
Optimal Clock Synchronization in Networks

Christoph Lenzen
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

lenzen@tik.ee.ethz.ch

Philipp Sommer
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

sommer@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract
Having access to an accurate time is a vital building block

in all networks; in wireless sensor networks even more so,
because wireless media access or data fusion may depend
on it. Starting out with a novel analysis, we show that or-
thodox clock synchronization algorithms make fundamental
mistakes. The state-of-the-art clock synchronization algo-
rithm FTSP exhibits an error that grows exponentially with
the size of the network, for instance. Since the involved pa-
rameters are small, the error only becomes visible in mid-
size networks of about 10-20 nodes. In contrast, we present
PulseSync, a new clock synchronization algorithm that is
asymptotically optimal. We evaluate PulseSync on a Mica2
testbed, and by simulation on larger networks. On a 20 node
network, the prototype implementation of PulseSync outper-
forms FTSP by a factor of 5. Theory and simulation show
that for larger networks, PulseSync offers an accuracy which
is several orders of magnitude better than FTSP. To round off
the presentation, we investigate several optimization issues,
e.g. media access and local skew.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network

Architecture and Design, Network Protocols

General Terms
Algorithms, Design, Theory, Experimentation, Measure-

ment, Performance

Keywords
Sensor Networks, Time Synchronization, Clock Drift,

Lower Bound

1 Introduction
Without doubt, providing a common notion of time is one

of the most basic services in any distributed system. Sev-
eral applications depend on network nodes having a precisely
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synchronized time. In wireless sensor networks, accurate
time is particularly important, first and foremost because of
energy efficiency. In order to increase the network lifetime,
nodes try to minimize their duty cycle by sleeping whenever
possible. To get any work done, nodes must wake up from
time to time, in order to communicate with their neighbors,
for instance. Although one can imagine several ways to es-
tablish communication even without accurate clock synchro-
nization, the most energy efficient protocols let two neigh-
boring nodes wake up at (hopefully) exactly the same time.
The neighbor nodes can make sure very quickly that no mes-
sages have to be exchanged, and go back to sleep. If they
need to exchange information, they will go back to sleep as
soon as finished.

However, having a precise common time has many appli-
cations beyond wireless media access and energy efficiency.
Even in wired sensor networks one may be interested in hav-
ing an exact time, since several nodes may experience the
same acoustic or seismic event [2, 27, 32], and the better lo-
cal times are synchronized, the better the location of such an
event can be detected. Indeed, an improvement in time ac-
curacy will linearly improve spatial resolution. Finally, ac-
curate time will help in networks where nodes are neither
wireless nor equipped with (acoustic) sensors, for instance
in multiplayer Internet games.

How is an accurate common time achieved? One solution
is to equip all nodes with receiver modules to have access to
UTC provided by the Global Positioning System (GPS). In
many applications this is impossible, e.g., in indoor applica-
tions, or just too expensive. Instead, each node is equipped
with a cheap hardware clock which is not really accurate;
over time it will accumulate drift. To reduce this drift, a clock
synchronization algorithm is implemented: Nodes commu-
nicate by regularly exchanging messages, trying to minimize
the synchronization error between the nodes in the network.

This is challenging due to several issues. Apart from the
drifting clocks, synchronization is hindered by the fact that
the time to send, receive, and process messages cannot be
determined exactly. Furthermore, clock drifts change over
time; the most prominent factor here is temperature (cf. Fig-
ure 1). This is bad news, since it imposes that a) nodes must
periodically re-synchronize and b) the system has to detect
variations in clock speeds and adapt quickly, both goals that
contradict the desire to save energy. Therefore, an efficient
protocol cannot simply enforce the best possible synchro-



nization; rather it has to optimize the trade-off between skew
bounds and communication costs.

 921808

 921810

 921812

 921814

 921816

-15 -10 -5  0  5  10  15  20  25  30  35

Fr
eq

ue
nc

y 
(H

z)

Temperature (°C)

Figure 1: Hardware clock frequency of a Mica2 node for
different ambient temperatures. A difference of 5 degrees
alters the clock speed by up to one microsecond per second.

Over time a variety of clock synchronization algorithms
have been proposed and implemented. A typical lecture on
clock synchronization will cover the usual suspects, from
NTP over RBS and TPSN to FTSP. Everybody teaching the
same is a good sign of research being done and over. So, is
clock synchronization solved?

We believe not. We start out with a theoretical analysis
of clock synchronization, tailored to provide results having
impact in practical scenarios. Analyzing the state-of-the-art
protocol FTSP in this theoretical framework will reveal that
it does have a serious scalability problem. It will only be-
come visible in mid-size networks of about 10-20 nodes, but
the problem exists, as clock skew in FTSP grows exponen-
tially with network diameter. For many applications, e.g., the
deployment at the Golden Gate Bridge [13] which has a net-
work diameter of 46 hops, it is important to have precisely
synchronized clocks even for far-away nodes in the network.
Moreover, this example illustrates that wireless sensor nodes
may be deployed in environments with rapidly changing am-
bient temperature. In such scenarios, a fast response to vari-
ations in clock drifts becomes a most pressing issue in the
design of a suitable synchronization protocol.

Consequently, we are going to propose PulseSync, a novel
clock synchronization algorithm that matches the lower
bound emerging from the theoretical analysis. Time infor-
mation from a reference node is propagated as fast as possi-
ble through the network, allowing for adaptivity to changes
in network topology and temperature. Furthermore, we em-
ploy a sophisticated mechanism to prevent drift estimation
errors from propagation through the network and impairing
the synchronization accuracy. PulseSync improves the syn-
chronization accuracy while using equal or less energy than
FTSP and other current clock synchronization protocols.

We will back our theoretical results with measurements
on a testbed of 20 Mica2 nodes, and with extensive simu-

lations of larger networks. The experiments show an aver-
age network synchronization error of FTSP of 23.96 μs with
a maximum error of 249 μs. PulseSync reduces this clock
skew significantly to average and maximum skews of only
4.4 μs and 38 μs, respectively. The simulations forecast that
this gap widens rapidly; for 50 nodes, FTSP will be several
orders of magnitude worse, whereas clock skews of Pulse-
Sync will grow by less than a factor 2.

Finally, we discuss the issues of efficient media access
and possible optimizations regarding the local skew.

2 Related Work
Clock synchronization has been studied extensively ever

since the advent of distributed systems. In wireless networks,
the classic solution is to employ an atomic clock, such as in
the global positioning system (GPS). However, limitations
in terms of cost and energy make it in general unfeasible to
equip each sensor node with its own GPS receiver. More-
over, line of sight to the GPS satellites is needed, restricting
the use of GPS to outdoor applications.

Classical clock synchronization algorithms rely on the
ability to exchange messages at a high rate, which may not
be possible in wireless networks, and certainly is not energy-
efficient. Traditional algorithms like the Network Time Pro-
tocol (NTP) [21] are to complex to be used for sensor net-
work applications. Moreover, as their original application
domain is the Internet, they are not accurate enough for our
purpose; even in a local area network they may experience a
clock skew in the order of milliseconds.

To achieve considerable better results, sensor networks
require sophisticated algorithms for clock synchronization
since the hardware clocks in sensor nodes are often sim-
ple and may experience significant drift. Moreover, the
multi-hop character of wireless sensor networks compli-
cates the problem, as one cannot simply employ a standard
client/server clock synchronization algorithm as in wired
networks.

