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Eliciting Internal Reward Models in LLMs

The training of Large Language Models (LLMs)
increasingly uses reinforcement learning, a paradigm
which gives the model “reward” signals to maximise.
Specifically, the post-training of LLMs has grown
from mimicking human-generated answers to learn-
ing from human rankings of answers to the Chain-of-
Thought based techniques used to train DeepSeek-r1
and the OpenAl o-series of models.

As these Al systems scale to potentially superhu-
man performance, understanding how exactly these
reward signals affect the LLM’s actions will be cru-
cial to controlling and aligning them to be help-
ful, harmless and honest. This problem is counter- We've discovered reward circuits in
intuitive due to the use of policy gradients, making the human brain! Credit to George
it unclear what exactly the model learns [3, 5, 6]. } .

We will work with first with small nEodels Lnd Kach = Own work, CC BY-5A 4.0
toy problems to answer questions such as: Can we discover a “reward” direction like we can
discover a truth direction [1]?7 Can we edit rewards in LLM’s parameters like we can edit
knowledge [4]7 Can we mechanistically interpret the reward via circuits [2]?
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Requirements:

e Strong software engineering skills (ideally in the modern deep learning stack of Python,
PyTorch/JAX & HuggingFace) to quickly test & iterate on ideas

e Knowledge of Linear Algebra, Statistics, (ideally: Reinforcement Learning theory)

Interested? Please get in touch with us for more details!

Contact

e Sam Dauncey: sdauncey@ethz.ch, ETZ G61.1
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