
On the Importance of Synchronization Primitives with Low
Consensus Numbers

Pankaj Khanchandani

ETH Zurich

kpankaj@ethz.ch

Roger Wattenhofer

ETH Zurich

wattenhofer@ethz.ch

ABSTRACT
The consensus number of a synchronization primitive is the maxi-

mum number of processes for which the primitive can solve consen-

sus. This has been the traditional measure of power of a synchro-

nization primitive. Thus, the compare-and-swap primitive, which

has infinite consensus number, is considered most powerful and

has been the primitive of choice for implementing concurrent data

structures. In this work, we show that the synchronization primi-

tives with low consensus numbers can also be potentially powerful

by using them along with the compare-and-swap primitive to de-

sign an O(
√
n) time wait-free and linearizable concurrent queue.

The best known time bound for a wait-free and linearizable con-

current queue using only the compare-and-swap primitive is O(n).
Here, n is the total number of processes that can access the queue.

The queue object maintains a sequence of elements and supports

the operations enqueue(x) and dequeue(). The wait-free property
implies that every call to enqueue(x) and dequeue() finishes in a

bounded number of steps irrespective of the schedule of other n − 1
processes. The linearizable property implies that the enqueue(x)
and dequeue() calls appear to be instantaneously applied within

the duration of respective calls. We design a wait-free and a lin-

earizable concurrent queue using shared memory registers that

support the compare-and-swap primitive and two other primitives

of consensus number one and two respectively. The enqueue(x)
and dequeue() operations takeO(

√
n) steps each. The total number

of registers required are O(nm) of O(max{logn, logm}) bits each,
wherem is a bound on the total number of enqueue(x) operations.

CCS CONCEPTS
• Theory of computation→ Concurrent algorithms;

KEYWORDS
concurrent queue, wait-free queue, sublinear wait-free

ACM Reference Format:
Pankaj Khanchandani and Roger Wattenhofer. 2018. On the Importance of

Synchronization Primitives with Low Consensus Numbers. In ICDCN ’18:
19th International Conference on Distributed Computing and Networking,
January 4–7, 2018, Varanasi, India. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3154273.3154306

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICDCN ’18, January 4–7, 2018, Varanasi, India
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-6372-3/18/01. . . $15.00

https://doi.org/10.1145/3154273.3154306

1 INTRODUCTION
With the advent of asynchronous shared memory multiprocessor

architectures, different parallel computers provided different mech-

anisms for communication between processes. The NYU Ultracom-

puter for instance used a fetch-and-add synchronization primitive

[18]. Shortly after this first wave of architectures, Maurice Herlihy

presented his seminal consensus hierarchy. Among other results,

Herlihy showed that the compare-and-swap synchronization prim-

itive is fundamentally more powerful than fetch-and-add, since it

can implement consensus for infinitely many processes, whereas

fetch-and-add is limited to just two [8]. He also showed a uni-

versal construction for implementing concurrent non-trivial data

structures using consensus. Thus, compare-and-swap and other

primitives with infinite consensus number are considered most

powerful and occupy a top position in the Herlihy’s hierarchy.

As a result, compare-and-swap primitive is now available in

every multiprocessor in the world and data structures have been

traditionally designed using compare-and-swap as base objects

[13, 15, 16]. But, Ellen et al. [4] recently gave a simple O(1) time

algorithm to solve consensus for infinitely many processes by com-

bining the functionality of fundamentally weak primitives onto the

same register. The primitives they used were multiply and decre-

ment, which have a consensus number of one each.

In other words, Ellen et al. [4] showed that weak primitives may

replace strong primitives such as compare-and-swap, without extra

cost. But can weak primitives even help to lower the cost when

building concurrent data structures? We answer this question by

designing a sublinear time wait-free and linearizable concurrent

queue using the compare-and-swap primitive and two additional

primitives of consensus number one and two respectively. As no

sublinear solution for a wait-free and linearizable concurrent queue

by using the compare-and-swap primitive only is known, our result

shows the potential of applying low consensus number primitives

in the design of efficient concurrent data structures.

Our queue supports the operations enqueue(x) and dequeue().
The enqueue(x) operation adds an element x to the queue. The

dequeue() operation removes and returns the element y that was

added earliest (by the operation enqueue(y)). The shared memory

provides O(nm) registers of size O(max{logm, logn}) bits each,
where n is the number of processes andm is a bound on the total

number of enqueue(x) operations. The registers support read,

write, compare-and-swap, half-increment and half-max operations.

The half-increment operation increments the value in the first half

of the register if it is less than or equal to the value in the second half

of the register. If the increment happens, the operation returns the

value in the first half prior to the increment, otherwise it returns

−1. The half-max operation takes a single argument and writes

it to the second half of the register only if it is larger than the

https://doi.org/10.1145/3154273.3154306
https://doi.org/10.1145/3154273.3154306

ICDCN ’18, January 4–7, 2018, Varanasi, India Pankaj Khanchandani and Roger Wattenhofer

value already there. This operation does not return anything. The

operation half-increment has a consensus number of two and the

operation half-max has a consensus number of one. We show that

the enqueue(x) and dequeue() operation for every process is in

O(
√
n). This sublinear bound is better than the known wait-free

and linearizable queue implementations.

2 RELATEDWORK
Ellen et al. [4] showed how to combine low consensus number

primitives, such as decrement and multiply, to solve consensus for

any given number of processes. In fact, modern hardware supports

these low consensus number primitives along with some other

primitives of low consensus number such as fetch-and-increment,

xor and compare-and-swap-if-greater-than (max register) [10, 11].

It is not surprising that these low consensus number primitives

are better for the tasks that they support atomically. For example,

one can implement a wait-free and linearizable shared counter

using fetch-and-increment primitive in a single step, where as it

takes Ω(logn) steps to implement it using compare-and-swap [2].

However, we are not aware of a non-trivial application of low

consensus number primitives to design fast wait-free data structures

such as queues.

Queue designs using both compare-and-swap and fetch-and-add

primitive have been explored before. The one from Morrison et

al. [17] is lock-free but ours is wait-free. The one from Yang et

al. [19] is wait-free but the dequeue() operation takes O(n2) steps.
They also do memory reclamation, which we do not. Petrank et

al. [15] give a practical wait-free queue implementation based only

on the compare-and-swap primitive. The enqueue(x) operation

in their implementation takes O(n) steps. It is not known if this

time bound can be improved if we only use the compare-and-swap

primitive.