As research in sensor networks evolved during the last
years, many different approaches for clock synchronization
were proposed [24, 25, 33]. Reference Broadcast Synchro-
nization (RBS) [8] exploits the broadcast nature of the phys-
ical channel to synchronize a set of receivers with one an-
other. A reference node is elected to synchronize all other
nodes within a cluster. Since differences in radio propagation
times can be neglected in sensor networks, a reference mes-
sage arrives at the same instant at all receivers. The times-
tamp of the reception of a reference broadcast is recorded at
each node and exchanged with other nodes to calculate rel-
ative clock offsets. Although being designed for single-hop
time synchronization only, RBS can be utilized for multi-hop
communication as component of other clock synchronization
algorithms [15].

The Timing-sync Protocol for Sensor Networks (TPSN)
[10] elects a root node and builds a spanning tree of the net-
work during an initial level discovery phase. In the synchro-
nization phase of the algorithm, nodes synchronize to their
parent in the tree by a two-way message exchange. Using
the timestamps embedded in the synchronization messages,
the child node is able to estimate the transmission delay and



the relative clock offset. MAC layer time-stamping is used
to reduce possible sources of uncertainty in the message de-
lay. However, TPSN does not use drift compensation which
makes frequent re-synchronization mandatory.

This shortcoming is tackled by the Flooding-Time Syn-
chronization Protocol (FTSP) [19]. FTSP elects a root node
based on the smallest node identifier and forms an ad-hoc
tree structure by flooding the current time information of the
root node into the network. Each node uses a linear regres-
sion table to convert between the local hardware clock and
the clock of the reference node.

Although FTSP provides good global synchronization at
low communication cost on small networks, it potentially
incurs large skews between neighboring nodes due to the
large stretch of the employed tree structure. This problem
is avoided by the Gradient Time Synchronization Protocol
(GTSP) [29], which follows a completely distributed scheme
where nodes synchronize to all of their neighbors. While en-
suring global synchronization comparable to FTSP even for
small networks, skew between neighboring nodes is signifi-
cantly smaller.

Rapid Time Synchronization (RATS) [16] employs a net-
work-wide broadcast to disseminate the local time of the root
node. As in the FTSP protocol, linear regression is used to
estimate and compensate clock skews.

Another approach to exploit all communication links has
been proposed in [28], where the algorithm seeks to mini-
mize the sum over all edges of the squared skews. This can
be accomplished in a distributed manner by applying a gra-
dient descent on the corresponding linear system. Similar to
most of the practicable protocols proposed so far, a low mes-
sage frequency is paid for by slow information dissemina-
tion, imposing skews at least linear in the network diameter.

The fundamental problem of clock synchronization has
been studied extensively and many theoretical results have
been published which give bounds for the clock skew and
communication costs [18, 23]. In [4] a worst-case lower
bound of Ω(D) on the system-wide synchronization achiev-
able was shown, where D denotes the network diameter.
Given the hardware clock drift, the algorithm presented in
[30] minimizes the global skew.

Astonishingly, the worst-case skew between neighboring
nodes is not independent of the network diameter. A lower
bound of Ω(d + logD/ log logD) has been proved [9] for
nodes in distance d of each other, which also holds if de-
lay uncertainties are neglected and an adversary can decide
when messages are sent [20]. This result has recently been
strengthened to Ω(d + logD) and matched up to small con-
stants [17].

However, we argue that these well-established theoretical
lower bounds are based on too harsh assumptions to describe
the practical limitations of clock synchronization. Typically
they are proved by taking adversarial control of message de-
lay jitters and/or clock drifts. However, jitters are random in
nature and clock drift does not vary arbitrarily, at least not
arbitrarily quickly. We believe that this approach covers a
quite general class of distributed systems. Apart from sensor
networks, our results may apply to acoustic networks (see
e.g. [31]), for instance.

3 Model
We model a (sensor) network of |V | =: n nodes as undi-

rected graph G = (V,E) of diameter D, where edges {v,w} ∈
E represent bidirectional communication links. A message
sent by a node v∈V is received by all of its neighbors w∈Nv.
For the purpose of our analysis, we assume that communica-
tion is reliable and the network is static. However, it takes
messages some time to arrive at their destination. More pre-
cisely, the message delay is the time between a node decid-
ing to send a message and the receiver finally processing it.
This delay is in the order of milliseconds in wireless sensor
networks. For several reasons, such as accuracy of compu-
tation, clock granularity, and scheduling of local operations,
the message delay is not determined exactly, i.e., the system
suffers from random deviations of the message delay, the so
called message delay jitter [10]. By means of MAC layer
timestamping, the jitter can be kept close to the limits given
by the clock granularity [19]. In our model, we assume that
remaining jitter in the message delay is normally distributed
with a standard deviation of J and mean T or is uniformly
distributed in [T − J ,T + J ].

Each node v is equipped with a hardware clock Hv(t)
whose value at real time t is

Hv(t) = Hv(0)+
⌊Z t

0
hv(τ) dτ

⌋

where Hv(0) is the hardware offset and hv(τ) is the hard-
ware clock rate of node v at time τ. The rate of the hardware
clock depends on conditions like the temperature, the sup-
ply voltage, or crystal quartz aging, all changing over time,
but even under perfectly stable and identical environmental
conditions the clocks of different nodes will run at different
speeds. However, we assume that

∀v ∈V ∀t : |1−hv(t)| ≤ ρ � 1,

i.e., the clocks exhibit a bounded drift. Typical hardware
clock drifts are around 30 parts per million (ppm), while the
fluctuations due to temperature are substantially smaller.

On top of the hardware clocks, nodes compute logical
clock values Lv(t). The goal of a clock synchronization al-
gorithm is to ensure that these values are as closely synchro-
nized as possible both between any two nodes in the network
and between neighbors. This is measured by the (maximum)
global skew

G(t) := max
v,w∈V

{|Lv(t)−Lw(t)|}

and the (maximum) local skew

L(t) := max
v∈V,w∈Nv

{|Lv(t)−Lw(t)|}.

Correspondingly, the average global and local skews are the
average skews between all pairs of nodes respectively neigh-
bors.

Certainly, these objectives can only be accomplished if
nodes exchange messages about their state on a regular ba-
sis. Nevertheless, an algorithm should strive to minimize the
communication necessary to maintain synchronization. Al-
though we do not impose any explicit constraints on the size



of messages in our model, they are expected to be small, typ-
ically containing only a few bytes, e.g., a clock value and one
or two variables.

4 Analysis
We now derive a lower bound on the global skew that

a quite general class of algorithms in any system satisfying
our model will experience. Afterwards we will examine why
current synchronization algorithms do not achieve matching
synchronization quality. To this end, we exemplarily show
that both FTSP and GTSP exhibit significantly larger global
skews than necessary. Our observations will give rise to the
PulseSync algorithm proposed in Section 5.

