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Abstract

Consider the Ants Nearby Treasure Search (ANTS) problem, where n mobile
agents, initially placed at the origin of an infinite grid, collaboratively search
for an adversarially hidden treasure. The agents are controlled by determin-
istic/randomized finite or pushdown automata and are able to communicate
with each other through constant-size messages. We show that the minimum
number of agents required to solve the ANTS problem crucially depends on the
computational capabilities of the agents as well as the timing parameters of the
execution environment. We give lower and upper bounds for different scenarios.
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1. Introduction

Recent research on understanding the behavior of insect colonies from a
distributed computing perspective has mainly focused on questions like “How
long does it take a large collection of ants to locate a food source?” [1, 2] or
“How do the computational capabilities of a single ant within this collection
affect the time until the food source is found?” [3, 4, 5, 6].

In this paper, we take a computability point of view and, instead of fo-
cusing on large numbers of agents and on the time required to find a food
source, analyze the minimum number of agents that is required to locate a food
source within (expected) finite time. More precisely, we show that the mini-
mally required number of agents crucially depends on the model assumptions,
e.g., whether the environment is synchronous or asynchronous.

While different models of synchronization have been studied earlier in the
literature, we take a look at two different aspects that have crucial effects on
the difficulty of our search problem. On one hand, we study both randomized
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and deterministic protocols in contrast to the aforementioned previous work,
that focused only on the randomized case. Our results indicate that the search
problem becomes strictly harder in the deterministic setting.

On the other hand, we extend the previous work with respect to the choice
of the model of computation. While previous work considered agents that are
controlled by finite automata (FA) or Turing machines, we study a model that is,
at least according to Chomsky’s hierarchy, inbetween these two models, namely
a pushdown automaton (PDA). While it might intuitively feel that providing
the agent(s) with infinite memory makes the problem trivial, we show that in
the determistic model, this is not necessarily the case.

For all combinations of the aforementioned characteristics, we establish lower
and upper bounds on the number of agents required to locate the food. Our
bounds are tight in most cases. We note the striking resemblance to the problem
of finding the number of people needed to change a light bulb: For people, the
answer usually depends on nationality and profession while for ants, it depends
on timing and computational power.

We essentially present two different families of algorithms – rectangle/spiral
searches and geometric searches – which are inspired by results of Emek et
al. [1]. The main contributions of this paper, however, are the lower bounds for
two deterministic FA- and one deterministic PDA-agent presented in Section 4.1
and Section 5.2, respectively. Table 1 gives a complete picture of our findings.

As border cases of our findings, we point out that in an asynchronous set-
ting four agents are sufficient to solve the problem when their computational
capabilities are most restricted, i.e., they are controlled by deterministic FAs.
If we allow access to random bits and grant the agents slightly more computa-
tional power – a PDA – already one single agent can solve the problem. Note
that neither of these results require the full computational power of a Turing
machine.

We do not claim that our considerations are particularly relevant from a
biological perspective – an ant hive generally consists of significantly more than
four ants. However, our results show that powerful computational capabilities
can be traded for primitive means of communication while still being able to
solve complex problems – even for small number of agents.

1.1. Related Work
Our work is inspired by Feinerman et al. who proposed a problem called

ants nearby treasure search (ANTS), where n ants, or agents, are searching the
plane [2, 3]. The agents are controlled by Turing machines and are not allowed
to communicate with each other after leaving the origin. Assuming a knowledge
of a constant approximation of n, the agents are able to locate the treasure
in time O(D + D2/n) where D is the distance to the treasure. Furthermore,
Feinerman et al. observe a matching lower bound and prove that this lower
bound cannot be matched without some knowledge of n.

There are two fundamental differences between the model studied by Fein-
erman et al. and our models. First, our agents are operated by finite automata
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or pushdown automata. The stronger computational model provided by Tur-
ing machines enables individual agents to accomplish tasks way beyond our
capabilities, such as performing spiral searches and remembering the execution
history. In a recent related work, Lenzen et al. study the effects that bounding
the memory of the agents and the range of available probabilities have on the
runtime [5]. In particular, they show that the time needed to discover can be
expressed as a function of D,n and `, where ` ∈ O(logD) and an agent can use
at most O(`) random bits per round.

Second, our agents are allowed to communicate outside the origin, yet only
through constant-size messages – a model which was also studied by Emek et
al. [1]. Another previously studied way to describe such communication is the
pheromone model, where the agents are allowed to leave marks into the grid
that the other agents can sense [7]. In our model, the agents are allowed to
communicate with other agents in the same cell, which is, to some extend,
analogous to the agents bumping into each other.

The general concept of graph exploration is widely studied in computer
science. Typically, given a graph, the task is to visit all nodes by walking
along the edges [8, 9, 10, 11, 12]. It is well-known that random walks allow a
single agent to visit all nodes of a finite undirected graph in expected polynomial
time [13]. Note that there are infinite graphs, such as a grid, where the expected
time for a random walk to reach any designated node is infinite. Our problem
can also be seen as a variant of the game of cops and robbers, where the robber
remains dormant [14].

The classic example of a treasure finding problem is the cow-path problem.
The task in the cow-path problem is to find a treasure on a line as quickly
as possible. This task can be solved with a constant competitive ratio with a
deterministic algorithm. The optimal algorithm for the 2-dimensional version is
a simple spiral search [15]. The problem has also been studied in a multi-agent
setting by López-Ortiz and Sweet [16].

Also finite automata searching a graph have been studied earlier [4]. Other
work considering distributed computing by finite automata includes for example
population protocols [17, 18]. Recently, a new general model of computation
in graphs was introduced, where the nodes are controlled by finite automata
instead of Turing machines [19]. The main connection to our work is that we
use an equivalent communication model.

1.2. Model
We consider a variant of [2]’s ANTS problem, where a set of mobile agents

search the infinite grid for an adversarially hidden treasure. Our model is an
adapted version of the model used in a paper by Emek et al. [1]. Each agent
is controlled either by a finite automaton or by a pushdown automaton, both
either deterministic or randomized, with a common sense of direction and can
communicate only with agents sharing the same grid cell.