Sublinear time implementations have been proposed earlier, but

only with limited concurrency. For example, David’s algorithm

[3] gives an O(1) implementation for both the enqueue(x) and

dequeue() operations and supports multiple dequeuers but only a

single enqueuer. David’s algorithm uses fetch-and-add and swap

primitives. Jayanti et al. [12] give an O(logn) implementation of

the enqueue(x) and dequeue() operations that support multiple

enqueuers but only one dequeuer. Their algorithm uses the load-

link/store-conditional primitive, which is closely related to the

compare-and-swap primitive and also has infinite consensus num-

ber.

On the other hand, using the universal constructions of sequen-

tial objects [1, 8], we get a time complexity of O(n). Fatourou et

al. [7] give a universal construction that accesses the shared mem-

ory only constant number of times but executes O(n) local steps.
The registers used are of size O(n2) bits. Thus, we do not yet know

a sublinear and wait-free queue implementation that supports mul-

tiple enqueuers and dequeuers and uses logarithmic sized registers.

We hope that our work shows that synchronization primitives apart

from compare-and-swap can be fundamentally important for build-

ing efficient concurrent data structures.

3 MODEL
Let us define some frequently used terms. A sequential object is
defined by the four-tuple (S,O,R,T) where S is the set of states, O
is the set of operations that can be applied on the object to change

its state, R is the set of return values of the operations and T :

S ×O → S × R is a transition function that specifies the effect of

each operation by specifying the new state and the return value.

As a shorthand, we will sometimes just use the term object instead

of the term sequential object.

A register is a sequential object whose state (value) set is S ⊆ N0
(or a sequence of bits). It supports the following operations.

(1) read(): This returns the current value of the register.
(2) write(s): This updates the value of the register to s .
(3) compare-and-swap(s,s′): This changes the value of the reg-

ister to s ′ if and only if the value was s before the change. A
value true is returned if the value of the register was changed
to s ′, otherwise false is returned.

(4) half-increment(): This operation affects only the first half

of the bits in the register. It increments the value in the first

half of the register if it is less than or equal to the value in the

second half. If the increment happens, the operation returns

the value in the first half prior to the increment. Otherwise,

it returns −1.

(5) half-max(x): This operation affects only the second half of

the bits in the register. It writes x to the second half of the

register only if the value in the second half is less than x .
The operation does not return anything.

Note that the operations supported by the registers are atomic i.e., if
several processes execute them concurrently, they will be executed

one after another. For the rest of the text, whenever we use the

word operation, it will be atomic.

A process consists of local variables and can execute any sequence
of instructions. An instruction is a computation on local variables

or an operation on an object storing the result in a local variable. A

schedule is a sequence of process IDs. A schedule S transforms into

an execution E(S) by replacing each ID in S with the next instruc-

tion in the sequence of instructions that the process ID executes.

An implementation of an object defines a function (sequence of in-

structions) for every operation on the object. If a process wants to

apply an operation on the object, it must execute the sequence of

operations specified in the corresponding function (call the func-
tion). As a shorthand, instead of saying “calling a function of an

object’s implementation”, we will just say “calling a function on

an object”. We will only consider executions in which a process

finishes executing a function before calling another function on the

object. Unlike the operations on an object, the functions are not

atomic.

Consider an execution E. The start of a function call F is the first

instruction in E that belongs to F and involves non-local computa-

tion. Similarly, the end of a function call F is the last instruction in

E that belongs to F and involves non-local computation. Given an

execution E and an objectO , we define a partial order PO (E) of the
function calls onO . The order PO (E) orders a function callA before

a function call B if A ends before B starts in the execution E. An
implementation of an object O is linearizable if for every execution

E, the partial order PO (E) can be extended into a total order TO (E)

On the Importance of Synchronization Primitives with Low Consensus Numbers ICDCN ’18, January 4–7, 2018, Varanasi, India

so that the return value of the function calls that ended in E is same

as obtained by applying the transition function on the order TO (E).
Usually, we get the order TO (E) by picking an instruction in the

execution E, called the linearization point, for each function call

and ordering the calls according to the order of corresponding lin-

earization points in the execution E. We use the following property

of linearizability from [9].

Lemma 1. Consider a linearizable implementation I of a sequential
objectO . We can obtain another linearizable implementation I ′ of the
object O as follows. We pick a subset S of sequential objects that the
implementation I uses. We replace each operation on an object s ∈ S
by calling a corresponding function of a linearizable implementation
of s .

The state of a sequential object queue is a sequence of elements.

The enqueue(x) operations adds an element x at the end of the

sequence. The dequeue() operation removes and returns the ele-

ment at the beginning of the sequence if there is one. Otherwise, it

returns −1. We look for a linearizable and wait-free implementation

of a queue that can be simultaneously used by all the n processes.

The processes have IDs 1, 2, . . . ,n. We assume a bound ofm on the

total number of enqueue(x) operations.

4 A BIRD’S EYE VIEW
A conceptual overview of the construction is as follows. We use an

array of sizem to store the elements of the queue. Each enqueue(x)
call is assigned a slot in the array to store the element x . Ideally, we
would want that the slot assignment and storing the element in the

array happens atomically. As we cannot do this, we partition our

original problem into the following two problems.

(1) First, we want to implement a linearizable and wait-free

set in which an enqueue(x) call inserts or announces the

element to be enqueued and is also assigned a slot number

in return. One can see this object as a combination of a set

object and counter. We call this object as the counting set. The
purpose of this object is to manage and order the pending

enqueue operations. Concretely, the counting set stores at

most one element per process and supports the following

two operations.

(a) insert(x): This operation inserts an element x into the

set and returns the number of inserts completed (i.e., also

counts apart from inserting).

(b) remove(i): This operation takes an integer argument i
that is at most the number of insert(x) operations al-

ready completed and returns the ith inserted element if

it was the latest element inserted by the corresponding

process. Concretely, we have the following two cases for

a legal argument i .
(i) The operation returns x if an insert(x) operation by

a process p returned i and p did not issue an insert(y)
operation after insert(x).

(ii) The operation returns ⊥ if an insert(x) operation by

a process p returned i and p issued an insert(y) oper-

ation after insert(x).
Although the counting set object closely resembles a counter,

we cannot use the existing counter implementations as they

are either not wait-free or do not support the set semantics

[5, 6, 14].

(2) Second, we want to implement a linearizable and wait-free

queue using the counting set object from the previous step.

We solve the first problem using recursion on the number of

processes and get the recurrence T (n) = T (n/2) +
√
n for every

function call on the set. This yields a runtime ofO(
√
n) for both the

insert(x) and remove(i) calls.
Then, we solve the second problem using Lemma 1. In partic-

ular, we implement a queue assuming we have the counting set

with its atomic operations. We will see that enqueue(x) can be

implemented using the insert(x) operation plus O(1) additional
steps, and dequeue() can be implemented using the remove(i)
operation plus O(1) additional steps. In these implementations, we

use the register operations half-max(x) and half-increment()
to manage the head and the tail of the queue.

