
The k-Server Problem with Delays on the1

Uniform Metric Space2

Predrag Krnetić3

Distributed Computing Group, ETH Zurich, Switzerland4

pkrnetic@student.ethz.ch5

Darya Melnyk6

Distributed Computing Group, ETH Zurich, Switzerland7

dmelnyk@ethz.ch8

Yuyi Wang9

Distributed Computing Group, ETH Zurich, Switzerland10

yuwang@ethz.ch11

Roger Wattenhofer12

Distributed Computing Group, ETH Zurich, Switzerland13

wattenhofer@ethz.ch14

Abstract15

In this paper, we present tight bounds for the k-server problem with delays in the uniform metric16

space. The problem is defined on n+ k nodes in the uniform metric space which can issue requests17

over time. These requests can be served directly or with some delay using k servers, by moving a18

server to the corresponding node with an open request. The task is to find an online algorithm that19

can serve the requests while minimizing the total moving and delay costs. We first provide a lower20

bound by showing that the competitive ratio of any deterministic online algorithm cannot be better21

than (2k + 1) in the clairvoyant setting. We will then show that conservative algorithms (without22

delay) can be equipped with an accumulative delay function such that all such algorithms become23

(2k+ 1)-competitive in the non-clairvoyant setting. Together, the two bounds establish a tight result24

for both, the clairvoyant and the non-clairvoyant settings.25

2012 ACM Subject Classification Theory of computation → K-server algorithms; Theory of com-26

putation → Caching and paging algorithms; Theory of computation → Online algorithms27

Keywords and phrases Online k-Server, Paging, Delayed Service, Conservative Algorithms28

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.2729

1 Introduction30

The k-server problem is a classic problem in the realm of competitive online analysis. Given31

a metric space with n+ k nodes, an online algorithm must move one of k available servers32

to a node that is requesting a service. The goal of the algorithm is to minimize the total33

distance of all server movements. Since 1988, there is an unanswered conjecture that the34

k-server problem is k-competitive [16]. This conjecture is known as the k-server conjecture.35

In this paper, we study a variation of the k-server problem proposed by Azar et al. [1].36

In the classic k-server problem, requests arrive at discrete time points and a server must37

be immediately moved to serve an open request. In the variant of this paper, known as38

the k-server problem with delays (k-OSD), requests may arrive at any time point, and an39

algorithm may decide not to move a server immediately. Instead, it may let the request wait40

and incur time costs before being served. The goal of an online algorithm is then to not only41

minimize the total distance of all server movements, but also the total waiting time of the42

requests.43

Note that the competitive ratio of the k-OSD problem cannot be smaller than the one44

© Predrag Krnetić and Darya Melnyk and Yuyi Wang and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 27; pp. 27:1–27:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pkrnetic@student.ethz.ch
mailto:dmelnyk@ethz.ch
mailto:yuwang@ethz.ch
mailto:wattenhofer@ethz.ch
https://doi.org/10.4230/LIPIcs.ISAAC.2020.27
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


27:2 The k-OSD Problem on Uniform Metrics

of the classical k-server problem, i.e., the deterministic k-OSD problem is also at least45

k-competitive. This can be shown by letting the time between any two appearing requests in46

the sequence be sufficiently long such that the offline algorithm covers every newly arrived47

request immediately. This way, even if the adversary tells the online algorithm designer the48

fact that the time gap between two consecutive requests is very large, the online algorithm49

still needs to solve a classical k-server problem.50

While allowing the algorithm to incur delays, we also simplify the generalized setting in51

two ways: we restrict ourselves to deterministic algorithms only. We also consider a special52

case where the nodes are chosen from a uniform metric, i.e., where any two of the n+k nodes53

have the same distance (but our lower bound works for general metrics). We thus have to54

pay a constant cost, plus possibly the waiting delay, if no server is present on a node with an55

open request. If a server is already present at the requesting node, serving a request is free.56