More formally, consider n mobile agents that explore Z2. In the beginning
of the execution, all agents are positioned in the same grid cell referred to as
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the origin (say, the cell with coordinates (0, 0) ∈ Z2). In contrast to prior
work, we do not assume that the agents can distinguish between the origin
and the other cells (see Section 1.5 for a discussion of this matter). We refer
to the cells with either x or y-coordinate equal to 0 as north/east/south/west-
axis, depending on which part of the plane they are located. For example, the
north-axis corresponds to the set of cells {(0, y) | y ≥ 0}.

The distance dist(c, c′) between two grid cells c = (x, y) and c′ = (x′, y′) in
Z2 is defined with respect to the `1 norm (a.k.a. Manhattan distance), that is,
|x−x′|+ |y− y′|. Two cells are called neighbors if the distance between them is
1. In each step of the execution, agent a positioned in cell (x, y) ∈ Z2 can either
move to one of the four neighboring cells (x, y+1), (x, y−1), (x+1, y), (x−1, y),
or stay put in cell (x, y). The former four position transitions are denoted by
the corresponding cardinal directions N,E, S,W , whereas the latter (stationary)
position transition is denoted by P (standing for “stay put”). We point out that
the agents have a common sense of orientation, i.e., the cardinal directions are
aligned with the corresponding grid axes for every agent in every cell.

In an asynchronous environment, each agent’s execution progresses in dis-
crete (asynchronous) steps indexed by the non-negative integers. We denote
the time at which agent a completes step i > 0 by ta(i) > 0 and call ta(i)
an activation time. Following common practice, we assume that the activation
times ta(i) for all a and i are determined by the policy ψ of an adversary that
knows the protocol but is oblivious to its random bits, whereas the agents do
not have any sense of time. The set of activation times determined by the ad-
versary is called a schedule and thus, the policy of an adversary is a function
from the set of possible protocols to the set of possible schedules, which is in-
dependent of the random coin tosses. Throughout the paper, we will use the
terms synchronous/asynchronous policy and -/- schedule interchangeably in the
rest of the paper, despite their subtle difference. A synchronous environment
corresponds to the special case where ta(i) = i for all agents a and all i > 0.

The communication and computational capabilities of the agents are limited.
Specifically, in our model, an agent a positioned in cell c ∈ Z2 can communicate
with all other agents positioned in cell c at the same time. This communication is
limited though: agent a merely senses for each state q of its (finite or pushdown)
automaton, whether there exists at least one agent a′ 6= a in cell c whose current
state is q. Notice that this communication scheme is a special case of the one-
two-many communication scheme introduced in [19] with bounding parameter
b = 1.

Since we only consider instances with a constant number of agents, we allow
each agent to run a different individual protocol. This is modeled by assigning
to each agent an individual initial state in the respective automaton (note that
this is only relevant in the deterministic case as otherwise coin flips can be used
to separate agents). The protocol is controlled by either a finite automaton or
a pushdown automaton. We shall first explain the semantics of the former and
then explain the additional capabilities of the latter.
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FA-protocol. When an agent employs an FA-protocol, it has a constant memory
and thus, in general, cannot store coordinates in Z2. Formally, the agent’s
protocol is captured by the 3-tuple Π = 〈Q, sa

0 , δ〉, where Q is the finite set of
states, sa

0 ∈ Q is the initial state of agent a, and δ : Q × 2Q → 2Q×{N,S,E,W,P}

is the transition function. To allow the agents to perform different tasks also in
the absence of randomization, each agent a has a unique start state sa

0 in which
it resides at time 0. Suppose that at time ta(i), agent a is in state q ∈ Q and
positioned in cell c ∈ Z2. Then, the state q′ ∈ Q of agent a at time ta(i + 1)
and its corresponding movement τ ∈ {N,S,E,W,P} are dictated based on
the transition function δ by picking the tuple (q′, τ) uniformly at random from
δ(q,Qa), where Qa ⊆ Q contains state p ∈ Q if and only if there exists some
(at least one) agent a′ 6= a such that a′ is in state p and positioned in cell c
at time ta(i). A FA-protocol is deterministic if each step is deterministic, i.e.,
|δ(q,Qa)| ≤ 1 for all q ∈ Q and Qa ⊆ Q. For simplicity, we assume that while
Qa (input to δ) is determined based on the status of cell c at time ta(i), the
actual application of the transition function δ occurs instantaneously at the end
of the step, i.e., agent a is considered to be in state q and positioned in cell c
throughout the time interval [ta(i), ta(i+ 1)).

PDA-protocol. When an agent employs a PDA-protocol, it is controlled by a
pushdown automaton with an infinite stack. The communication and movement
model remains the same. The only addition is that in each step, an agent reads
and removes the top-most symbol from the stack (“pop”) – if the stack is empty,
the agent reads the special symbol ε and the stack remains unchanged – and
then adds a finite amount of symbols to the top of the stack (“push”). The
symbol read from the stack serves as additional input to the agent. Formally,
the agents’ protocol is captured by the 4-tuple Π = 〈Q, sa

0 ,Γ, δ〉, where Q is
the finite set of states, sa

0 ∈ Q is the initial state of agent a, Γ is the finite
stack alphabet, and δ : Q× 2Q × Γ ∪ {ε} → 2Q×Γ∗×{N,E,S,W,P} is the transition
function. Suppose that at time ta(i), agent a is in state q ∈ Q, positioned in
cell c ∈ Z2, and the top-most symbol on the stack is γ ∈ Γ ∪ {ε}. Then, the
state q′ ∈ Q of agent a at time ta(i+ 1), the word α ∈ Γ∗ to be written to the
stack, and the corresponding movement τ ∈ {N,E, S,W,P} are dictated based
on the transition function δ by picking the tuple (q′, α, τ) uniformly at random
from δ(q, γ,Qa), where Qa ⊆ Q is defined as in an FA-protocol.