In the following section, we describe the algorithm to implement

the counting set, and we analyze it. Section 6 describes a queue

implementation using the counting set, and analyzes it. In Section 7,

we show that the consensus number of the half-increment()
operation is two and that the consensus number of the half-max(x)
operation is one. In Section 8, we follow up with a discussion on

the results and open questions.

5 THE COUNTING SET
We first implement a counting set that supports k > 1 processes

assuming two counting set objects that support up to k/2 processes
each. Let us call these counting set objects as Cl and Cr . Later, we
use Lemma 1 to recursively replace the operations on Cl and Cr by

their corresponding function calls. The base case of the recursion

is just a sequential implementation for a single process, i.e., k = 1.

Algorithm 1 gives a conceptual overview of an insert(x) call
that can be called byk > 1 processes simultaneously.We use the pro-

Algorithm 1: Outline of an insert(x) call.

1 insert(x)
2 Let I be the ID set of the processes that might call this

function and k = |I |;

3 Split I into two halves L and R so that |L| ≤ k/2 and

|R | ≤ k/2;

4 Let i be the ID of the process calling this function;

5 if i ∈ L then
6 t ← Cl .insert(x);
7 Aggregate and log the insert(x) operations

completed on Cl and Cr ;

8 Lookup the log for the return value using t as the

key;

9 else /* i ∈ R */
10 t ← Cr .insert(x);
11 Aggregate and log the insert(x) operations

completed on Cl and Cr ;

12 Lookup the log for the return value using t as the

key;

ICDCN ’18, January 4–7, 2018, Varanasi, India Pankaj Khanchandani and Roger Wattenhofer

cess IDs to split them into two equal halves, called the left half and
the right half. If a process from the left half calls insert(x), then
it is delegated to the operation insert(x) on Cl . Otherwise, it is
delegated to the operation insert(x) onCr . To compute the return

value for the insert(x) call, we need to aggregate the insert(x)
operations performed on the sets Cl and Cr . As this should be sub-

linear, we cannot aggregate these operations sequentially. Instead,

a bunch of them are aggregated together. As this must be wait-free

as well, all the processes try to aggregate despite only one being

successful. Some metadata about the successful aggregation is also

logged in a history, so that the other processes can look it up to

find their return value.

The remove(i) call is also implemented similarly using recursion.

The base case for k = 1 process is just a sequential implementation.

Algorithm 2 gives an overview of the remove(i) call for k > 1

processes. Here, we use the log to determinewhether the insert(x)

Algorithm 2: Outline of a remove(i) call.

1 remove(i)
2 Lookup the log to find whether the insert(x) call that

returned i called Cl .insert(x) or Cr .insert(x);
3 Lookup the log to find the value t returned by the

corresponding insert(x) operation on Cl or Cr ;

4 Accordingly, perform remove(t) operation on Cl or Cr ;

call that returned i executed the insert(x) operation on Cl or Cr .
If it was performed onCl , then we perform the remove(i) operation
on Cl , otherwise on Cr .

Admittedly, the above descriptions are high-level and they skip

several details. For example, what is exactly stored in the log? How

to maintain the log in sub-linear time ensuring wait-freedom? The

following section describes the complete algorithm and answers

these questions.

5.1 Algorithm
Figure 1 gives a pictorial overview of the data structures used. If

there is only one process that might call the function, then we just

need a single register P . The register P stores a pair of fields: e and
t . The field e stores the element (or a pointer to it). The field t is the
total number of elements that have been inserted by the process

(including the current one). A single register is sufficient for the

base case as there is at most one element per process.

T

L

R

Cl Cr

C

l1 |r1 |l2 |r2

P

k = 1k > 1

e |t

Figure 1: Overview of the data structures used in Algo-
rithm 3.

In case there ismore than one process thatmight call the function,

we need a registerC and arraysT , L, R apart from the set objectsCl
and Cr . The register C stores four fields: l1, r1, l2 and r2. Whenever

the register C is updated, these are updated as follows.

(1) The fields l2 and r2 are updatedwith the number of insert(x)
operations completed on the setsCl andCr until this update.

(2) The fields l1 and r1 are updatedwith the values of l2 and r2 i.e.,
they store the number of insert(x) operations completed

on the setsCl andCr until the previous update of registerC .
The arrays T , L and R maintain the log of updates made to the

register C . When the register C is updated, its content before the

update is copied to appropriate indices of the arraysT , L and R. The
array T is indexed by the total number of insert(x) operations

performed on the set objects Cl and Cr (l2 + r2), array L by the

number of insert(x) operations performed onCl (l2) and array R
by the number of insert(x) operations performed on Cr (r2).

Algorithm 3 gives the full top-level insert(x) function. Note
that we also need an operation total() on the set objectsCl andCr
(Lines 15, 16, 22 and 23). This returns the total number of insert(x)
operations that were performed on the object. The recursive nature

of the construction implies that we also need an implementation

for total() apart from insert(x) and remove(i). Algorithm 4

gives the listing of total() function. It just returns the sum of the

values l2 and r2. The auxiliary function new_value used in Lines

18 and 25 is also defined in Algorithm 4. It updates the fields l2, r2
and copies them to l1 and r1.

We postpone the definition of other auxiliary functions log and

lookup, which are used in Lines 17, 24, 27 and 28. Nevertheless, we

can already prove some interesting properties about Algorithm 3.

For k = 1, the jth insert(x) call is well-defined as there is only
a single process and the insert(x) function is called again only

after the previous call is finished. We say that this jth insert(x)
call is applied if P .t ≥ j. As the value P .t is non-decreasing, an
insert(x) call applied once remains so afterwards.

For k > 1, note that the value C .l2 only comes from tl (Lines 15
and 22). The value tl is the return value of the operation total()
on the set objectCl . It follows from the definition of this object that

any distinct value of tl or C .l2 is associated with a unique set of

insert(x) operations done onCl . These are precisely the firstC .l2
insert(x) operations done onCl . We say that an insert(x) oper-
ation on Cl is applied on the register C if it was the jth insert(x)
operation onCl andC .l2 ≥ j . As the value l2 written to the register

C is non-decreasing, an insert(x) operation once applied remains

so afterwards. The same is true for the operation insert(x) on

the objectCr . We say that an insert(x) call is applied if the corre-

sponding insert(x) operation it executes is applied on the register
C .

The following lemma shows that every insert(x) call is applied
before it ends. We assume for now that the functions log and

lookup do not write to the register C (this is indeed true).

Lemma 2. Every insert(x) call is applied before it ends.