4.1 Lower Bound on the Global Skew
Synchronizing the clocks of different sensor nodes in-

volves the exchange of timing information over the radio
channel. Several protocols for time synchronization use a
reference or root node which disseminates its current clock
value every beacon interval B. Therefore, an important pre-
requisite for every clock synchronization algorithm is the
ability to estimate the rate at which the clock of another node
advances. Hence, we examine how well the relative hard-
ware clock rates can be estimated by the system even if they
remain constant within an interval of length kB, k ∈ N, and
nodes base their estimate on k clock values.
LEMMA 4.1. Assume that the hardware clock rates hv and
hw of neighbors v,w∈V are constant, and v sends k ≥ 2 mes-
sages to w within a time interval of length kB, which do not
depend on events that happened before that interval. If the
jitter of the messages is normally distributed with a standard
deviation of J or uniformly distributed in [−J ,J ], the prob-
ability that any estimate r̂v

w of the relative hardware clock
rate rv

w := hv/hw that w computes has an error of at least
Ω
(
J /

(
Bk3/2

))
is constant, i.e.,

P
[
|r̂v

w − rv
w| ≥ Ω

(
J

Bk3/2

)]
≥ 1

2
.

PROOF. It takes T ±J time to send a message, i.e., the hard-
ware clock values w received from v are affected by a random
jitter with standard deviation J . Note that any values apart
from v’s hardware clock value at the time of sending are of
no use to w, since they are afflicted by the same error.1

Therefore, dividing the difference of two such values by
the hardware time of w that has passed between the two mes-
sages containing them, an estimate of rv

w with standard devi-
ation in the order of J /(Bk) is obtained. This way, at most
k− 1 independent estimates of rv

w can be computed, all suf-
fering from a statistical error in the order of J /(Bk). Observe
that rv

w is the mean of this distribution. Since by linearity of
expectation variance is additive, the sum of k − 1 indepen-

dent estimations of rv
w has standard deviation Θ(J /(B

√
k)),

implying that we have a constant probability that an error
in this order occurs.2 Thus, with probability 1/2, any ap-

1If messages of v are triggered by messages of w or other nodes,
the error gets even larger.

2Var(X) = E
(
X2

)− E(X)2, and in case of identical variance
of each summand, giving equal weights to all single estimations
minimizes the variance of the final outcome.

proximation of rv
w based on this data sustains an error of

Ω
(
J /

(
Bk3/2

))
.

Note that this result holds for virtually any reasonable dis-
tribution of the jitter. Though this lemma seems to suggest
to measure clock rates based on time intervals as large as
possible, apparently this approach fails if clock rates change
significantly within the observation period. A global bound
can easily be followed from this local statement.
COROLLARY 4.2. Suppose the jitter is normally distrib-
uted with a standard deviation of J or uniformly distributed
within [−J ,J ]. Assume that hardware clock rates are con-
stant, and a node w computes an estimate r̂v

w of the relative
hardware clock rate rv

w := hv/hw compared to a node v in
distance d hops. If this estimate is based on k messages from
v that have been forwarded to w without replication (i.e., fol-
lowing a single path and intermediate nodes send also only
k messages) and are sampled from a time interval of length
kB, with constant probability the estimate has an error in the
order of J

√
d/

(
Bk3/2

)
, i.e.,

P

[
|r̂v

w − rv
w| ≥ Ω

(
J
√

d
Bk3/2

)]
≥ 1

2
.

PROOF. The “noise” induced by the jitter in the message de-
lay accumulates on the path from v to w. Since we assume
that the clock values are forwarded without replication, w
can reduce this effect by no means. As the jitters of differ-
ent messages are independent, the standard deviation of their

sum grows as J
√

d with respect to the distance d. Now the
proof proceeds analogously to the one of Lemma 4.1.

In theory, replicating messages can improve the situation
in that the influence of the noise can be reduced. However,
intermediate nodes sending the same information twice is at
odds with the goal of achieving a low message complex-
ity for all nodes—and if more messages are sent by some
nodes anyway, we might likewise increase the number of
transferred clock values. On the other hand, in some graphs
different paths to a node may give multiple independently
forwarded copies of the same clock value “for free”. Any-
how, in general we cannot expect multiple paths between two
nodes, and even less between any two distant nodes. Fur-
thermore, exploiting specific topologies may become quite
cumbersome, especially so in case of dynamic systems.

Having derived the required preliminary statements, we
now can conclude our lower bound on the global skew.

THEOREM 4.3. Assume that ρ ≥ J
√

D
Bk3/2 and the preliminar-

ies of Corollary 4.2 are fulfilled. Using the same notation as
in Corollary 4.2, within any time interval of length kB with
constant probability a time t with a global skew of

G(t) ∈ Ω

(
J
√

D√
k

)

exists.
PROOF. Since due to Corollary 4.2 relative clock rates can-

not be measured more accurate than J
√

D/
(
Bk3/2

)
between

two nodes in distance of the network diameter D, the relative
drifts of logical clocks are at least that large unless the maxi-
mum hardware clock drift ρ is already smaller. Thus, in order



to achieve better synchronization than Ω(J
√

D/
√

k), one of
the nodes needs to estimate a clock value of the other which
is not older than o(T ) time as accurate as o(J

√
D/

√
k).

However, we already observed that this would require ω(k)
messages, contradicting the assumption that estimates are
based on at most k values.

At first glance this bound seems quite weak, as it gets
arbitrarily small for large k. Moreover, even better rate
approximations—permitting to send updates less frequent-
ly—could be computed using large observation intervals.
However, this approach has its limitations, as this in turn en-
forces a slow adaption to dynamic changes of any kind, such
like changes in topology or clock rates.

4.2 Weaknesses of Current Protocols
We analyze the behavior of two time synchronization pro-

tocols, FTSP and GTSP, which are specially tailored for
wireless sensor networks. We do not focus on bootstrap
problems, package loss or the impact of dynamic network
topologies in our analysis.

4.2.1 Flooding Time Synchronization Protocol
After the initialization phase, FTSP utilizes a spanning

tree rooted at the root node r to disseminate information
on r’s state throughout the network. Every node tries to
synchronize its logical clock best possible to the one of r,
while adjusting its clock value whenever an offset is de-
tected. To this end, nodes broadcast their estimate of the ref-
erence clock value once every beacon period B. They store
the k most recent values received from their parent in a table
and determine their current estimate of r’s clock value and
the relative clock rate by means of a linear regression of this
data set. Furthermore, when receiving a new message from
their parent, they immediately update their logical clock rate
and offset.

The decisive weakness of the protocol is the fact that er-
rors introduced by jitter affect not only clock values, but also
all clock rates further down the tree. Since the nodes send
messages uncoordinatedly, information propagates merely
one hop in B/2 time. In that time, the error is amplified by
a constant factor! For ease of presentation, we restrict our-
selves to the case of a regression table with only two entries
(k = 2). Nevertheless, our simulations show that the same
problem occurs in case of reasonable sizes of the regression
table (see Figure 2). FTSP is simulated on a line topology,
the root was fixed to be the first node of the line. The jitter
in the message delay is chosen uniformly at random between
−1 μs and 1 μs. Furthermore, there is no hardware clock
drift, i.e., the errors introduced in the system are only due
to the message delay jitter and the linear regression. The
TinyOS implementation of FTSP ignores estimates which
are seemingly invalid due to large skews; it even resets the
regression table if this happens repeatedly (cf. Section 6).
This has been suppressed in the simulations to demonstrate
the behavior of the basic protocol for large diameters.
THEOREM 4.4. Suppose that the jitter is normally distrib-
uted with a standard deviation of J or uniformly distributed
within [−J ,J ]. Then, even if the hardware clock rates are
constant, at any time t there is a constant probability that the
FTSP protocol with parameter k = 2 exhibits a global skew
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exponential in the network diameter D, i.e.,

P
[
G(t) ≥ J 2Ω(D)

]
≥ 1

2
.