1.3. Problem Setting
We consider two different variants of the problem, where the goal in both is

to locate an adversarially hidden treasure, i.e., to bring at least one agent to the
cell in which the treasure is positioned while the distance of the treasure from
the origin is denoted by D. In async-ANTS, the problem is to find the treasure
in an arbitrary asynchronous environment while in the sync-ANTS problem the
agents operate in a synchronous environment. A FA/PDA-protocol P is effective
if it allows the agents to locate the treasure in finite time if P is deterministic,
or if the agents locate the treasure in expected finite time if P is randomized.
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1.4. Preliminaries
For our deliberations we require a sequence of definitions. Let A be the set

of agents. We denote by EPa (t) the cells that an agent a employing protocol P
has visited until time t and furthermore EP(t) =

⋃
a∈AE

P
a (t). In the context of

the sync-ANTS problem, we take the liberty to write EPa (i) for a (then global)
step i as shorthand for EPa (ta(i)) and analogous for EP(i). We omit P in the
previous expressions if the considered protocol is clear from the context.

1.5. Non-Distinguishable Cells
As mentioned above, in our model the agents cannot distinguish between

any two cells on the grid. In particular, an agent cannot distinguish the origin
from any other cell. This is in clear contrast to most previous work, where the
origin usually is a special cell that can be distinguished by the agents. Here we
will briefly justify why we deviate from the established literature in this respect.

The goal of this paper is to determine the minimum number of agents re-
quired to locate the treasure under different model variations. Previous work
mainly considered large numbers of ants where a distinguishable origin can
easily be emulated by leaving a single dedicated agent at the origin without
affecting the asymptotic parameters of the algorithm. Clearly, such an assump-
tion does not effectively change the power of a model when one is interested in
asymptotics.

Since we consider small, i.e., constant number of agents, the situation is
slightly different. As some of the algorithms presented in the previous section
employ one agent solely to mark the origin, one could argue analogously to
the case of many agents and allow the agents to distinguish the origin and
in return raise the minimum number of required agents by one. However, we
have also presented algorithms that do not use an agent to mark the origin
and therefore would not benefit from such a modification. It hence seems that
a distinguishable origin is not an essential requirement for effective algorithms
and thus we decided to consider the weaker model, thereby leaving it to the
discretion of the algorithm designer whether or not a distinguishable origin is
needed.

As we do not want the agents to infer any information on where on the
grid they are standing simply based on information that they can observe from
standing on a certain cell, we chose the infinite grid as the underlying topology.
Other topologies, for example a quarter plane or a an infinite strip, do not
fulfill this criterion, as agents can distinguish between cells on the border and
other cells simply by looking at the degree of the cell. As mentioned above, we
wanted to study the weakest model, and we note that the presented algorithms
can easily be modified in such a way that certain agents are substituted by
landmark information.

1.6. Outline and Results
The rest of the paper is structured as follows. First, in Section 2, we study

the asynchronous and deterministic version of our model and show that 4 agents,
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Problem
FA PDA

sync async sync async
det rand det rand det rand det rand

One agent ×7 ×7 ×8 X9 ×8 X9

Two agents ×4 ? ×4 ? X5,6 X6

Three agents X2 X3 ? X3

Four agents X1

Table 1: The symbol × indicates that the given combination does not allow for an effective
protocol while X states that there does exist an effective protocol. Empty cells follow imme-
diately from other entries while cells marked with ? represent open problems. The numbers
in the superscript refer to the theorem establishing the respective result.

controlled by finite automata, are enough to discover the treasure. In Section 3,
we study the randomized and the synchronous variants of the model and show
that under both of these variants, 3 agents are enough to discover the treasure.
Then, in Section 4, we show that two agents controlled by a PDA are enough
to discover the treasure and given access to random bits, we show in Section 5
that the treasure can be discovered by a single PDA controlled agent.

Then, we contrast these results by showing in Section 4 that 2 deterministic
finite automata are not enough to discover the treasure. Finally, in Section 5, we
show that neither one randomized finite automaton nor a single deterministic
PDA is enough to find the treasure. Our results are summarized in Table 1.

2. Four Agents

The goal of this section is to solve the async-ANTS problem without using
randomization. We provide a simple protocol for four FA-agents that uses three
of the four agents as landmarks for the fourth agent. The fourth agent discovers
the whole grid in a spiraling fashion with increasing distance to the origin.

We begin by giving an informal description of the protocol. The landmark
agents, referred to as Guides, position themselves in a triangle around the origin
and after getting a signal from the searching agent, called the Explorer, move
step by step further away from the origin. The Explorer moves to the Guides one
by one signaling them to expand the triangle. This way the Explorer is able to
guarantee that it can always reach one Guide after meeting another by simply
walking a (possibly diagonal) straight line, even after the Guides are within a
super-constant distance from each other and the origin.

All three Guides have specific roles and therefore we give them task-specific
names: NorthGuide, WestGuide and EastGuide. The agents execute the following
protocol, which is illustrated in Figure 1. The protocol is initialized by the
NorthGuide moving once north, the WestGuide moving once west and the East-
Guide moving once east. After the Explorer notices that the origin is empty, it
moves once north.

NorthGuide. When the NorthGuide meets a WaitingExplorer, it moves once north.
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Figure 1: Four agents are discovering the grid and currently are performing a triangle search
in distance 3. The origin is denoted by a gray square, the Explorer (X) by a red circle
and the NorthGuide (N), WestGuide (W) and EastGuide (E) by black circles labeled with the
corresponding initial letters. The numbers indicate the order of movements, i.e., moves along
the arrow labeled with i are performed only after the moves along the arrow labeled with i−1
are finished. The dashed red line indicates the path of the Explorer in distance 2.

WestGuide. When the WestGuide meets a WaitingExplorer it moves once west
and becomes a MovingWestGuide. The MovingWestGuide first moves once west
and then once south and becomes a WestGuide again.