Proof. For k = 1, the lemma holds as the value P .t is incre-
mented by one for each insert(x) call. For k > 1, say that a

process id calls insert(x). The register C is only modified in the

Lines 19 and 26. W.l.o.g. assume that the process id invokes the

On the Importance of Synchronization Primitives with Low Consensus Numbers ICDCN ’18, January 4–7, 2018, Varanasi, India

Algorithm 3: The insert(x) function.

1 insert(x)
2 Let I be the ID set of the processes that might call this

function and k = |I |;

3 if k = 1 then
/* Single process implementation */

/* Symbol | is used as a field separator */

4 e |t ← P .read();

5 P .write(x |t + 1);
6 return t + 1;

7 else
8 Split I into two halves L and R so that |L| ≤ k/2 and

|R | ≤ k/2;

9 Let id be the ID of the process calling this function;

/* store the value from the insert(x)
operation in r */

10 if id ∈ L then
11 r ← Cl .insert(x);

12 else /* id ∈ R */
13 r ← Cr .insert(x);

/* R̂ denotes a local copy of a register R
*/

14 Ĉ ← C .read();

15 tl ← Cl .total();

16 tr ← Cr .total();

17 log(Ĉ);
18 Ĉ ′ ← new_value(Ĉ, tl , tr);
19 success← C .compare-and-swap(Ĉ,Ĉ ′);
20 if success = false then
21 Ĉ ← C .read();

22 tl ← Cl .total();

23 tr ← Cr .total();

24 log(Ĉ);
25 Ĉ ′ ← new_value(Ĉ, tl , tr);
26 C .compare-and-swap(Ĉ,Ĉ ′);

27 log(C.read());
28 return lookup(r , id ∈ L);

insert(x) operation on Cl . Let it be the j
th

insert operation on

Cl . It follows from the definition of the set object Cl that the value
tl ≥ j for both the Lines 15 and 22. Thus, if the compare-and-swap
operation in Lines 19 or 26 succeed, then the insert(x) call is

applied.

Now, consider the case when the compare-and-swap operation

in both the Lines 19 and 26 fail. As it failed in Line 19, a success-

ful compare-and-swap operation was executed on the register C
between the Lines 14 and 19 by some other process id ′. Thus, the
Line 15 of the process id ′ may or may not have executed after the

process id executedCl .insert(x). If it was after, then tl ≥ j andwe

Algorithm 4: The total() and new_value(Ĉ, tl , tr) func-
tion.

1 total()
2 Let I be the ID set of the processes that might call this

function and k = |I |;

3 if k = 1 then
4 e |t ← P .read();

5 return t ;

6 else
7 Ĉ ← C .read();

8 return Ĉ.l2 + Ĉ.r2;

9 new_value(Ĉ, tl , tr)
/* Symbol | is used as a field separator */

10 return Ĉ.l2 |Ĉ.r2 |tl |tr ;

are done. Otherwise, we know that the compare-and-swap opera-
tion in Line 26 also fails. Thus, a compare-and-swap operation from
some other process id ′′ executed successfully between the Lines 21

and 26. Thus, the line tl ← Cl .total() from process id ′′ executes
after the successful compare-and-swap operation from the process

id ′ and thus, after the process id executed Cl .insert(x). There-
fore, it holds that tl ≥ j for the process id ′′ and the insert(x) call

is applied. □

In fact, if we ignore the return value of insert(x) call for the
time being, we can also show that the calls to insert(x) and

total() are linearizable.

Lemma 3. If we ignore the return value from insert(x), then the
functions total() and insert(x) are linearizable.

Proof. For k = 1, we have a single process and the calls are triv-

ially linearizable. For k > 1, let the linearization point of total()
be Line 7. Using Lemma 2, we know that every insert(x) call is
applied before it ends. Thus, there exists a compare-and-swap oper-
ation that applies the insert(x) call. Let the linearization point of

the insert(x) call that is applied be the compare-and-swap opera-
tion that applied that call. The linearization point of insert(x) call
that is not applied is after all the previous linearization points. Let

us call the order of linearization points of insert(x) and total()
calls as LO and the same order of the corresponding calls as CO.

As all the linearization points are assigned within the duration

of their respective calls, the order defined by CO extends the partial

order of insert(x) and total() calls. If multiple calls are assigned

the same linearization point (for example, multiple insert(x) calls
applied by the same compare-and-swap operation), then we assign

them some total order relative to each other not changing their

order relative to the other calls in CO. So, we have a total order CO
on insert(x) and total() calls that extends their partial order.

Now, we need to check if the return value of these calls is consis-

tent with the order CO. As the return value of the insert(x) calls

is not the subject of this lemma, we ignore them. Now, consider a

total() call c in the order CO and the corresponding linearization

point p in the order LO. Let j be the number of insert() calls

before c in CO. Then, there are j linearization points before p in LO

ICDCN ’18, January 4–7, 2018, Varanasi, India Pankaj Khanchandani and Roger Wattenhofer

and j insert(x) calls were applied until p. Thus, the total() call

c returns at least j. In fact, it returns exactly j as otherwise more

than j insert(x) calls are applied until p and there are more than

j calls until c in CO, a contradiction. □

But, our insert(x) call should also return values. The set object

specification demands that these be distinct. We know from the

previous lemmas that a successful compare-and-swap operation on
the register C applies a bunch of insert(x) calls. If the register C
was updated with the fields l1 |r1 |l2 |r2, then a total of (l2+r2−l1−r1)
insert(x) calls were applied. Of these, there were l2−l1 insert(x)
calls that executed Cl .insert(x) and r2 − r1 insert(x) calls that

executed Cr .insert(x). The range of return values for these calls

should be t1 + 1, t1 + 2, . . ., t2 where t1 = (l1 + r1) and t2 = (l2 + r2).
We choose to assign the first l2 − l1 values of the range to the

insert(x) calls that executed Cl .insert(x) and the remaining

r2 − r1 values to the insert(x) calls that executed Cr .insert(x).
The problem in assigning these values is that not all the processes

whose insert(x) calls are applied might get a chance to read the

register C before it is updated with a new value. Therefore, we had

the log function in Lines 17, 24 and 27 that stored the contents of

the register C before updating it. Algorithm 5 shows a way to log

these values so that they can be looked up later using return value

of Cl .insert(x) or Cr .insert(x). The values stored in the array

L are used by the insert(x) calls that executedCl .insert(x), the
ones stored in arrayR are used by the insert(x) calls that executed
Cr .insert(x). The arrayT stores the information to lookup the set

object (Cl or Cr) on which the insert(x) operation was executed

given the return value of an insert(x) call. This array is used by

the remove(i) function.