PROOF. For simplicity, assume that the diameter D is even
and no node sends two messages in a time interval where its
neighbors do not send a message. Then, any estimate of Lr
received by some node v is kept for an expected time of B/2
(since sending times are not aligned) and then the current
estimate is forwarded before the next value is received. Since
the diameter of the graph is even, a node vD/2 exists receiving
estimates of Lr that are forwarded along a path v1, . . . ,vD/2.

Now assume that everything is perfect until a time t0
where r sends the message m: All logical clock values and



Hw(t)

Hv(t)
B B/2m1

m2

J

J*3/2

Figure 4: FTSP logical clock computation scheme for the
special case k = 2. Errors introduced by jitter are amplified
because they affect both the axis intercept and the gradient
of the regression line.

rates are equal to the ones of r. The message m contains the
clock value Lr(t0), which is received by v1 at time t1. Node
v1 computes an estimate of Lr(t1) which is accurate up to the
error introduced by the jitter J .

However, apart from the additive error of the estimate
(and thus v1’s logical clock, which in case of k = 2 is simply
set to the received value), now the logical clock rate l1 will
differ from lr = hr. This error has standard deviation J /B,
since the (relative) rate of v1 is simply computed as the dif-
ference of the last two values received from r divided by the
(local) time passed in between. After expected time B/2, v1

forwards its estimate, implying that the error of the clock rate
induces an expected additional error of roughly J /2 in the
estimate received by v2 (see Figure 4 for illustration). The
crucial point is that this error is not random, but amplifies
the jitter on the message received by v1! Thus, node v1 for-
wards the same error, but (in expectation) multiplied by 3/2.
By induction, the same is true for all vi, i ∈ {2, . . . ,D/2}. We
conclude that the estimate of Lr received by vD suffers from
an error exponential in D, as the situation certainly does not
improve if we do not assume perfect initial conditions or take
the additional errors due to the jitter on different edges into
account.

4.2.2 Gradient Time Synchronization Protocol
The GTSP protocol does not exhibit this exceptionally

bad growth of the global skew. The basic idea of the algo-
rithm is that logical clock rates are determined by perpetually
measuring the relative clock rates of neighboring nodes and
setting the own rate to the average of the outcomes of these
measurements. An important feature of this technique is that
rates are independent of observed logical clock skews, there-
fore errors are not amplified as by the FTSP protocol.

However, this imposes the need to ensure that small skews
do not accumulate over time. Hence, nodes regularly in-
crease their logical clock values by the average skew to
neighboring clocks. For a network diameter D = 10, this re-
sults in a global skew comparable to the one of FTSP, but av-
eraging over all neighbors yields a much smaller local skew.

The employed message pattern is identical to FTSP and is

the reason why GTSP and similar algorithms fail to achieve
a global skew of O (J D).
THEOREM 4.5. Assume that GTSP synchronizes the logi-
cal clock rates lv and lw of two nodes v,w in distance d as
good as J dα/B, α > 0, then GTSP exhibits at any time t with
constant probability a global skew of Ω

(
J D1+α).

PROOF. Fix two nodes v,w at distance D from each other
whose logical clock rates differ by J Dα/B at some time. Any

node u at distance d ≤D/41/α will have a clock rate differing
by no more than J Dα/(4B) from v’s, and likewise for nodes

close to w. Therefore, all nodes within distance D/41/α from
v have by J Dα/(2B) faster (or slower) clocks than the nodes
within distance from w.

Since it takes in expectation DB/
(
2 ·41/α) time until the

state of nodes further away than D/41/α influence v’s or w’s
clock rates at all and clock rates are determined by averaging,
v’s and w’ clocks will (with constant probability) drift apart
at the rate of at least J Dα/(2B) for that time period. Thus,

a skew of J D1+α/
(
2 ·41/α) ≥ Ω

(
J D1+α) is built up. Now,

as the algorithm handles clock rates independently from log-
ical clock skews, in one of the symmetric situations where
either v’s or w’s logical clock runs faster, a global skew of
Ω
(
J D1+α) must occur.
We give no proof here that the assumption of the theo-

rem that the clock rates between nodes at distance d are syn-
chronized like J dα/B holds. In fact, this may depend on
the topology. However, it is reasonable to assume that close
nodes’ rates are synchronized better because the algorithm
seeks to locally minimize their differences.

Another important observation following from this result
is that many other reasonable algorithms (e.g. like the one
in [28]) will experience a global skew that is (super)linear
with respect to the diameter: Whenever clock rates are lo-
cally balanced and do only change dependent on neighbors’
rates, they will not change faster than information propagates
through the network. If sending times are not aligned, this
will leave time for errors in clock rates to accumulate skews
at least linear in the diameter.

5 The PulseSync Algorithm
We have observed two major issues that may degrade

the quality of (global) synchronization: Firstly, increasing
received estimates at rates computed with their help leads
to self-amplification of errors. Secondly, if sending times
are not aligned, information propagates slowly, giving time
to pile up skew originating from small differences in clock
rates. Both of these problems are already present if the
system is static. Certainly, to cope with dynamics such as
changing hardware clock rates or network topologies, quick
dissemination of information is also a highly desirable prop-
erty of an algorithm.

Hence, in this section we will devise an algorithm not suf-
fering from these drawbacks and then prove a bound on its
global skew.

5.1 Description of the Algorithm
For the purpose of our analysis, we will give a high-level

description of the algorithm in pseudocode. In Section 6 the
details of the implementation will be discussed.



The basic idea of the algorithm is to distribute informa-
tion on clock values as fast as possible, while minimizing the
number of messages required to do so. In particular, we want
nodes to send messages only once in B time, while avoiding
that it takes in expectation B·D

2 time until distant nodes affect
each other. Obviously, a node cannot forward any informa-
tion it has not received yet, enforcing that information flow is
directed: An intermediate node on a line topology has to wait
for at least one message from a neighbor, while after its re-
ception it ought to send as quickly as possible in order to not
slow things down. Thus, we naturally end up with flooding a
“pulse” through the network, implicitly building a breadth-
first search tree. This technique further entails that pulses are
generated by some node, which hence becomes the root r of
the tree. This node is the only one which all nodes in the
network obtain recent information from in a pulse, making
its clock the canonical target of synchronization.

To keep clock skews small at all times, nodes employ a
drift compensation, also relative to r. To even out the effects
of the random jitter, this estimate is based on k values. This
can be done in several ways; we choose a linear regression
as also utilized by FTSP.

The problem with this scheme is that it obviously pro-
vokes lots of collisions. Therefore, a practical implemen-
tation will have to schedule the flooding. We discuss this
issue in more detail in Section 7. In the abstract descrip-
tion of the algorithm, we represent this by nodes having to
wait until they can send a message. This, however, raises the
question how the estimate of the root’s clock value Lr has
to be adapted in the meantime. Even if messages could be
relayed immediately after reception, we still had to compen-
sate for the message delay T . Increasing received estimates
at the speed of the own logical clock (which also incorpo-
rates this estimate!) again evokes self-amplification of errors
as in FTSP.3 On the other hand, relying on the bare hardware
clock rates may result in errors comparable to (or even domi-
nating) the jitter. However, as the time between reception and
forwarding of an estimate will be small compared to B, vir-
tually any estimate r̂r

v a node v acquires of the relative clock
rate to r will do, as long as we avoid the self-amplification
issue. Therefore, nodes compute an approximation of rr

v by
means of the first k messages they receive, while relying on
their hardware clock (i.e., estimating relative rate 1) when
forwarding the first.4 Thus, we neither slow down the ini-
tialization process nor do we sacrifice accuracy if the topol-
ogy is stable. The delay T can easily be incorporated by
adding r̂r

v (Hv(tr)−Hv(tr −T )) to a clock value received at
time tr, as within T time the root’s clock makes a progress
of rr

v (Hv(tr)−Hv(tr −T )).5

3Yet to a smaller extent, as nodes forward estimates as quickly
as possible. Thus the exponential behavior would become evident
at larger diameters than in case of FTSP.