The k-server problem on uniform metrics is often called the paging problem. In paging,57

serving a page request comes at the cost of evicting an arbitrary other page from cache, i.e.,58

moving a server from one page to another in a uniform metric space. However, the k-server59

problem with delays is not exactly the paging problem, as it would allow to delay loading a60

page when needed, at a cost. Since not serving a page when needed probably goes along61

with scheduling a different process, it is questionable whether just summing up waiting times62

does model paging accurately. We will therefore refer to our setting as the uniform k-server63

problem with delays, while sometimes referring to known algorithms and lower bounds for64

the paging problem.65

1.1 Related Work66

More than 30 years ago, Tarjan and Sleator [19] were the first to study online algorithms67

using the concept of competitive analysis. They investigated deterministic algorithms for68

the paging and the list update problems. A couple of years later, Manasse et al. [16]69

defined the online k-server problem. The introduction of this new problem has widened70

horizons for further research in online algorithms. In their paper, the authors showed that71

no online algorithm can have a lower competitive ratio than k compared to an omnipotent72

adversary, independent of the metric space, for an arbitrary input sequence. This lower73

bound motivated the k-server conjecture, which stated that there is an online algorithm74

for the k-server problem with competitive ratio k. Soon the conjecture was proven for the75

special cases of k = 2 by Manasse et al. [17], line metrics by Chrobak et al. [6], tree metrics76

by Chrobak and Larmore [7], metrics with k+ 1 nodes by Manasse et al. [17] and for metrics77

with k + 2 nodes by Koutsoupias and Papadimitriou [13]. In this matter, a conceivable78

result was obtained by Koutsoupias and Papadimitriou [12], who applied the work function79

algorithm to the k-server problem and achieved a competitive ratio of 2k − 1. Since then,80

there has been only slight progress on the k-server conjecture and the competitiveness of the81

work function algorithm remains the best known bound.82

The k-server problem has also been studied by using randomized algorithms. Their83

beginnings go back to the 1980s: Raghavan and Snir [18] introduced the harmonic algorithm,84

where servers are moved based on a probability distribution which is inversely proportional to85

their distance. They achieved a competitive ratio of k(k+1)
2 on metric spaces with k+ 1 nodes.86

Randomness also enabled algorithms with a competitive ratio sublinear in k. Randomized87

algorithms for the unweighted and weighted paging problems, both have been shown to88

be O(log k)-competitive in [10] and [3] respectively. The first poly-logarithmic-competitive89

randomized online algorithm was introduced by Bansal et al. [2] on an arbitrary finite metric90

space for the k-server problem with n nodes, which has a competitive ratio of Õ(log3 n log2 k).91



P. Krnetić and D. Melnyk and Y. Wang and R. Wattenhofer 27:3

It improves upon the work function algorithm of Koutsoupias and Papadimitriou whenever n92

is subexponential in k. Similar to the deterministic k-server problem, a randomized k-server93

conjecture was presented, which states that there is a randomized algorithm for arbitrary94

metrics with a competitive ratio of O(log k) (see e.g., [2]). A more detailed illustration of the95

history of the k-server problem with deterministic and randomized algorithms can be found96

in [11]. In [15], Lee claimed that there is an O(log6 k)-competitive randomized algorithm for97

the k-server problem on any metric space.98

The idea of using delays was first considered by Emek et al. [9], where requests of the99

min-cost matching problem arrive online at points of a finite metric space and the algorithm100

may decide to match them later at a cost. Azar et al. transferred this idea to the well-known101

k-server problem and showed a poly-logarithmic competitive ratio of their preemptive service102

algorithm in [1]. It has a competitive ratio of O(kh4) on a hierarchically separated tree103

(HST) of depth h, which implies a competitive ratio of O(k log5 n) on general metrics with n104

points. The same authors also considered the special case of the uniform and the star metrics.105

For the uniform metric, they proposed an O(k)-competitive algorithm. Their algorithm takes106

any deterministic algorithm for the online paging problem and incorporates the delay by107

letting the algorithm only serve a node when its requests accumulate a delay penalty of 1.108