Algorithm 5: The log(Ĉ) and lookup(r , inL) function.

1 log(Ĉ)
2 l1 |r1 |l2 |r2 ← Ĉ;
3 T [l2 + r2].write(Ĉ);
4 if l2 , l1 then
5 L[l2].write(Ĉ);

6 if r2 , r1 then
7 R[r2].write(Ĉ);

8 lookup(r , inL)
9 s ← r ;

10 if inL = true then
11 while L[s].read() = ⊥ do
12 s ← s + 1;

13 l1 |r1 |l2 |r2 ← L[s].read();

14 return (l1 + r1) + (r − l1);

15 else
16 while R[s].read() = ⊥ do
17 s ← s + 1;

18 l1 |r1 |l2 |r2 ← R[s].read();

19 return (l1 + r1) + (l2 − l1) + (r − r1);

The following lemma shows that using these functions we get a

linearizable implementation of the insert(x) function.

Lemma 4. Algorithm 3 is a linearizable implementation of the
insert(x) function.

Proof. For k = 1, we have a sequential implementation as per

the specification. For k > 1, let the linearization point of every

insert(x) call that is applied be the compare-and-swap operation
that applies it. Using Lemma 2, this compare-and-swap operation
occurs within the duration of the insert(x) call. The linearization
points of the insert(x) that are not applied are at the end of the

execution in some arbitrary order. The resulting order of LO of lin-

earization points defines an order CO of corresponding insert(x)
calls, which extends their partial order.

Consider a compare-and-swap operation that applies a bunch

of insert(x) calls. Say that it writes the value l1 |r1 |l2 |r2 to the

register C . It follows from the specification of the object Cl that
the corresponding insert(x) operations onCl (the ones that were
executed by the applied insert(x) calls) returned values l1 + 1,

l1 + 2, . . ., l2. Similarly, the corresponding insert(x) operations
on Cr returned values r1 + 1, r1 + 2, . . . , r2. To extend the order CO
into a total order, we order the bunch of insert(x) calls that were
applied together by first ordering the insert(x) calls that executed
Cl .insert(x) before the ones that executed Cr .insert(x) and

then in the order of return values of the insert(x) operations

executed by these calls. The updated order CO still extends the

partial order of insert(x) calls.

Now, consider the jth insert(x) call in the order CO. Say that

the compare-and-swap operation that applies the insert(x) call
writes l1 |r1 |l2 |r2 to the register C and the insert(x) call executed

Cl .insert(x). It follows from the definition of the order CO that

Cl .insert(x) returned (j − r1). Using Lemma 2, the insert(x)
call executes the compare-and-swap operation of Line 26 at the

linearization point or afterwards. Thus, the insert(x) call gets

to execute the log function in Line 27 before it ends and after

it is applied. If the value of the register C does not change until

that function is executed, then the value l1 |r1 |l2 |r2 is written to the

register L[l2]. If it does, then between the linearization point and the
log function in Line 27 there was a successful compare-and-swap
operation from another process. This process would again write

the value l1 |r1 |l2 |r2 to the register L[l2] before updating the register
C .

Thus, the lookup function in Line 28 will find the non-empty

value l1 |r1 |l2 |r2 at index l2 of Lwhen searching forwards from index

l1. Thus, the value (l1 + r1) + ((j − r1) − l1) = j is returned (Line 14

of Algorithm 5). By an argument along the same lines, it also holds

that the return value is also j when the insert(x) call executes

Cr .insert(x) operation. □

Note that not every slot in the array L orR is occupied. So, it could

take sometime before the lookup function finds a non-empty slot.

As there can be at most k insert(x) calls that aren’t applied yet at
any given moment (one per process), a single compare-and-swap
operation applies at most k of them. Thus, the lookup function

could takeO(k) steps in the worst case before it finds the next non-

empty slot. But, we can improve this by patching this O(k) empty

On the Importance of Synchronization Primitives with Low Consensus Numbers ICDCN ’18, January 4–7, 2018, Varanasi, India

slots with equally spaced O(
√
k) non-empty ones. Algorithm 6

shows the modified log function.

Algorithm 6: The optimized log(Ĉ) function.

1 log(Ĉ)
2 l1 |r1 |l2 |r2 ← Ĉ;
3 update(T , l1 + r1, l2 + r2, Ĉ);
4 if l2 , l1 then
5 update(L, l1, l2, Ĉ);

6 if r2 , r1 then
7 update(R, r1, r2, Ĉ);

8 update(A, i1, i2, Ĉ)
9 i ← i1 + ⌊

√
k⌋;

10 while i ≤ i2 do
11 A[i].write(Ĉ);
12 i ← i + ⌊

√
k⌋;

13 A[i2].write(Ĉ);

The following lemma shows that the insert(x) calls are lin-

earizable even if we use the optimized log(Ĉ) function.

Lemma 5. Algorithm 3 using Algorithm 6 for log(Ĉ) is a lineariz-
able implementation of the insert(x) function and takes O(

√
k)

steps.

Proof. The correctness proof is same as in Lemma 4 except that

the log function not only writes the value l1 |r1 |l2 |r2 on L[l2] but

also at L[l1 + i · ⌊
√
k⌋], 1 ≤ i ≤ l2/⌊

√
k⌋. The lookup still finds the

value l1 |r1 |l2 |r2 when searching forwards from index l1.
At any given moment, there can be at most k insert(x) calls

that are not finished (one per process). Using Lemma 2, there are at

most k insert(x) calls that are not applied at any given moment.

Thus, a single compare-and-swap operation can apply at most k
insert(x) calls and l2 − l1 ≤ k . Therefore, if we copy the value

l1 |r1 |l2 |r2 at equal distance of O(
√
k) between the indices l1 and

l2 (log function), then the lookup functions finds the value in at

most O(
√
k) steps. The log function also takes O(

√
k) steps and

everything else in the insert(x) call takes O(1) steps. Thus, the
insert(x) call takes O(

√
k) steps. □

To complete our implementation, we also need the remove(i)
function. The idea is to lookup the array T to find whether to

execute Cl .remove(i) or Cr .remove(i). Algorithm 7 gives the im-

plementation of the remove(i) function. The call log(Ĉ) in Line 12
just ensures that the latest update to the register C was logged.

Note that we did not define the return value in case the argument

i is even greater than the number of insert(x) operations per-

formed on the counting set. This is not a problem as we never make

such a call. In the following lemma, we show that the remove(i)
function is linearizable. We will assume that the remove(i) func-
tion is called only after the insert(x) function that returned i is
applied. We will prove this assumption to be true later when we

use the counting set.

Algorithm 7: The remove(i) function.