4A similar approach has been used for high latency networks
where the drift during message transfer is a major error source [31].

5Note that referring to Hv(tr −T ) is an abuse of notation, since
nodes are only able to access the current hardware time. This is to
be understood as the timestamp v made at the time tr −T when the
transmission was initiated, where for simplicity we assume here
that the sender is able to directly incorporate the corresponding

The pseudocode of the algorithm for non-root nodes is
given in Algorithm 2, whereas the root follows Algorithm
1. In the abstract setting, a message needs only to contain
an estimate L̂r of the root’s clock value. We also add a se-
quence number i initialized to 0, but in fact it is only used
to distinguish between two pulses, which in case of B � T
is also easily possible without such a number. In practice, a
message may contain additional useful information, such as
an identifier, the identifier of the (current) root of a node, or
the (current) depth of a node in its tree. For the root node, the
logical clock is simply identical to the hardware clock. Any
other node computes Lv(t) as the linear regression of the k
stored pairs of hardware clock values and corresponding es-
timates, evaluated at x-value Hv(t).

Algorithm 1 Whenever Hr(t) mod B = 0 at the root node r.

1: send 〈Hr(t), i〉
2: i := i+1

Algorithm 2 Node v receives first message 〈L̂r, i〉 with se-
quence number i at local time Hv(t)

1: store 〈L̂r + r̂r
v (Hv(t)−Hv(t −T )) ,Hv(t), i〉

2: delete 〈·, ·, i− k〉
3: wait until time t ′ when allowed to send
4: send 〈L̂r + r̂r

v (Hv(t ′)−Hv(t −T )) , i〉
5: i := i+1

5.2 Upper Bound on the Global Skew
After devising PulseSync, we now prove a strong proba-

bilistic upper bound on its global skew. To this end, we will
first derive a bound on the accuracy of the estimates of rela-
tive hardware clock rates the nodes compute. Then we will
proceed to bound the clock skews themselves.

We will need a statistical tool which is similar to Cher-
noff’s bound. It basically states that deviations from the ex-
pected value of a random variable that are large compared to
the square root of the expectation are highly unlikely.
LEMMA 5.1 (HOEFFDING’S INEQUALITY). Given inde-
pendent random variables Xi ∈ [ai,bi], i∈{1, . . . , l}, for their
sum X := ∑l

i=1 Xi the inequality

P [|X −E[X ]| ≥ lδ] ≤ 2e−2l2δ2/∑l
i=1(bi−ai)2

holds for any δ > 0.
PROOF. See [12].

Next, we tailor this bound to our specific needs. The ob-
tained result will be the basis for our reasoning on the global
skew of PulseSync.
LEMMA 5.2. Assume that Xi, i ∈ {1, . . . ,kD}, k ∈ 2N, are
independent random variables with Xi ∈ [Ci − J ,Ci + J ] and
E[Xi] = E. Define X := 4

k2(1−ε)B ∑kD/2
i=1 (Xi+kD/2 − Xi) for

some ε ∈ (0,1). Then for any choice of c > 0 we have

P

[
|X −E[X ]| ≥ 2J

√
cD lnn

k3/2(1− ε)B

]
≤ 2e−c lnn =

2

nc .

clock value into the message.



PROOF. We apply Hoeffding’s inequality with l = kD/2 and

δ = J 2c lnn/(kD) to (k/2)2(1− ε)BX .
This result permits to bound the accuracy of the estimates

r̂r
v the nodes determine in the initialization phase.

LEMMA 5.3. Suppose the jitter is random from an interval
of length J . Assume that if node v ∈ V receives a message,
it has to wait τv + τ̃ time until it can send itself, where τv
is constant and τ̃ is random with zero expectation from an
interval of length at most J /ρ.6 If hardware clock rates are
constant, the initial guess r̂r

v a node v ∈ V computes based
on the first k received values carries with probability at least
1−2/nc an error of at most

|r̂r
v − rr

v| ≤ O

(
J
√

cD lnn
k3/2B

)
=: Δr,

for arbitrary c > 0.
PROOF. Since clock rates are constant, for any node v, Lr is
a linear function of Hv. However, as v computes r̂r

v by means
of estimates of Lr, it uses a disturbed data set consisting of k
pairs

(
Hv(ti), L̂r(ti)

)
, i ∈ {1, . . . ,k}, to approximate its rela-

tive logical clock rate. Any errors which are independent of i,
such as the error induced by the clock drift of relaying nodes
w during the τw expected time they wait for sending a mes-
sage, cancel out when estimating the rate, i.e., E[r̂r

v−rr
v] = 0.

Thus, only the possible fluctuations of the jitter, bounded by
±J /2, and of τ̃hw at relaying nodes, also bounded by ±J /2
due to the assumption that τ̃ ≤ J /ρ, affect r̂r

v.
Taking into account these observations, each of the val-

ues L̂r(ti) is disturbed by an independent random variable,
which itself is the sum of at most D independent random
variables Xi, j ∈ [Cj − J ,Cj + J ]. Now, a linear regression
minimizes the least squares error (i.e., the “variance” of the
data set compared to the computed line), yielding the max-
imum likelihood estimation. In other words, it is at least as
good as any scheme, in particular the following one. As-
sume without loss of generality that k ∈ 2N (otherwise the
center value is dropped). Compute m estimates of r̂r

v as(
L̂r(ti+k/2)− L̂r(ti)

)
/
(
Hv(ti+k/2)−Hv(ti)

)
, i ∈ {1, . . . ,k/2},

and afterwards take the average of the k/2 obtained values.
The smaller the time interval between messages, the worse
each single estimate. However, certainly these differences
are lower bounded by k(1 − ε)B/2 for some ε � 1, since
hardware clocks progress roughly at the rate of real time.
Therefore, inserting this bound, the error of the scheme is
dominated by the absolute value of the random variable

X :=
4

k2(1− ε)B

m

∑
i=1

D

∑
j=1

(Xi+k/2, j −Xi, j)

with expectation E[X ] = 0. By an appropriate reordering of
the indexes, we see that Lemma 5.2 can be applied to this
variable, which completes the proof.

Obviously, the error of the initially computed estimate
might get larger if it is dominated by variations in hardware
clock rates. Nevertheless, even under extreme environmen-
tal conditions (e.g., variations in temperature of 50 degrees),

6Note that J /ρ is typically in the order of 10−1 or more, i.e., in
practice this assumption is no restriction.

in practical systems this error will be smaller than the initial
differences of the hardware clock rates.