EastGuide. When the EastGuide meets a WaitingExplorer it moves once south
and becomes a MovingEastGuide. The MovingEastGuide moves twice east and
becomes again an EastGuide.

Explorer. The Explorer continuously performs triangle searches in increasing dis-
tances. It continuously moves into a given direction, starting with south-west
(by alternatingly moving south and west). When the Explorer meets a West-
Guide, it changes its moving direction to east and becomes a WaitingExplorer.
When it meets an EastGuide, it changes the direction to north-west and becomes
a WaitingExplorer. Finally, when the Explorer meets a NorthGuide, it changes its
moving direction to south-west (alternates between west and south) and be-
comes a WaitingExplorer. Notice that the Explorer meets the NorthGuide in the
starting position of the triangle search in the next distance. Whenever the Ex-
plorer meets a MovingWestGuide or a MovingEastGuide in cell c, it waits until c
is empty before continuing to move.

WaitingExplorer. When the WaitingExplorer resides in a cell that does not con-
tain an EastGuide, a NorthGuide, or a WestGuide, it becomes an Explorer and
continues moving.

We index the triangle searches by their distances, i.e., if the Explorer meets
the NorthGuide in cell (0, i) and starts moving south-west, we index the corre-
sponding triangle search by index i and denote it by TSi. A triangle search in
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distance i starts when the Explorer leaves cell (0, i) by moving west and ends
when the Explorer meets a NorthGuide. Furthermore, we say that TSi works
correctly, if the Explorer meets the WestGuide only in cell (−2i+ 1,−i+ 1), the
EastGuide only in cell (2i− 1,−i+ 1) and the NorthGuide only in cell (0, i+ 1)
during TSi.

Lemma 1. Every triangle search works correctly.

Proof. Consider TS1. Initially, all the Guides are located in cells adjacent to
the origin. By the design of our protocol, the Explorer first makes sure that the
NorthGuide goes into cell (0, 2). After this, it moves south-west and reaches the
WestGuide in cell (−1, 0). Then it travels east and reaches the EastGuide in cell
(1, 0). From there, it travels north-west and meets the NorthGuide in cell (0, 2).
Thus, the claim holds for TS1.

Assume then that the claim holds for TSi−1 and consider TSi. The Explorer
starts moving south-west from cell (0, i). According to the induction assump-
tion, the WestGuide is located in either (−2i + 2,−i + 2), (−2i + 1,−i + 2) or
(−2i + 1,−i + 1). Since the Explorer moves diagonally, it has to pass all of
these cells. According to the design of our algorithm, it does not overtake the
MovingWestGuide, i.e., the MovingWestGuide reaches its destination before the
Explorer, and therefore the Explorer meets the WestGuide in cell (−2i+1,−i+1).

Similarly, when the Explorer starts moving towards east, the correctness of
the previous triangle ensures that the MovingEastGuide reaches the cell (2i −
1,−i + 1) before the Explorer. After meeting the EastGuide, the Explorer starts
moving diagonally towards the starting point and reaches it after 2i movements.
Since the Explorer moves north in the next step, it meets the NorthGuide in cell
(0, i+ 1).

To show that the treasure eventually gets discovered, we need two more
auxiliary observations. First, we show that every cell in distance d is discovered
latest during TSd+1. Second, we show that each triangle search finishes within
finite time. We call the set of cells along which the Explorer moves during TSi

the path of rectangle search i.

Observation 2. Every cell c within distance d to the origin is discovered latest
during TSd+1.

Proof. We prove the claim by induction on the distances of the cells, i.e., we
show that all cells within distance d are contained in a triangle search with index
at most d + 1. The base case is clear since the origin is contained within the
path that the Explorer moves during TS1.

Assume then that the claim holds for all cells in distance d. By the design
of the triangle search protocol, the path of TSi+1 contains all the cells adjacent
to the cells in the path of TSi that are not discovered during TSi. See Figure 1
for illustration. Therefore, all cells in distance d+1 are discovered latest during
TSd+2.

Observation 3. Every triangle search ends within finite time.
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Proof. Let t be the time when TSi starts for some i > 0. By Lemma 1, we know
that TSi−1 worked correctly and therefore we know that the WestGuide reaches
cell (−2i+1,−i+1) and the EastGuide reaches cell (2i−1,−i+1) latest by time
t+ 3. Therefore, latest by time t+ 3 + 4i, the Explorer meets the WestGuide in
cell (−2i+ 1,−i+ 1). By time t+ 3 + 4i+ 2, the WestGuide has left the cell and
the Explorer can continue moving east. By time t+ 5 + 4i+ 4i+ 2, the Explorer
turns towards the NorthGuide and finally reaches its cell by time t+ 7 + 8i+ 4i
ending the triangle search.

We can now combine the results from this section. Recall that D is the
distance to the treasure. By Observation 2, the treasure is found latest dur-
ing TSD+1. As the duration of each search is finite by Observation 3 and by
Lemma 1 each triangle is eventually searched, we get the following theorem.

Theorem 1. There exists an effective deterministic FA-protocol for async-ANTS
for n = 4.

3. Three Agents

3.1. Deterministic Protocol for sync-ANTS
In this section, we first show that we can get rid of one of the FA-agents by

giving the agents a common notion of time. In other words, if we assume that
the execution of the algorithm is synchronous, three agents suffice to discover
the treasure. Our goal is to prove the following theorem.

Theorem 2. There exists an effective deterministic FA-protocol for sync-ANTS
for n = 3.

The idea of the three-agent protocol is similar to the protocol from Section 2.
Again, one of the agents, the Explorer, performs the actual searching and the two
other agents work as Guides. The task of one of the Guides, called OriginGuide,
is simply to stand still and mark the origin throughout the execution. The task
of the other Guide is to tell the Explorer when it hits an axis. On the first round
of the execution, the Explorer and the other Guide move one step north to cell
(0, 1) and then start the execution of the following protocol.