1 remove(i)
2 Let k be the number of processes that might call this

function;

3 if k = 1 then
4 e |t ← P .read();

5 if i < t then
6 return ⊥;

7 else
8 P .write(⊥|t);
9 return e;

10 else
11 Ĉ ← C .read();

12 log(Ĉ);
13 h ← i;

14 while T [h].read() = ⊥ do
15 h ← h + 1;

16 l1 |r1 |l2 |r2 ← T [h].read();

17 if (l1 + r1 < i ≤ (l1 + r1) + (l2 − l1) then
/* The insert(x) call that returned i

executed Cl .insert(x) */

/* Determine the value returned by the

operation Cl .insert(x) */

18 i ′ ← i − (l1 + r1) + l1;

19 return Cl .remove(i′);

20 else
/* The insert(x) call that returned i

executed Cr .insert(x) */

/* Determine the value returned by the

operation Cr .insert(x) */

21 i ′ ← i − (l1 + r1) − (l2 − l1) + r1;

22 return Cr .remove(i′);

Lemma 6. The remove(i) function from Algorithm 7 is linearizable
and takes O(

√
k) steps.

Proof. For k = 1, we have a sequential implementation that is

as per the specification. For k > 1, let the linearization point of

every remove(i) call be Line 11. The order of these linearization

points, along with those defined previously for insert(x) and

total() calls, defines a total order CO on the calls that extends

their partial order.

As per the usage constraints, the ith insert(x) call in CO is

applied before the linearization point of a call remove(i). Say, that
the ith insert(x) call executed the operation Cr .insert(x) and
the register C was updated to l1 |r1 |l2 |r2 when it was applied. From

the definition of the linearization points of insert(x) calls, the

operationCr .insert(x) returned i − (l1 + r1) − (l2 − l1)+ r1. Thus,
if the remove(i) call finds the value l1 |r1 |l2 |r2 in Line 16, it will

return the correct element in Line 21.

ICDCN ’18, January 4–7, 2018, Varanasi, India Pankaj Khanchandani and Roger Wattenhofer

There could be a successful compare-and-swap operation on

the registerC between the linearization point of the ith insert(x)
call and the linearization point of the remove(i) call. In that case,

the value l1 |r1 |l2 |r2 is written to the register T [l2 + r2] and also to

the registers T [(l1 + r1) + j · ⌊
√
k⌋], 1 ≤ j ≤ (l2 + r2)/⌊

√
k⌋. If there

was no such compare-and-swap operation, then the remove(i) call
does the same by calling log(Ĉ) in Line 12. Again, as at most k
insert(x) calls are applied by a single compare-and-swap opera-

tion, we have (l2 + r2) − (l1 + r1) ≤ k . Thus, the loop of Line 14 will

find the value l1 |r1 |l2 |r2 inO(
√
k) steps. The argument is similar for

the case when the ith insert(x) call executes Cl .insert(x). □

5.2 Analysis
Note that we still do not yet have an implementation using register

operations. We need to use the previous implementations recur-

sively to get down from n processes to 1 process. The following

lemma shows it how.

Lemma 7. There is a linearizable and wait-free implementation of
the counting set using register operations where the insert(x) and
remove(i) calls take O(

√
n) steps each and the total() call takes

O(1) steps.

Proof. Let I be an implementation that consists of Algorithm 3,

Algorithm 4, Algorithm 6, Algorithm 7 and the lookup function

from Algorithm 5. Assume that we have a wait-free and linearizable

implementation Ik/2 of the counting set using register operations
for k/2 ≥ 1 processes.

We know from Lemma 3, Lemma 5 and Lemma 6 that the im-

plementation I is linearizable. So, we can use Lemma 1 to replace

the operations on the objects Cl and Cr in the implementation I
with calls to corresponding functions of implementation Ik/2 and
we get a linearizable implementation using register operations for

k processes.

The number of steps taken by the insert(x) and remove(i)
calls in the resulting implementation can be expressed by the recur-

renceT (k) = T (k/2)+O(
√
k). Solving this fork = n andT (1) = O(1)

gives T (n) = O(
√
n). The total() operation is not recursive and is

in O(1). Thus, the resulting implementation is also wait-free. □

Ifm is the total number of insert(x) operations performed on

the counting set, then we require the arraysT , L and R to haveO(m)
slots. The space requirements can be expressed by the recurrence

T (n) = O(m) + 2T (n/2) where T (1) = O(m). This gives T (n) =
O(nm). Also, we have that the size of the registers C , T , L and R
should be large enough to hold the valuem. If we assume that the

element x or ‘pointer’ to it in the call insert(x) can be stored in

O(logn) bits, we can state the following corollary.

Corollary 8. The counting set in Lemma 7 can be implemented
using O(nm) registers of size O(max{logm, logn}) bits each where
m is a bound on the number of insert(x) calls.

6 THE QUEUE
The queue is implemented as an array. The enqueue(x) call tries
to write an element at the head and the dequeue() call removes

the element at the tail if the queue is non-empty. To manage the

tail and the head indices, we store them in a single register TH

and use the operations half-increment() and half-max(i) on

the register. Algorithm 8 specifies the effect of these operations if

the value of the first field in the TH register is t and the value of

the second field is h.

Algorithm 8: Effect of operations half-max(i) and

half-increment() on a register TH having a value t |h.

1 half-increment()
/* r stores the return value */

2 r ← −1;

3 if t ≤ h then
4 r ← t ;

5 t ← t + 1;

6 return r ;

7 half-max(i)
8 h ← max{h, i};

Algorithm 9 gives the implementation of the queue using the

TH register, a counting set object S and an array A to store the

queue elements. The register TH is initialized to 1|0. The set S is

empty initially. The enqueue(x) call starts by inserting the element

into the counting set and gets a slot number in return (Line 12).

It then stores the element in the queue array at the assigned slot

(Line 13), removes the element from the counting set to indicate that

it is done (Line 14) and updates the head (Line 15). The dequeue()
call gets the next available slot number if the queue is non-empty

(Line 2). The call then removes the element from the counting

set using the slot number (Line 6). If the remove operation on

the counting set returns an element, the dequeue() call returns

it (Line 8). Otherwise, the corresponding enqueue(x) call already
stored the element in the queue array and the dequeue() call can
read and return the element from the queue array (Line 10).

Algorithm 9: The dequeue() and enqueue(x) function.

1 dequeue()
2 i ← TH .half-increment();
3 if i = −1 then
4 return i;

5 else
6 x ← S .remove(i);
7 if x , ⊥ then
8 return x ;

9 else
10 return A[i].read();

11 enqueue(x)
12 i ← S .insert(x);
13 A[i].write(x);
14 S .remove(i);
15 TH .half-max(i);

Before we show the correctness, we first prove the following

assumption about the usage of the remove(i) function.