Based on the preceding observations, we now can prove a
bound on the skew between a node and the root.
THEOREM 5.4. Assume that the preliminaries of Lemma
5.3 are fulfilled and Δr ≤ ρ.7 Denote by v0 := r,v1, . . . ,vd :=
v ∈ V the path from the root to v along which estimates of
r’s clock values are forwarded. Set pv := ∑d

i=1 (τvi +T ), i.e.,
the expected time an estimate “travels” along the path. Then
the probability that for all times t ∈ [t1, t2) between v receiv-
ing two messages, where at least 2k pulses are complete, the
inequality

|Lv(t)−Lr(t)| ≤ O

(
J
√

cD lnn
k

(
1+

pv

kB

))

holds, is at least 1−1/nc.
PROOF. Since at least 2k pulses are complete, all estimates
are locally increased at the rates hwr̂r

w which differ with prob-
ability at least 1− 2/nc by no more than Δr from hr. The

latest k values L̂r(ti), i ∈ {1, . . . ,k} that v (and all intermedi-
ate nodes) received are independent of the first k. There-
fore, using the same argumentation as in Lemma 5.3 and
the assumption that Δr ≤ ρ, the logical clock rates of all vi,
i ∈ {1, . . . ,d}, differ by at most Δr from hr with probability
at least 1−2d/nc.

The estimates received by v will suffer from an error with
expected absolute value of at most Δr pv.8 Hence, these er-
rors are dominated by independent random variables Xi :=
Δr pv + |∑d

j=1 Xi, j|, j ∈ {1, . . . ,d}, where Xi, j are the indepen-

dent random errors made at each hop, i.e., Xi, j ∈ [−J ,J ]. The

logical clock value of v at time t is computed as L̄r + lv (t − t̄),
where lv is the logical rate of v (i.e., hv times the gradient of
the regression line), t̄ is the average of the times where the
last k estimates were received, and L̄r is the average of these
estimates. We have that t − t̄ = Θ(kB) and |lv −hv| ≤ Δr.

Therefore, we need to bound |L̄r −Lr(t̄)|. Since hr is con-
stant and t̄ is the mean of the times the estimates were re-
ceived, we simply have that

|L̄r −Lr(t̄)| =
1

k

∣∣∑ L̂r(ti)−Lr(ti)
∣∣

≤ 1

k

k

∑
i=1

Xi = Δr pv +
1

k

∣∣∣∣∣
k

∑
i=1

d

∑
j=1

Xi, j

∣∣∣∣∣ .
We estimate d ≤D and apply Hoeffding’s inequality with l =
kD and δ = J

√
c lnn/(2kD) to obtain that with probability

at least 1−2/nc, we have that

|L̄r −Lr(t̄)| ≤ O

(
Δr pv + J

√
cD lnn

k

)
.

We conclude that with probability at least 1− (4 + D)/nc it

7Examining Δr reveals that this inequality certainly holds for
practical values.

8Note that due to lack of independence of the estimated relative
rates r̂r

w, we cannot guarantee anything better than linear accumu-
lation of errors here.



holds that

|Lv(t)−Lr(t)| ≤ |(lv −hr)|(t − t̄)+ |L̄r −Lr(t̄)|

≤ O

(
ΔrkB+Δr pv + J

√
cD lnn

k

)

≤ O

(
J
√

cD lnn
k

(
1+

pv

kB

))
.

Finally, since c was arbitrary, we may simply replace c by a
slightly larger c′ such that the inequality holds with probabil-

ity at least 1− (4 + D)/nc′ ≥ 1−1/nc, which concludes the
proof.

This powerful statement on the probability of large errors
leads to the desired bound on the global skew.
COROLLARY 5.5. Let ti denote the time where the ith pulse
is complete. Provided that the prerequisites of Theorem 5.4
are satisfied, the total number of pulses P is polynomial in n,
and maxv∈V{pv}/(kB) ≤ O(1), we have that

P

[
max

t∈[t2k, tP]
{G(t)} ≤ O

(
J
√

D lnn
k

)]
≥ 1− 1

n
.

PROOF. Appropriate choice of c in Theorem 5.4.
Taking all estimations made into account, this means for a

line topology featuring 20 nodes, k = 8, and J =±1, that the
global skew will with a probability of at least 95% never ex-
ceed roughly 12 microseconds within 1000 pulses (exclud-
ing initialization). Certainly, the average skew will be sig-
nificantly smaller. These results are in excellent accordance
with the results of the simulations (see Figure 5).

Considering that the
√

lnn factor takes the role of reduc-
ing the probability of error from a constant to a negative
power of n, the given upper bound matches the lower bound
given in Theorem 4.3. Strictly speaking, the requirement that
the time maxv∈V{pv} a pulse takes, which is at least linear
in D, is smaller than kB still implies that (asymptotically) the
algorithm cannot adapt faster to dynamics than the obvious
lower bound prescribed by the product of diameter and delay.
For practical purposes, though, this is dominated by the time
B between to pulses. This is another significant advantage
compared to FTSP and any other synchronization algorithm
employing a temporally not aligned message pattern.

6 Testbed Experiments
We present experimental results for PulseSync to verify

that our theoretical results also apply in practice. To that
end, we have implemented PulseSync on the Mica2 plat-
form. Furthermore, we compare our approach to FTSP, the
state-of-the art clock synchronization protocol for wireless
sensor networks.

6.1 Hardware Platform
The hardware platform used for the implementation of

PulseSync is the Mica2 sensor node [11]. The Mica2 plat-
form features an Atmel ATmega128L microcontroller with
4 kB of RAM, 128 kB program ROM and 512 kB external
flash storage. The TI CC1000 radio module offers data rates
up to 76.8 kBaud using frequency shift keying (FSK). We use
the 7.37 MHz quartz oscillator as the system clock source,

and configure a 16-bit timer to operate at 1/8 of the oscilla-
tor frequency, resulting in a clock frequency of 921 kHz. An
additional 16-bit variable keeps track of counter overflows,
providing us in the end with a 32-bit hardware clock which
offers a precision of roughly a microsecond.

6.2 PulseSync Implementation
The implementation of the PulseSync protocol on the

Mica2 platform is done using TinyOS 2.1 [1]. The proto-
col implementation provides access to a synchronized global
clock for other components of the application running on the
node.

After startup, the PulseSync component is initialized by
setting the logical clock to the current hardware clock value.
By overhearing the channel for other synchronization mes-
sages, a node will quickly learn about the presence of a ref-
erence node. If no synchronization messages have been re-
ceived for a certain time, the node will declare itself as the
reference node and starts to broadcast periodic synchroniza-
tion pulses.

A node will receive periodic pulses from nodes located
closer to the reference node. If the reference node should
suffer from a hardware failure or the link to our predecessor
node is broken, no new sync pulses will be received. When
no synchronization messages are received from a node for
several consecutive beacon intervals, the node starts again to
advertise itself as the reference node.

Depending on the network topology, a node will receive
synchronization messages from multiple nodes in its neigh-
borhood. Only the first pulse arriving at a node will be for-
warded. It is very likely that this pulse has travelled on the
shortest path from the root node and, therefore, the jitter in-
troduced along the path is assumed to be smaller than on
longer paths. To detect duplicate pulses, we insert a sequence
number field into the synchronization message which is in-
creased by the reference root after each sent pulse.

6.2.1 Synchronous Acknowledgments
Clearly, the performance of any clock synchronization

protocol is degraded when synchronization messages do not
reach their destination due to a lossy communication chan-
nel. This is a problem each protocol has to cope with in
a real-world deployment. However, in our testbed exper-
iments we are interested in the actual performance of our
clock synchronization protocols, PulseSync and FTSP. To
mitigate the effects of packet loss, we implemented syn-
chronous acknowledgments on the application layer for both
protocol implementations.