Note that our analysis suggests that this choice of the delay threshold is not optimal. Also109

for the star metric, the authors provide an O(k)-competitive algorithm without specifying110

the exact constants. Another special case was recently considered by Bienkowski et al. [4],111

who provided a deterministic O(logn)-competitive algorithm for line metrics consisting of n112

equidistant points.113

1.2 Model114

In this section, we formally define the online service with delays (OSD) problem considered115

in this paper and explain the necessary concepts that are needed for the analysis. We116

consider the k-server problem with delays on a uniform metric space M = (X, d), which117

we will refer to as the uniform k-OSD problem. The problem is defined on k + n nodes in118

X = {x1, ..., xn+k}, where the distance between any pair of nodes xi and xj is set to be119

d(xi, xj) = 1, ∀i 6= j, xi, xj ∈ X. Further, an input sequence of requests σ = (σ1 . . . σm) =120

(x1, t1), ..., (xm, tm) is given to an algorithm, where x1, . . . , xm ∈ X denote the source of the121

request and t1 ≤ . . . ≤ tm ∈ R denote the timestamp at which the corresponding request is122

issued. An algorithm for the uniform k-OSD problem is given k servers, s1, . . . , sk to serve123

all requests from the input sequence. The algorithm serves a request on node xj by moving124

a server si to this node. The goal of the algorithm is to minimize the sum of the moving and125

the delay costs, denoted Cmoving and Cdelay respectively. Every time the algorithm moves a126

server from one node to another, it pays a moving cost of one. If a request appears on a127

node where a server is already located, the request is served directly without any additional128

costs. Moreover, an algorithm does not have to serve all requests immediately. Instead, it is129

allowed to incur delay cost for each request. The delay cost is defined to be a non-negative130

monotonic function in the serving delay, i.e., serving a request which was issued at time131

ti at time tj will result at a delay cost of f(tj − ti), where f is a non-decreasing function.132

Note that there can be several requests issued at one node which all incur delay costs. The133

delay cost of a node is then accumulated over all its unserved requests by summing up the134

corresponding delay costs. The total cost of the algorithm (Ctotal) is calculated as the sum135

of the moving and the delay cost over the whole input sequence σ. We will differentiate136

between two settings for the delay cost function f of the online algorithm: in the clairvoyant137

setting, the online algorithm is assumed to know the delay cost function fi of request σi138

ISAAC 2020



27:4 The k-OSD Problem on Uniform Metrics

when this request appears. In the non-clairvoyant setting, the online algorithm does not139

know the function fi in advance, instead, the algorithm is given the accumulated delay costs140

of σi at any time point t. Note that the clairvoyant setting gives the online algorithm more141

power. In this paper, we will call requests which are unserved for a node open requests of142

the corresponding algorithm. We are interested in finding an online algorithm ALG which143

minimizes the total moving and delay cost. ALG will receive the input sequence of requests144

in an online fashion, where each σi will be presented at time ti to the algorithm. We compare145

ALG to an omniscent offline algorithm OPT which is given the whole input sequence σ at146

the beginning of the algorithm. The quality of ALG is measured using the competitive ratio,147

i.e., an α, for which the inequality CALGtotal ≤ α · COPTtotal + c holds for all request sequences σ148

with some constant c.149

1.3 Our Contribution150

In this paper, we present tight bounds for the uniform k-OSD problem in the clairvoyant151

and the non-clairvoyant settings. We start by presenting a lower bound of 2k + 1 for the152

clairvoyant setting by comparing a worst-case request sequence designed for any online153

algorithm to a combination of 2k + 1 offline strategies - k + 1 strategies covering the overall154

moving and k strategies covering the overall delay cost of any online algorithm. In [1], Azar155

et al. presented an O(k)-competitive algorithm for uniform metrics, but the tight constants156

remained unknown. In this paper, we define main properties that an online algorithm has to157

satisfy in order for it to match our lower bound. We show that conservative algorithms which158

are popular for solving the paging problem can all be equipped with an accumulative delay159

cost function such that they become 2k + 1-competitive when delays are allowed. Unlike160

in the paging problem, the analysis of conservative algorithms with delay requires a more161

involved partition of the request sequence which also depends on the actions of the optimal162

offline algorithm. The presented algorithms with delays are designed in the non-clairvoyant163

setting and thus show that clairvoyance does not give any advantage for the k-OSD problem164

with delays on uniform metrics.165

2 Lower Bound for Deterministic Algorithms166

In this section, we show a lower bound of 2k + 1 for the uniform k-OSD problem. We focus167

on uniform metrics on k + 1 nodes. In such spaces, we can assume that at any time point, k168

nodes are each covered by a server and there is exactly one node that is not covered by a169

server. We define this uncovered node to be a hole of the corresponding algorithm. Note that170

in a uniform metric space with more than k + 1 nodes, the sequence of requests can always171

be issued on a subset of k + 1 nodes, and the presented lower bounds are still valid. We will172

prove the lower bound using an averaging technique similar to the paging problem [5].173