On the Importance of Synchronization Primitives with Low Consensus Numbers ICDCN ’18, January 4–7, 2018, Varanasi, India

Lemma 9. It holds for Algorithm 9 that remove(i) is only called
after the insert(x) call that returns i is applied.

Proof. The remove(i) operation is called either in Line 6 or

Line 14. Clearly, the claim holds for the call in Line 14 as the corre-

sponding insert(x) call is finished after Line 12 and hence applied
using Lemma 2. For the call in Line 6, i , −1 at that point. Thus, we
have that TH .h ≥ i . This implies that there was an enqueue(x) call
that executed half-max(j) where j ≥ i . Thus, a call S .insert(x)
returned a value j ≥ i and was applied using Lemma 2. Thus, the

insert(x) call that returned i was also applied. □

Lemma 10. Algorithm 9 is a linearizable implementation of a queue.

Proof. Let every completed enqueue(x) call be linearized at the
point of execution of Line 12. If the enqueue(x) call is incomplete,

let i be the value returned in Line 12. In case TH .h ≥ i at the end of
the execution, the incomplete enqueue(x) call is again linearized

at Line 12. Otherwise, the incomplete enqueue(x) call is linearized
after all other calls. Let every dequeue() call be linearized at the

point of execution of Line 2. The resulting order LO of linearization

points defines a total order CO on the corresponding calls that

extends their partial order.

We now prove that the return values of the calls is same as per the

order CO. As an enqueue(x) call does not return anything, there

is nothing to check. Consider a dequeue() call and its linearization
point p in the order LO. Let t |h be the value of TH register before

the linearization point p (before Line 2 is executed). There are two

cases depending on whether the call returns −1 or a value from

Line 6 or Line 10.

Say that the call returns −1. Then, an enqueue(x) call wrote

the value h to the second field of the register TH in Line 15. As

S .insert(x) in Line 12 returns a different value each time, there are

h enqueue(x) linearization points in LO beforep. As the dequeue()
call returns −1, we have t > h. Moreover, there are exactly h
dequeue() linearization points until p so that the corresponding

calls returned an element from Line 6 or Line 10. If the element

returned was from Line 6, then it was non-empty (, ⊥). If it was
returned from Line 10, then it received an empty response (= ⊥)

in Line 6 because some other call already removed that element

from S . That call can only be an enqueue(x) call because only one

dequeue() call executes S .remove(i) in Line 6 for a fixed i . And,
an enqueue(x) call removes an element from S in Line 14 only

after writing it to the array A in Line 13. Thus, an element returned

from Line 10 of a dequeue() call was also non-empty (, ⊥). Thus,
there are h dequeue() linearization points before p in the order LO
so that the corresponding dequeue() calls returned a non-empty

value. Therefore, the return value is also −1 as per the order CO.
Now, consider the other case when the dequeue() call returns

an element y from Line 6 (S .remove(t)) or Line 10 (A[t].read()).
As argued above, we havey , ⊥. Moreover, there are t −1 lineariza-
tion points of dequeue() calls before p that returned a non-empty

element. Thus, we have to show that enqueue(y) call is the t th

one in the order CO. If the call returns S .remove(t), then this

value was inserted by an operation S .insert(x) that returned t
because of the counting set specification. Thus, this was executed

by an enqueue(x) call that is the t th one in CO and x = y. If the

dequeue() call returns A[t].read(), then S .remove(t) was exe-

cuted by some other call c . This cannot be another dequeue() call

as S .remove(i) is called only by the dequeue() call that receives
i in Line 2. Thus, c is an enqueue(x) call. Therefore, c executed
A[t].write(x) and received t in Line 12. Thus, enqueue(x) call c
is the t th one in CO and x = y. □

As before, we can use Lemma 1 to replace the operations on

the set object with calls to its linearizable implementation. Note

that the enqueue(x) and dequeue() functions execute O(1) steps
besides the counting set operations. Thus, we have the following

corollary.

Corollary 11. Algorithm 9 gives a wait-free and linearizable im-
plementation of queue using register operations where enqueue(x)
and dequeue() take O(

√
n) time steps. The implementation requires

O(nm) registers of size O(max{logn, logm}) bits each wherem is a
bound on the total number of enqueue(x) calls.

7 THE CONSENSUS NUMBERS
Here, we show that the consensus number of the half-max(i) op-

eration is one and the consensus number of the half-increment()
operation is two. We first show that we can solve consensus among

one process using the half-max(i) operation and two processes us-

ing the half-increment() operation. The case for the half-max(i)
operation is trivial as every operation can solve consensus among

one process (itself) by just deciding on its input value. For the

half-increment() operation, we initialize a register R to the value

0|2. Each process then announces its input value and executes the

half-increment() operation on the register R. If the operation
returns 0, the process decides on its input value. If the operation re-

turns 1, the process decides on the input value of the other process.

Both the processes decide on the same input value as the semantics

of the half-increment() operation ensure that only one process

gets the return value of 0. To show that the half-max(i) opera-

tion cannot solve consensus among two processes and that the

half-increment() operation cannot solve consensus among three

processes, we use the standard indistinguishability arguments.

Let us first define some terms. The configuration of the system

is the value of the local variables of each process and the value

of shared registers. The initial configuration consists of the initial

value of the shared registers and the input value of 0 or 1 for each

process. A given configuration is called a bivalent configuration if

there are two possible executions from the configuration so that in

one of the executions all the processes terminate and decide 1 and in

the other all the processes terminate and decide 0. A configuration

is called 0-valent if in all the possible executions from the configu-

ration, all the processes terminate and decide 0. Similarly, we define

a 1-valent configuration. A configuration is called univalent if it
is either 0-valent or 1-valent. A configuration is called critical if
it is bivalent and a step by any process changes it to a univalent

configuration. The initial configuration is bivalent as a process with

input 1 will decide 1 if it is the only process that takes steps, and a

process with input 0 will decide 0 if it is the only process that takes

steps. As the terminating state is univalent, every correct consensus

algorithm must reach a critical configuration. Now, we can show

the respective consensus numbers by contradiction.

ICDCN ’18, January 4–7, 2018, Varanasi, India Pankaj Khanchandani and Roger Wattenhofer

Consider the half-max(i) operation. Assume that it can solve

consensus for processes A and B. Then, a critical configuration c is
reached. Say that the next step sA by the process A gives a 0-valent

configuration c0. Then, the next step sB by the process B gives a

1-valent configuration c1. We have the following cases.