6.2.2 Packet Timestamping
The time it takes to send a message containing a times-

tamp from one node to another is highly non-deterministic
due to various error sources in the message path [10, 14].
It is well-known that time-stamping messages at the MAC
layer can reduce most of this non-deterministic delays. An
outgoing message is time-stamped just before the packet is
transmitted over the radio channel. On the receiver side, the
timestamp is recorded when the first byte of the message
preamble arrives at the radio chip. The FTSP time-stamping
scheme [19] records multiple timestamps at the byte bound-
aries to further reduce invariance due to delays in the inter-
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Figure 5: Simulations of the PulseSync algorithm on line topologies. Jitter is uniformly random ±1 μs , clock drift ±30 ppm,
time between pulses is B = 30 s. The plots against diameter were obtained by averaging over 5 runs for each diameter, each
being observed for 1000 pulses (excluding initialization). Nodes were allowed to send immediately when receiving a message,
as the corresponding term in the estimation is small. The root was fixed to be the first node.

rupt handling involved in this approach. In our implemen-
tation of the MAC layer timestamping the first six bytes are
time-stamped on both sides to reduce the jitter in the mes-
sage delay.

6.3 Testbed Setup
We use an indoor testbed of 20 Mica2 sensor nodes which

are placed in close proximity, thus forming a single broad-
cast domain. The actual network topology used in the ex-
periments is enforced in software. A base station node con-
nected to a PC is used to monitor the experiment. To test
the synchronization accuracy of the two different clock syn-
chronization protocols, we rely on external events triggered
by the arrival time of special probing packets. On reception
of such a time probe, each node writes both its hardware and
logical time to the external flash memory. At the end of the
experiment, the measurement results stored in the flash mem-
ory of the nodes are transferred to the PC for further analy-

sis. The time interval between time probe events is uniformly
distributed between 18 and 22 seconds. This guarantees that
the time interval between the clock synchronization packets
and the arrival of the time probes is changing continuously.

We measured the performance of PulseSync and FTSP
on a line topology of 20 nodes. While many previous sen-
sor network deployments did not exceed a network diameter
of a very few hops, we believe that technical advances may
lead to deployments with larger network diameters. Net-
works for continuous surveillance of sensor points located
over large distances (e.g., roads, tunnels or pipelines) will
typically form a line-like topology.

We used the latest FTSP implementation available from
the TinyOS 2.x CVS repository during our experiments. Us-
ing the default parameter settings, FTSP failed to synchro-
nize all nodes in the network to the reference node even
after a long time period. We observed that it takes many
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Figure 6: Global (left) and local skew (right) measured for FTSP on a line topology of 20 Mica2 sensor nodes. For times
t > 2000 s, we observed an average global skew of 23.96 μs while the maximum error between any two nodes in the network
was 249 μs. The local skew of FTSP was 9.04 μs on average and at most 179 μs.
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Figure 7: Global (left) and local skew (right) measured for PulseSync on a line topology of 20 Mica2 sensor nodes. For times
t > 100 s, we observed an average global skew of 4.44 μs, the maximum error was 38 μs. The local skew was on average 2.79
μs and at most 20 μs.

rounds until all nodes agreed on the same reference node.
After all nodes have been started, it takes ROOT TIMEOUT
rounds until multiple nodes in the network start to claim
being the reference node by broadcasting synchronization
beacons. Then, these new reference nodes will ignore bea-
cons from other nodes having a lower identifier for the next
IGNORE ROOT MSG rounds. If a node learns about a new ref-
erence node with a lower identifier, it will wait until it is
synchronized well enough to this new reference node by lis-
tening to ENTRY SEND LIMIT beacons before it will forward
beacons itself. Another issue with FTSP is the fact that nodes
will clear the content of their regression table when the syn-
chronization error between the received beacon and the esti-
mated time of the node exceeds the ENTRY THROWOUT LIMIT
parameter. Such a node will stop sending its own synchro-
nization beacons until it has re-established synchronization
to its reference node again. However, if the local skew in-
curred by the protocol gets large, this behaviour does not

protect against infrequent outliers or failures, but contrari-
wise worsen the situation. The next node in the line will
think that the current reference node died and it will start a
new leader election round by advertising itself as the new
root node. Since such effects will clearly degrade the per-
formance of any clock synchronization protocol, we slightly
modified FTSP to work with a fixed network topology (node
1 is the reference node).

Furthermore, we set ENTRY THROWOUT LIMIT to the max-
imum integer value to prevent nodes from clearing the re-
gression table. For a fair comparison, we also enforced a
fixed topology with Node 1 as the root for PulseSync.

6.4 Measurement Results
We collected measurement results during a 6 hour run for

both PulseSync and FTSP. This resulted in roughly 20,000
data points collected from the sensor nodes. In our evalua-
tion we focus on two different metrics: the local skew and
the global skew (as defined in Section 3) are calculated for



each time probe event. We are particularly interested in the
maximum global skew so that we can get an impression on
the worst-case accuracy of both clock synchronization pro-
tocols.

Figure 6 shows the measurement results for FTSP on a
line of 20 Mica2 nodes. It can be seen that it takes FTSP
roughly 2000 seconds until all nodes are synchronized. Mea-
surement results for the implementation of PulseSync are
presented in Figure 7. PulseSync converges rapidly to a
common logical time since the time information is flooded
in a single round from the reference node to all other nodes
throughout the network. Although PulseSync and FTSP have
the same message complexity (one message per node and
synchronization period), the fast flooding approach of Pulse-
Sync achieves a significantly improved synchronization ac-
curacy on the same network topology. Furthermore, our ex-
periments confirm our finding that the synchronization er-
ror to the root node must increase exponentially when us-
ing FTSP, while PulseSync performs significantly better (see
Figure 8). The measurement results are summarized in Ta-
ble 6.4. We can see that the synchronization error on the real
sensor node hardware is consistent with what we expect from
the simulations, although it seems that the simulations are
based on too optimistic assumptions about clock drift and/or
jitter. In particular, we assumed perfectly stable hardware
clocks, but at the level of accuracy provided by PulseSync
even small fluctuations in the clock rates become visible.9
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Figure 8: Synchronization error versus distance from the root
node for FTSP (left) and PulseSync (right).

FTSP PulseSync
Synchronization messages 13,510 13,504
Global skew (avg) 23.96 μs 4.44 μs
Global skew (max) 249 μs 38 μs
Local skew (avg) 9.04 μs 2.79 μs
Local skew (max) 129 μs 20 μs

Table 1: Measurement results for FTSP and PulseSync on a
line of 20 Mica2 sensor nodes.

9Even a single degree of temperature difference may lead to an
absolute drift of roughly ±10 μs within 30 seconds (cf. Figure 1).

7 Protocol Improvements
In this section we discuss two improvements to the basic

PulseSync algorithm. First of all, an efficient broadcasting
mechanism is vital for more complex and dense topologies.
Then, we discuss some approaches to further reduce the local
skew.

7.1 Wireless Scheduling
As we learned in this paper, time information must be

propagated as quickly as possible. In a wired network, Pulse-
Sync can be implemented directly by a simple flooding algo-
rithm. In wireless networks, scheduling the transmissions is
more difficult because of interference. This issue has been
studied arduously in the theory community; it is generally
known as the broadcast problem in radio networks.

