate problem, as one can
neither argue by properties of random graphs only, nor is
it sufficient to rely on indistinguishability type arguments
alone. Roughly, we reason along the following lines. Ini-
tially, balls have no information about the system. Thus,
w.h.p. a large fraction of the balls will contact a constant
number of bins. This will result in Ω(n) many layered trees
of depth one. Since the topology of layered trees looks iden-
tical to all nodes sufficiently far from leaves, these nodes can-
not (all) contact many bins with a large probability without
violating the bounds on message complexity. Thus, we can
control the number of new edges these balls create. If all
such balls contact the same number of bins, this permits to
show that it is likely that many layered trees of two levels
will be part of the balls-into-bins graph after two rounds
of communication. An acquaintance algorithm now could
avoid this by choosing a different number of new contacts
for the balls in such a structure. We address this by permit-
ting each of these balls to contact as many bins as all balls
in a tree of one level together. Obviously, this will make it
only easier for an algorithm to assign the balls to bins, yet
we can still show that many layered trees of two levels will
occur. This is the key characteristic of the class of stronger
algorithms we examine; the remaining properties are con-
cerned with technicalities. We refer to the accompanying
technical report for further details [23] and the full proof.

In summary, we flip back and forth between two argu-
ments. On the one hand, in each round for a considerable
fraction of the balls the system looks locally “critical” in the
sense that symmetry remains unbroken and indistinguisha-
bility constraints the amount of communication that can
be safely invested to break symmetry. On the other hand, if
not too much communication is used, many symmetric struc-
tures will remain after communication took place. Naturally,
this situation is quite unstable: If we have T disjoint layered
trees in the graph in a given round, the balls in these trees
may use up to n/T messages on average to break symmetry.
Calculation shows that this implies a tower-like growth of
the size of layered trees and a respective decrease in their
number. In other words, symmetry cannot be overcome ev-
erywhere for (1− o(1)) log∗ n rounds.

So, why do layered trees indeed prevent balls from decid-
ing on bins or enforce large bin loads? Essentially, this can
already be seen by example of an “ordinary” tree. Since the
tree is deeper than the local horizon of the balls, they cannot
root the tree, i.e., decide consistently to be placed into bins
further away from an imagined root. If in such a tree bins
have large degrees in comparison to balls, this means that
bins have an accordingly large expected load. By symmetry
arguments it can be shown that this implies that it is indeed
likely that a bin gets overloaded.

5. CONSTANT-TIME ALGORITHMS
Considering Theorem 4.3 and the results from Section 3,

three questions come to mind.



Figure 1: Part of a ((2, 5), (3, 5), D)-tree rooted at the topmost bin. Bins are squares and balls are circles;

neighborhoods of all balls and the bins marked by an “X” are depicted completely, the remainder of the tree

is left out. Thin edges and white bins were added to the structure in the first round, thick edges and grey bins

in the second. Up to distance 2D from the root, the pattern repeats itself, i.e., the (2D− d)-neighborhoods of

all balls up to depth d appear identical.

• Does the lower bound still hold if random choices may
be asymmetric, i.e., non-uniform choice distributions
are possible?

• What happens if the bound of O(n) on the total num-
ber of messages is relaxed?

• Can a constant-time solution be devised if we stick
to O(n) total messages but do not impose any upper
bound on the number of messages for an individual
node?

The third question is answered quickly by the following
routine:

1. With probability, say, 1/
√
n, a ball contacts

√
n bins.

2. These balls perform a leader election on the resulting
graph (using random identifiers).

3. The leader contacts all bins and coordinates a perfect
distribution of the balls.

However, this algorithm introduces a central coordination
instance. If this was a feasible solution, there would be no
need for a parallel balls-into-bins algorithm in the first place.

Thus, the other two questions are more intriguing. To
give an answer to the first one, we need to specify precisely
what dropping the assumption of symmetry means.

Problem 5.1 (Asymmetric Balls-into-Bins).
An instance of Problem 3.1 is an asymmetric parallel balls-
into-bins problem, if balls identify bins by globally unique
addresses 1, . . . , n. We call an algorithm solving this problem
asymmetric.

“Asymmetric” here means that biased random choices are
permitted. This is impossible for symmetric or acquaintance
algorithms, where the uniformly random port numberings
even out any non-uniformity in the probability distribution
of contacted port numbers.

In this extended abstract, we confine ourselves to present-
ing a simple algorithm demonstrating the basic idea of our
solution. Given l ∈ O(log n) that is a factor of n, A1(l) is
defined as follows.

1. Each ball contacts one bin chosen uniformly at random
from the set {il | i ∈ {1, . . . , n/l}}.

2. Bin il, i ∈ {1, . . . , n/l}, assigns up to 3l balls to bins
il, . . . , (i+1)l−1, such that each bin gets at most three
balls.

3. The remaining balls (and the bins) proceed as if exe-
cuting the symmetric Algorithm A2

b , however, with k
initialized to k(1) := 2αl for an appropriately chosen
constant α > 0.

Essentially, we create buckets of non-constant size l in order
to ensure that the load of these buckets is slightly better
balanced than it would be the case for individual bins. This
enables the algorithm to place more than a constant fraction
of the balls immediately.

However, this algorithm is somewhat unsatisfactory, since
a subset of the bins has to deal with an expected communi-
cation load of l + O(1) ∈ ω(1). In the accompanying tech-
nical report, we propose the more intricate Algorithm A(l)
without this shortcoming.

Theorem 5.2. Algorithm A(l) solves Problem 5.1 with
a maximum bin load of three. It terminates after log∗ n −
log∗ l + O(1) rounds w.h.p. Both balls and bins send and
receive a constant number of messages in expectation. Balls
send and receive at most O(log n) messages w.h.p., bins
O(log n/ log log n). The total number of messages is O(n)
w.h.p.



5.1 Symmetric Constant-Time Solution Using
ω(n) Messages

A similar approach is feasible for symmetric algorithms if
we permit ω(n) messages in total. Basically, Algorithm A(l)
relies on asymmetry to achieve better coordination among
the participants of the system. Instead, we may settle for
better organizing a constant fraction of the bins; in turn,
balls will need to send ω(1) messages to find such a bin with
probability 1− o(1).

Corollary 5.3. For l ∈ O(log n), an Algorithm Ac(l)
exists that sends O(ln) messages w.h.p. and solves Prob-
lem 4.1 with a maximum bin load of O(1) within log∗ n −
log∗ l+O(1) rounds w.h.p. Balls send and receive O(l) mes-
sages in expectation and O(log n) messages w.h.p.

6. CONCLUSIONS
We presented asymptotically optimal randomized load

balancing algorithms for distributed systems. Our results
demonstrate that adaptivity yields substantial improve-
ments on previous parallel balls-into-bins algorithms. Given
that in a totally anonymous setting it is possible to achieve
a bin load of two within log∗ n+O(1) rounds, we hope that
the proposed techniques may serve to improve future load
balancing primitives for decentralized systems.

To show optimality of our approach, we provided a lower
bound showing that for symmetric balls-into-bins algorithms
that are asymptotically optimal with regard to communica-
tion complexity and maximum bin load, the proposed algo-
rithm is (1+ o(1))-optimal with respect to time complexity.
To this end, we devised a proof technique that we consider
to be of interest in its own right. To the best of our knowl-
edge, we demonstrated for the first time the existence of an
overhead in either time or communication complexity in an
essentially fully connected system that does not arise from
asynchronicity, faults, or limited availability of randomiza-
tion.

Acknowledgements
We would like to thank Thomas Locher and Reto Spöhel.
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