(1) The steps sA and sB are operations on different registers: In

this case, the configurations obtained by taking the step sB
on c0 and by taking the step sA on c1 are indistinguishable to
bothA and B. Thus,A running alone on these configurations

decides the same value, a contradiction.

(2) One of the steps sA or sB is a read operation: Say sA is the

read operation. Then, the configuration obtained by taking

the step sB on c0 is indistinguishable from c1 to the process

B. The reason is that the read operation sA only changes A’s
local state. Thus, B running alone on these configurations

decides the same value, a contradiction.

(3) The steps sA and sB are half-max(i) operations on the same

register: In this case, the configurations obtained by taking

the step sB on c0 and by taking the step sA on c1 are indistin-
guishable to both A and B as the half-max(i) operation is

commutative and does not return anything. Thus,A running

alone on them decides the same value, a contradiction.

Therefore, the critical configuration c cannot be reached and the

operation half-max(i) cannot solve consensus for two processes.

Let us now consider the half-increment() operation. Assume

that it can solve consensus for three processes A, B and C . Then, a
critical configuration c is reached. Say, that the next step sA by the

process A gives a 0-valent configuration c0 and that the next step

sB by the process B gives a 1-valent configuration c1. As per the
reasoning in case of half-max(i) operations, the steps sA and sB
cannot be operations to different registers. Also, neither of them

can be a read operation. So, the only case left is that both sA and sB
are half-increment() operations to the same register R. In this

case, consider the configuration obtained by executing the step sB
on c0 and the configuration obtained by executing the step sA on c1.
Due to the specification of the half-increment() operation, the
value of the register R is same in both these configurations. Thus,

the process C running alone on these configurations decides the

same value, a contradiction.

8 DISCUSSION
If we look back at our queue design, then we used registers support-

ing the compare-and-swap operation, and another register (the TH
register) that supports the half-increment and half-max operations.

The problem is that these low consensus number operations are

not supported by the modern hardware. But, closely related opera-

tions fetch-and-increment and compare-and-swap-if-greater-than

(max) are supported [10, 11]. It is an interesting question if there

is a theoretical basis for choosing a certain set of low consensus

number primitives to implement in hardware. In terms of space

usage, we are conceptually using an infinite array (arrays T , L and

R of the counting set can be merged with the queue array A). One
can try to improve this as a future work by upgrading the logging

mechanism to a dynamic one from a static one. However, our goal

in this work was to show as a proof-of-concept that low consensus

number primitives can also be fundamentally powerful for design-

ing concurrent data structures. Moreover, the problem of designing

a sublinear wait-free queue with unbounded concurrency seems

hard even with infinite arrays. David’s algorithm [3], for example,

gives a bounded concurrency queue with infinite arrays.

Also, we could consider the register TH as a separate object and

ask the question whether it is possible to implement such a object

in sublinear time using only compare-and-swap operations? Or, by

also using a breadth of other read-modify-write operations such as

decrement, multiply, xor, etc., that are commonly supported in hard-

ware. In general, we wonder whether we should focus on designing

our concurrent data structures using a specific primitive with in-

finite consensus number (in particular compare-and-swap) or all
the primitives that the modern hardware may provide, essentially

ignoring their consensus numbers!

REFERENCES
[1] Yehuda Afek, Dalia Dauber, and Dan Touitou. 1995. Wait-free Made Fast. In 27th

Annual ACM Symposium on Theory of Computing (STOC), Las Vegas, Nevada,
USA.

[2] Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid Guer-

raoui. 2014. Tight Bounds for Asynchronous Renaming. Journal of the ACM
(JACM) (2014).

[3] Matei David. 2005. A Single-Enqueuer Wait-Free Queue Implementation. In 18th
International Conference on Distributed Computing (DISC), Cracow, Poland.

[4] Faith Ellen, Rati Gelashvili, Nir Shavit, and Leqi Zhu. 1990. A Complexity-

Based Hierarchy for Multiprocessor Synchronization: [Extended Abstract]. In

Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing
(PODC), Chicago, IL, USA.

[5] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. 2007. SNZI: Scalable

NonZero Indicators. In 26th Annual ACM Symposium on Principles of Distributed
Computing (PODC), Portland, Oregon.

[6] Faith Ellen and Philipp Woelfel. 2013. An Optimal Implementation of Fetch-and-

Increment. In 27th International Symposium on Distributed Computing (DISC),
Jerusalem, Israel.

[7] Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A Highly-efficient Wait-

free Universal Construction. In 23rd Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), San Jose, California, USA.

[8] Maurice Herlihy. 1991. Wait-free Synchronization. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) (1991).

[9] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness

Condition for Concurrent Objects. ACM Transactions on Programming Languages
and Systems (TOPLAS) (1990).

[10] Hybrid Memory Cube Consortium 2015. Hybrid Memory Cube Specification 2.1,
Comparison Atomics, Page 68. Hybrid Memory Cube Consortium.

[11] Intel 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A: System Programming Guide, Part 1, Section 8.1.2.2. Intel.

[12] Prasad Jayanti and Srdjan Petrovic. 2005. Logarithmic-Time Single Deleter,

Multiple Inserter Wait-Free Queues and Stacks. In 25th International Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
Hyderabad, India.

[13] Prasad Jayanti and Srdjan Petrovic. Jul. Efficient and Practical Constructions of

LL/SCVariables. In 22ndAnnual Symposium on Principles of Distributed Computing
(PODC), Boston, Massachusetts.

[14] Pankaj Khanchandani and Roger Wattenhofer. 2017. Brief Announcement: Fast

Shared Counting using O(n) Compare-and-Swap Registers. In ACM Symposium
on Principles of Distributed Computing (PODC), Washington, DC, USA.

[15] Alex Kogan and Erez Petrank. 2011. Wait-free Queues with Multiple Enqueuers

and Dequeuers. In 16th ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP), San Antonio, TX, USA.

[16] Maged M. Michael. 2004. Practical Lock-Free and Wait-Free LL/SC/VL Imple-

mentations Using 64-Bit CAS. In 18th International Symposium on Distributed
Computing (DISC), Amsterdam, Netherlands.

[17] Adam Morrison and Yehuda Afek. 2013. Fast Concurrent Queues for x86 Pro-

cessors. In 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), Shenzhen, China.

[18] Jacob T. Schwartz. 1980. Ultracomputers. ACM Transactions on Programming
Languages and Systems (TOPLAS) (1980).

[19] Chaoran Yang and John Mellor-Crummey. 2016. A Wait-free Queue As Fast As

Fetch-and-add. In 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), Barcelona, Spain.

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 A Bird's Eye View
	5 The Counting Set
	5.1 Algorithm
	5.2 Analysis

	6 The Queue
	7 The Consensus Numbers
	8 Discussion
	References