Explorer. The Explorer repeatedly performs rectangle searches in increasing dis-
tances. It starts the first rectangle search in distance 1 by diagonally moving
south-west, i.e., alternating between moving west and south. When it meets a
Guide, it alters its movement direction by 90◦ counter-clockwise. At the end of
a complete rectangle (i.e., when meeting a Guide again at the starting point), it
moves one step outwards starting a new rectangle search with a larger distance.
During a rectangle search in distance d, the Explorer discovers all cells that have
distance d to the origin.
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Figure 2: Three agents can discover the entire
grid under a synchronous environment. The
dashed circles indicate the locations where the
Explorer (X) meets the Guide (G). The Origin-
Guide (O) marks the origin.
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Figure 3: Three agents are perform-
ing a geometric search on the north-
west quarter plane. Moves along the
black arrows are executed by both the
Explorer (X) and the Guide (G) while
the OriginGuide (O) states at the ori-
gin. Moves along the red arrows are
executed only by the Explorer.

Guide. The Guide starts by moving towards the OriginGuide that marks the
origin. When it meets the OriginGuide, it alters its direction by 90◦ clockwise
and moves outwards. When it meets the Explorer, it turns around and moves
inwards towards the OriginGuide. The Guide also moves one step north with the
Explorer when they meet in the end of searching a rectangle and starts walking
towards the OriginGuide afterwards.

The execution of our protocol is illustrated in Figure 2. To prove Theorem 2,
we only need to show that every time the Explorer enters a cell on an axis, it
meets a Guide. To see why this is sufficient, consider any cell c on the plane
with distance d to the origin. Then c is searched (latest) during rectangle search
in distance d. Therefore, assuming that each rectangle search is performed
correctly, the whole plane is eventually discovered.

It is fairly easy to see that the Explorer and the Guide never fail to meet.
Consider round r when the Explorer and a Guide meet on an axis during rectangle
search in distance d. Then the distance that both of them have to move until
the next meeting point is 2d. Since both agents move exactly once per round,
the claim follows. Note that the assumption of a synchronous environment is
crucial here.

3.2. Randomized Protocol for async-ANTS
We now show that if we are not restricted to deterministic state machines

but allow randomization, we can find the treasure under an asynchronous envi-
ronment with only 3 FA-agents. The fundamental idea behind our randomized
protocol is that the agents use a fair coin to determine which cells to discover.

Again, we have two Guides and one Explorer and the task of one of the agents,
the OriginGuide, is to simply stay in the origin. The Explorer performs the actual
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searching and starts by uniformly at random choosing either (north, east), (east,
south), (south, west) or (west, north), i.e., it randomly chooses a quarter plane.
Then, the Explorer performs a geometric search on that quarter plane.

Consider the case of choosing (east, south) as the quarter-plane (the search
in the other quarter-planes works analogously). The Guide and the Explorer
execute the following protocols.

Explorer. The Explorer starts by moving once east. Then on every step the Ex-
plorer tosses a fair coin and if it shows heads, it moves east. When the coin shows
tails, the Explorer stops and becomes a WaitingExplorer until its cell is occupied
by a WaitingGuide. When the WaitingGuide appears, the WaitingExplorer moves
one cell south, becomes an Explorer, and continues tossing coins but now moves
one cell south every time the coin shows head instead of east. When the coin
shows tails, the Explorer turns back, i.e., starts moving north. After the Explorer
reaches a cell with a WaitingGuide, it stops and moves west (until it reaches an
OriginGuide) whenever its cell contains no WaitingGuide.

Guide. The Guide moves east on every step if its cell is not occupied by an
Explorer. When it meets a WaitingExplorer, it turns into a WaitingGuide. When
the WaitingGuide meets an Explorer, it becomes a Guide again and moves west
whenever its cell is not occupied by an Explorer until it meets an OriginGuide.

After all the agents reach the origin, they restart the process. The protocol
is illustrated in Figure 3. It is easy to see that each geometric search has a
finite duration with probability 1 since the Explorer throws a finite number of
heads in every search with probability 1. Assume that the number of heads is
finite. Then the Explorer becomes a WaitingExplorer in finite time. After the
Explorer becomes a WaitingExplorer, the Guide moves towards the cell of the
WaitingExplorer in every step and therefore reaches it in finite time. Similarly,
the Explorer returns to the WaitingGuide in finite time and they both reach the
OriginGuide in finite time.

Theorem 3. There exists an effective randomized FA-protocol for async-ANTS
for n = 3.

Proof. Assume that the treasure is located in cell c = (x, y) in the north-east
quarter plane with D = x + y. Let us index the geometric searches, i.e., the
iterations of the algorithm, by the positive integers. Clearly, the protocol is
defined so that if the treasure is found in search i, then search j > i is not
needed, however, for the sake of the analysis, we assume that the agents keep
performing the searches indefinitely and bound the time until the treasure is
found – let T be the random variable that captures this time. Given this view,
we know that search i is independent of all searches other than i.

Let Ai be the event that the Explorer finds the treasure in search i. This
happens if it chooses the right quarter plane, throws heads exactly x− 1 times
before throwing tails once and then throws heads y− 1 times. Hence, Pr(Ai) =
1
4 · 2

−(x−1) · 1
2 · 2

−(y−1) = 2−(D+1). Let Bi = ¬A1 ∧ · · · ¬Ai−1 ∧Ai be the event
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that the treasure is found in search i and not in any search j < i. Let Li be the
random variable that measures the number of distinct cells the Explorer visits
in search i, i.e., the length of the path along which the Explorer moves during
search i. We rely on the following equations that hold for every i ≥ 1 and
1 ≤ j < i:

(1) Pr(Ai) = 2−(D+1)

(2) Pr(Bi) = (1− 2−(D+1))i−12−(D+1)

(3) E[Li | Bi] = E[Li | Ai] = O(D)
(4) E[Lj | Bi] = E[Lj | ¬Aj ] = O(1)

Therefore,

E[T ] =
∞∑

i=1
E[T | Bi] · Pr(Bi)

=
∞∑

i=1

( i−1∑
j=1

E[Lj | Bi] + E[Li | Bi]
)
· (1− 2−(D+1))i−12−(D+1)

=
∞∑

i=1
(O(i) +O(D)) · (1− 2−(D+1))i−12−(D+1)

= 2−(D+1) ·
∞∑

i=1
O(i) · (1− 2−(D+1))i−1

+O(D) · 2−(D+1) ·
∞∑

i=1
(1− 2−(D+1))i−1

= 2−(D+1) · O(22D) +O(D) · 2−(D+1) · 2D+1 = O(2D) .