More than 20 years ago, it was shown that finding an op-
timal broadcast schedule is NP-hard [5]. One may approxi-
mate the optimal solution [6], however, at a communication
cost which is clearly beyond anything practically tolerable.
In addition, these early centralized broadcast solutions are
designed for graphs, and graphs do not model wireless trans-
missions well [22].

More promising are distributed algorithms, on unknown
topologies. Bar-Yehuda et al. [3] show that a straightforward
randomized protocol will reach all nodes with high probabil-

ity in O(T D log2 n) time. This result can even be improved
slightly [7], matching a known lower bound.

One may improve the broadcast time even more by mak-
ing the graph sparse by computing a connected dominat-
ing set [26] first. After receiving the PulseSync message,
nodes in the connected dominating set simply transmit with
constant probability, logarithmically often. Assuming that
the interference radius is only a constant factor larger than
the transmission radius, this broadcast algorithm finishes in
O(T D logn) time with high probability. In other words, even
on a slow Mica2 radio all nodes can be reached in less than
a second.

Although we did not employ these sophisticated algo-
rithms in our prototype implementation, they demonstrate
that efficient solutions of the problem are feasible. With
such techniques, for a reasonable choice of B (30 seconds
or more) it should be possible to complete pulses in less than
B time on any real-world topology; even if this was not the
case, a new pulse could be started before the previous one is
finished. In B time the nodes that are active because of the
current pulse will be far away from the root, hence this will
not cause additional collisions. From Theorem 5.4 we see
that in this scenario it suffices to complete pulses within kB
time to maintain the sublinear growth of global skew with
respect to the diameter.

Because of additional external noise and interference, one
shall not rely on broadcasting algorithms alone. In practice,
minimizing the broadcast time is only one side of the medal,
reaching most nodes is important as well. Indeed, if a bridg-
ing node misses out a pulse, all nodes on the wrong side
of the bridge will do as well. Missing several pulses will
deteriorate the drift compensation, in particular if external
conditions such as the weather have a high volatility. For
these reasons one adds a pulling mechanism to the broadcast



algorithm. If a node does not receive the time information
during a pulse, it will actively ask its neighbors. The relia-
bility of this approach is apparent from the results provided
in Section 6, as it solved the problem for the examined line
topology: Sending a positive acknowledgement on reception
of a message corresponds to sending a request—i.e., a nega-
tive acknowledgement—when a message is overdue.

7.2 Local Skew
So far we restricted our attention to the global skew, leav-

ing the local skew aside. This comes from the fact that the
fast propagation of clock estimates attained by the Pulse-
Sync algorithm in some sense makes the global skew “lo-
cal”. While conventional synchronization algorithms rely on
techniques where information propagates at merely one hop
per beacon interval, PulseSync floods it through the whole
network within a single pulse. Thus, global skew cannot be
accumulated for Ω(DB) time before recognized by distant

nodes. Nonetheless, it grows like
√

D due to the increas-
ing (total) uncertainty in delays due to the jitter, whereas ap-
parently neighbors are able to synchronize both their clocks
and clock rates more precisely. The tree-like communica-
tion structure of PulseSync does not exploit this knowledge
and therefore the full global skew may be observed between
neighboring nodes which are at distance D (or even 2D) in
the tree.

Opposed to that, GTSP [29] exploits all local informa-
tion by construction, as it strives to locally optimize skews
in each step. However, this comes at the prize of slow dis-
semination of information, therefore incurring a large global
skew. In theory, this discrepancy between optimizing lo-
cally and globally can be overcome easily. If we do not care
about message complexity, but just frequency of pulses, ev-
ery node could act as root of its own flooding tree. Clock val-
ues could then be computed as, say, (weighted) average over
estimates of all nodes, which then would both locally and
globally agree very well. This approach would require the
unacceptable number of n2 messages per pulse. One could
also do with O(n) messages; the root could collect informa-
tion on the clock skew on each edge in the graph by means
of a flooding-echo protocol. This comes at message cost 2n
since a single message can be received by all neighbors si-
multaneously. The root then computes optimal skew and rate
corrections in a centralized manner, where “optimal” can be
any desired quality measure: Global skew, local skew, sum
of squared errors on each edge (like in [28]), combinations
of those, etc. Finally the obtained corrections are distributed
by means of a second flooding. Though (up to constants)
optimal with regard to skews and number of messages, ob-
viously the size of the messages would become prohibitively
large when relying on such a scheme.

However, for specific topologies similar approaches can
be feasible. On a ring topology, e.g., one could simply use
two root nodes r and s triggering pulses, located at oppo-
site sides of the ring. One of the nodes, say s, then syn-
chronizes itself with respect to r, while any other node v
tries to synchronize to a convex combination of the received
estimates L̂r and L̂s, weighting them as d(v,r)/d(r,s) and
d(v,s)/d(r,s) (d(·, ·) denoting distance), respectively. Ad-

justments to logical clock offsets are amortized over B time
to avoid inducing local skews without need due to sudden
corrections. Since the (global) skew between r and s will be
“distributed” over paths of length D/2, the local skew would

be improved to O(J
√

(lnn)/k), which again is asymptoti-
cally optimum. Admittedly, for medium diameters the bene-
fit would be small though, as can be seen from a comparison
of local and global skews in Figures 5 and 7. The line topol-
ogy does not suffer from increased local skews due to a large
stretch, yet the local skews are merely by a factor of roughly
2 better. Considering the factor two overhead in message and
memory complexity compared to the plain PulseSync algo-
rithm and its very small global skew, the gain seems limited
for reasonable diameters.

8 Conclusions
In this work, we derived the novel clock synchronization

algorithm PulseSync from a new theoretical analysis of the
problem. It turned out that hitherto proposed protocols suf-
fer from a global skew at least linear in the diameter. Even
worse, the state-of-the-art Flooding Time Synchronization
Protocol incurs skew exponential in the diameter. In con-
trast, we proved that PulseSync guarantees with high prob-

ability a maximum clock difference proportional to
√

D at
the same communication cost as FTSP. Furthermore, we pro-
vided a lower bound showing its asymptotic optimality, as-
suming that no outdated information is to be used.

We substantiated our theoretical findings by means of ex-
tensive simulations and practical experiments on a Mica2
testbed. Both simulations and experiments are in sound ac-
cordance with expectations. In particular, on a line topol-
ogy of 20 sensor nodes PulseSync features maximum and
average global skew of less than 40 and 5 microseconds, re-
spectively, which is approximately a factor 5 better than the
same values for FTSP. This serious scalability issue of FTSP
is confirmed by the simulations, which clearly show the ex-
ponentially growing error of FTSP opposed to the root-like
behavior of PulseSync. With 50 nodes, FTSP will experi-
ence average clock skews in the order of seconds, whereas
it is reasonable to expect at most 80 microseconds skew be-
tween any two nodes when utilizing PulseSync.

Apart from these basic characteristics, PulseSync exhibits
further desirable properties. It is able to adapt very quickly
to any kind of dynamics, as only clock values from the last
few pulses are incorporated in the calculation of logical clock
values. Current algorithms will need a factor D more time to
react to changes. Moreover, the accuracy provided does not
depend on the clock drift nor on the frequency of commu-
nication, as long as clock rates do not change fast compared
to the time between pulses. This means that—depending on
the stability of environmental conditions—time intervals be-
tween pulses may be extended notably.
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