4. Two Agents

Our goals in this section are to show, on the negative side, that two deter-
ministic FA-agents cannot solve sync-ANTS, and, on the positive side, that one
deterministic FA-agent together with one deterministic PDA-agent can solve
sync-ANTS.

4.1. No Deterministic FA-Protocol
We start off with proving the first result. Before doing so, we define the

notion of a band in Z2. A band is the discrete version of a fat line in Euclidean
space, i.e., the set of cells that have at most a certain distance from a line.

Definition. A band B = (s,m, e), s = (sx, sy) ∈ Z2 with slope m = (mx,my) ∈
Z2 of extent e ∈ N>0 consists of all cells c for which there exists a point p =
(sx +λmx, sy +λmy) for some λ ∈ R such that ‖c−p‖1 ≤ e where ‖x‖1 denotes
the `1-norm of x.

Observation 4. Let B be a finite set of bands with finite extent. Then Z2 \⋃
B∈B B 6= ∅.
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Proof. Assume for the sake of a contradiction that the bands in B cover Z2

completely. Let e∗ be the maximum extent of the bands in B. Consider a square
region S of Z2 with `2 cells for ` > 2|B|e∗ and a fixed band B = (s,m, e) ∈ B.
Assume wlog. that |mx| ≤ |my|. Observe that |B∩S| ≤ ` ·2e∗ since S vertically
extends over ` cells and the horizontal width of B ∩ S is at most 2e∗. Let
A =

⋃
B∈B B and we get |A ∩ S| ≤ 2|B|e∗ · ` < `2 = |S|. Thus, the bands in B

do not even cover the cells in S, a contradiction.

We denote by M(P) = (ti)i>0 the strictly increasing sequence of all points in
time when two agents meet during the execution of protocol P. Furthermore, we
denote the coordinates of agent a at time t by Ca(t). An important ingredient
for the proof is the following lemma, which holds for an arbitrary amount of
agents.

Lemma 5. If P is an effective deterministic FA-protocol for sync-ANTS, then
|M(P)| =∞.

Proof. Assume for the sake of contradiction that P is an effective deterministic
protocol with finite |M(P)|. Thus, there exists a largest point in time t∗ =
max(M(P)) when two agents meet and after which no two agents meet anymore
and the number of cells explored until t∗ is finite. Consider now agent a and let
q be the state that has been entered by agent a twice after t∗ at the earliest time.
Let (ti)i>0 be the strictly increasing sequence of points in time after t∗ when
a enters state q and denote Ii = [ti, ti+1]. Observe that the behavior of a in
each interval Ii is identical, hence a will keep on repeating the same transitions
and movements as in I1 forever. Observe further that a can only move a finite
distance in each Ii as it has a finite length.

Consider the vector vi(a) = Ca(ti+1)−Ca(ti) describing the net-translation
of a during Ii and observe that by the above argument vi(a) = v1(a) for all
i > 0. There are two cases: If v1(a) = 0, then agent a explores only a constant
amount of cells for t → ∞. If v1(a) 6= 0, then a exhibits a net-movement into
the direction of v1(a) in each Ii and since it only explores a constant amount
of cells in each Ii, agent a explores only cells in a band with finite width after
t∗. By Observation 4, the agents cannot explore all cells in Z2 and the claim
follows.

Theorem 4. There exists no effective deterministic FA-protocol for sync-ANTS
for n = 2.

Proof. Assume for the sake of contradiction that P is an effective deterministic
protocol for two agents a1 and a2. By Lemma 5 we know that |M(P)| = ∞.
Let Q1 and Q2 be the set of states of the two FAs controlling a1 and a2. We
denote by Q1(t) ∈ Q1 and Q2(t) ∈ Q2 the state of agent a1 and a2 at time t
and further Q(t) = (Q1(t), Q2(t)). Observe that since |M(P)| =∞, there must
be a pair of states (q1, q2) ∈ Q1 × Q2 such that the sub-sequence T = (τi)i>0
of M(P) that consists of all τ ∈ M(P) such that Q(τ) = (q1, q2), is infinite.
We denote the intervals Ii = [τi, τi+1] and observe that a1 and a2 (individually)
perform exactly the same state transitions and movements in each interval Ii
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(agent a1 and a2 might meet between τi and τi+1 in different states, but their
behavior is fully determined by their states at time τi). Thus, there is a fixed
vector v = Ca1(τi+1) − Ca1(τi) representing the translation of the meeting cell
of a1 and a2 during some Ii and furthermore a fixed constant ϑ > 0 such that
τi+1−τi = ϑ. Consequently, a1 and a2 can only explore cells in a band with finite
width after τ1. Since E(τ1) is finite, Observation 4 yields a contradiction.

4.2. Deterministic FA/PDA-Protocol for sync-ANTS
The second result of this section establishes that while two agents controlled

by a FA do not allow for an effective deterministic protocol for sync-ANTS, one
FA-agent and one PDA-agent do so.

The protocol is essentially an adapted version of the protocol from Sec-
tion 3.1. The Explorer behaves identically to Section 3.1 and performs rectangle
searches with increasing distances to the origin. The second PDA-agent replaces
the two Guides by walking along the axis in order to signal to the Explorer when
the search in a quarter-plane is complete and it should therefore alter its move-
ment direction. The trick here is that the Guide tracks its distance from the
origin using the stack. More precisely, the Guide pushes a symbol onto the stack
whenever it performs a movement outwards on one of the axes and pops one
symbol from the stack whenever it moves towards the origin. Using this trick,
the Guide can detect when it has arrived at the origin by verifying whether the
stack is empty, i.e., the read symbol is ε. Then the algorithm works as follows:

At time t = 0, the Guide and the Explorer both move one cell north (and the
Guide records this move on the stack). Whenever the two agents are located
together on the north-axis in cell (0, d), the Explorer starts a diagonal walk
towards south-west while the Guide moves south towards the origin until it
arrives there, which it can track using the stack. Upon arriving there, it moves
west until it meets the Explorer. As the length of the two (different) paths from
cell (0, d) to cell (−d, 0) is equal, both the Guide and the Explorer arrive in cell
(0,−d) at the same time. Now the Explorer changes its movement direction
and the Guide moves back to the origin after which it moves south to meet the
Explorer on the south-axis in cell (0,−d). They repeat this process to meet on
the west-axis in cell (d, 0) and on the north-axis in cell (0, d). When the Explorer
has completed the rectangle search of level d by arriving at cell (0, d) again, it
moves together with the Guide to cell (0, d + 1) and the search of level d + 1
begins.

It is easy to see that the above algorithm guarantees that the Explorer meets
the Guide every time it crosses an axis and that therefore any level d is explored
in finite time.
Theorem 5. There exists an effective deterministic protocol for sync-ANTS for
n = 2 that uses one FA-protocol and one PDA-protocol.

4.3. Deterministic PDA-Protocol for async-ANTS
Since two PDAs can simulate a Turing machine [20] by using both their

stacks to represent the infinite band of the Turing machine, it is not too surpris-
ing that two PDAs allow for an effective deterministic protocol for async-ANTS.
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The two agents a and b employ the following protocol: Both agents walk “hand-
in-hand”, i.e., have a distance of at most 1 at all times, and perform a spiral
search with increasing distances from the origin (cf. Section 3.1). At any time
during the execution, they maintain the invariant that the sum of the number of
symbols on both stacks equals their distance from the origin. They start from
the cell (0, 1) with the stack of agent a containing one symbol. When the two
agents start a spiral search from cell (0, i), agent a has i symbols on is stack.
When a and b walk south-west, agent a removes a symbol from its stack every
other step while agent b pushes one symbol to its stack every other step. When
the stack of agent a is empty, agent b’s stack contains i symbols and the agents
have arrived at the cell (−i, 0) on the west-axis. Then they reverse their roles
and move together to the south, east, and again north-axis in the same fashion
to finish the search in distance i. Thereafter, they move one cell north, push
one additional symbol to the stack to account for the increased distance and
start a new search in distance i + 1. It is easy to see that this protocol can be
implemented to work in an asynchronous environment and guarantees that the
two agents locate the treasure.

Theorem 6. There exists an effective deterministic PDA-protocol for async-
ANTS for n = 2.

5. One Agent

In this section we show that neither a single randomized FA-agent nor a single
deterministic PDA-agent can find the treasure in finite time while a randomized
PDA-agent is able to do so.

5.1. No Randomized FA-Protocol
Consider a single agent who is controlled by a finite state machine. The

movements the agent performs on the grid can be described by a Markov chain,
where we simply assign the state set of the Markov chain to be the states of
the finite state machine and the transition probabilities to be the probabilities
assigned to the corresponding state transitions. Clearly, this Markov chain is
finite and all state transition probabilities are constants. Therefore, it must con-
tain an irreducible subset H of states that are entered within constant amount
of state transitions with a non-zero constant probability; for the rest of the sec-
tion, we condition on this event and focus on the restriction of the Markov chain
to the states of H. If we show that the expected time to reach the treasure is
infinite under this event, it follows that the expected time to reach the treasure
is infinite in general, since this event occurs with constant probability.

Let s be the first state in H visited by the Markov chain. Let d be the
distance of the agent from the origin when the Markov chain visits state s for
the first time and recall that d is bounded from above by some constant. Since
H is an irreducible set of states with finite cardinality |H|, standard Markov
chain theory (see, e.g., [21]) ensures that state s is visited infinitely often with
probability 1 and the expected time between any two such visits is finite.
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For our purposes, it is enough to study the movements in one dimension
and therefore, we project the location of the agent on the x-axis and ignore its
movements in the y-dimension. So, in what follows we focus on a single agent
that traverses Z and assume towards contradiction that the agent hits every
point x ∈ Z in finite expected time.

Let Zs be the set of integers x ∈ Z such that the agent has a positive
probability to visit x while in state s. Since H is finite, there exist a positive
integer m and a non-negative integer k such that Zs = {zm + k | z ∈ Z}. Let
Xi ∈ Z, i = 1, 2, . . . , be the (x-coordinate of the) location of the agent at the
ith time the Markov chain visits state s and let Zi = (Xi − k)/m.

The key observation now is that the irreducibility of the Markov chain con-
trolling the movements of the agent implies that the agent hits every point
x ∈ Zs while in state s in finite expected time. In other words, the random
variable T (z) = min{i ≥ 1 | Zi = z} has finite expectation for every z ∈ Z.

The stochastic process {Zi}i≥1 is, by itself, Markovian, i.e.,

Pr(Zn = zn | Z1 = z1, . . . , Zn−1 = zn−1) = Pr(Zn = zn | Zn−1 = zn−1) .

This process belongs to a family of stochastic processes that have been char-
acterized by Feller [22, p. 396, Theorem 2] based on the random variable Y =
Zi+1 − Zi, concluding that:

(1) if E[Y ] > 0, then Zi drifts to the right and E[T (z)] =∞ for any z < −d;
(2) if E[Y ] < 0, then Zi drifts to the left and E[T (z)] =∞ for any z > d; and
(3) if E[Y ] = 0, then Zi is null-recurrent and E[T (z)] =∞ for any z such that
|z| > d.

In all three cases we reach a contradiction to the assumption that E[T (z)] is
finite for all z ∈ Z, thus establishing the following theorem.

Theorem 7. There exists no effective randomized FA-protocol for sync-ANTS
for n = 1.

5.2. No Deterministic PDA-Protocol
Consider a single agent controlled by a deterministic PDA-protocol. We

denote by S(i) the size of the stack, i.e., the number of symbols on the stack
(directly) after step i and by C(i) = (q, γ) the tuple of the state q ∈ Q and the
top-most stack symbol γ ∈ Γ (directly) after step i. Let C = Q × Γ be the set
of all configurations and observe that |C| is constant. As the behavior of a PDA
is fully determined by its state and the top-most stack symbol, the following
observation is immediate.

Observation 6. Let 0 < i1 < i2 be two different steps with C(i1) = C(i2)
and let i2 be the smallest such index. If S(i) ≥ S(i1) for all i1 ≤ i ≤ i2, then
C(j) = C(j + k · (i2 − i1)) for all i1 ≤ j ≤ i2 and k ∈ N0.

Note that the observation also implies that the agent executes the identical
sequence of actions between step i1 and i2.
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step ii∞ imin i′ i′ + ∆

S(i)

∆ ∆

Figure 4: The size S(i) of the stack varies for the different steps. All configurations entered
after step i∞ are entered infinitely often. The stack exhibits its minimal size after i∞ at step
imin while C(imin) is entered again for the first time at time i′. Then the PDA will keep
repeating its behavior after imin with period ∆ = i′ − imin.

Observe that, since any protocol must be able to run for an arbitrary time,
we can partition the set C into the configurations Cf containing all configurations
that are entered finitely often and the configurations C∞ that are entered in-
finitely often during the execution of a given protocol. Observe that there exists
step i∞ such that C(i) ∈ C∞ for any step i > i∞. The following lemma essen-
tially states that after a certain step ir > i∞, the PDA will keep on repeating
its behavior with a finite period ∆ (see Figure 4 for an illustration).

Lemma 7. There exists an index ir > i∞ and a period ∆ ∈ N0 such that for
all steps i with ir ≤ i < ir + ∆ we have C(i+ k ·∆) = C(i) for all k ∈ N0.

Proof. Let smin ∈ N0 be the minimum stack size after i∞ and let imin be the
smallest index i > i∞ for which S(i) = smin. Let i′ > imin be the smallest step
such that C(i′) = C(imin). By definition of imin there exists no index i > imin
with S(i) < S(imin). Thus, imin and i′ satisfy the preconditions of Observation 6
and the claim follows for ir = imin and ∆ = i′ − imin.

As the PDA keeps on repeating its behavior after step ir with constant
period ∆, the agent can only explore cells in a band of finite width after ir.
As ir is finite and thus E(ir) is also finite, Observation 4 implies the following
theorem.

Theorem 8. There exists no effective deterministic PDA-protocol for sync-
ANTS for n = 1.

5.3. Randomized PDA-Protocol for async-ANTS
The randomized protocol is an adapted version of the randomized FA-pro-

tocol for three agents from Section 3.2. There, one agent repeatedly performs
geometric searches to a random cell in a geometrically distributed distance. It
uses the two other agents to find its way back to the origin in order to start
the next iteration of the search. A single agent employing a randomized PDA-
protocol can do the same by using the stack to record its distance to the origin
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and thereby, it can perform a geometric search and then return to the origin for
the next iteration. More precisely, the agent performs a geometric search as in
Section 3.2 but whenever moving north/east/south/west, it pushes N/E/S/W,
respectively, to the stack. When one geometric search ends, the agent can
retrace its steps by walking north/east/south/west when reading S/W/N/E,
respectively, and ends up at the origin when the stack is empty. Then, it can
start the next iteration. To show that time required to find the treasure with
this protocol is finite, we can simply observe that the PDA-protocol is never
slower than the protocol with 3 FA-agents and therefore, we get the following
theorem directly from Theorem 3.

Theorem 9. There exists an effective randomized PDA-protocol for async-
ANTS for n = 1.

6. Returning to the Origin

In this section we briefly explain the techniques through which the previously
mentioned protocols can be amended in order to guarantee that, upon locating
the treasure, all agents return to the origin in a timely manner, i.e., with a
constant multiplicative overhead in terms of the runtime.

For all deterministic protocols, the idea is simply that upon locating the
treasure, the agent(s) invert the search and progressively move closer towards
the origin in the same manner as they moved further away from the origin in
the search stage. More concretely, when the Explorer locates the treasure, it first
finishes the search of the current distance from the origin (the current triangle
or diamond in the 4-ant and 3-ant protocol, respectively) to move all guides into
a well-defined position. Then it starts a walk along the triangle/diamond in the
next distance but notifies the Guides that it meets on the way that the treasure
has been found and that they should also retrace their steps back towards the
origin. Clearly, this technique ensures that all the agents eventually end up at
the origin. In the two deterministic protocols involving PDAs, returning to the
origin is even simpler. After locating the treasure, the agents continue until
they arrive at the next axis and then, knowing the distance to the origin, they
simply walk back along the axis until they arrive at the origin.

As both randomized protocols involve that all agents repeatedly return to
the origin, the agents can just follow the same procedure upon locating the
treasure.

7. Conclusion

The variety of results of this paper are summarized in Table 1. While our
findings almost completely cover the landscape of problem configurations, Ta-
ble 1 essentially shows two gaps, which, in our opinion, represent interesting
open problems: Can two agents controlled by a randomized FA solve the syn-
chronous or asynchronous version of the ANTS problem? Is there an effective
FA-protocol for async-ANTS for three agents when no random bits are available?
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We conjecture that the answer two both questions is “no”, but our efforts to
prove this have not been fruitful, yet.
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