I Theorem 1. There exists no deterministic online algorithm for the uniform k-OSD problem174

with a competitive ratio lower than 2k + 1− ε in the clairvoyant setting, where ε > 0 is an175

arbitrarily small constant.176

Proof. We will compare any online algorithm ALG to 2k+ 1 offline algorithms whose actions177

depend on the actions of the online algorithm. We will therefore first define the input178

sequence σ dependent on the actions of a considered online algorithm as follows: as soon as179

the online algorithm ALG moves a server away from a node, a new request is issued on the180

resulting hole. This way, ALG will incur a unit moving costs for each request from the input181

sequence in addition to the incurred delay cost. We further define the delay cost function f182



P. Krnetić and D. Melnyk and Y. Wang and R. Wattenhofer 27:5

for the requests to be linear in the serving delay, i.e., serving a request σi which was issued183

at time t1 at time t2 will result at a delay cost of c(σi) · (t2 − t1), where c(σi) is a predefined184

slope for this request. Let σi be the i-th request in the input sequence. Then, the slope of185

the delay cost function of σi is defined as c(σi) = ci, where c� 2 is a large constant.1186

The 2k+1 offline algorithms are defined with respect to the actions of the online algorithms.187

We first associate each node with one offline algorithm that has a hole on this node from the188

beginning until the end of the input sequence σ. At the end of the input sequence, each such189

algorithm moves one server to the hole in order to serve all unserved requests. We will call190

these algorithms static and denote the cost of all k + 1 static algorithms Cstatictotal . We also191

define k dynamic algorithms which make movements during the input sequence σ. The cost192

of all k dynamic algorithms we denote Cdynamictotal . Assume that the online algorithm ALG193

has a hole at xi. Then, each of the dynamic offline algorithms is assumed to respectively194

have a hole at one of the nodes {x1, . . . , xk+1} \ xi. Once ALG moves a server from xj to xi,195

the offline algorithm with a hole at xj moves a server from xi to xj .196

We next evaluate the total cost of all 2k + 1 offline algorithms. We start by analyzing197

the sum of the delay costs of all static algorithms. Note that all static algorithms together198

incur the same delay costs as ALG, and, in addition, costs of all previous open requests. We199

will therefore show the following statement: For all ε̄ > 0 there exists an initial slope c, such200

that for the delay cost of all static algorithms holds Cstaticdelay < (1 + ε̄)CALGdelay.201

In order to show this statement we will choose c := 2/ε̄. We can divide the input sequence
into phases as follows: a phase pi starts when a new requests σi is issued at the hole of ALG
at time ti. The phase ends with the appearance of the next request. We defined the input
sequence σ such that ALG always incurs delay costs at exactly one node. We will show that
the delay costs of all k + 1 static algorithms on phase p, denoted Cstaticdelay (p), can be bounded
by (1 + ε̄)CALGdelay(p). Observe that there is always one static algorithm that incurs costs for
the current open request σi of ALG. Besides these costs, the static algorithms also incur
costs for the requests σ1, . . . , σi−1. The ratio of the costs in phase pi can be computed as
follows:

Cstaticdelay (p)
CALGdelay(p)

=
∑i−1
j=1 c

j + ci

ci
= 1 +

∑i−1
j=1 c

j

ci
< 1 + 2

c
= 1 + ε̄

Note that the total moving cost of all static algorithms is Cstaticmoving = k + 1, as each
algorithm will move a server only once and since we consider a uniform metric space. The
total moving cost of the k dynamic algorithms is equal to Cdynamicmoving = CALGmoving, as each
movement by ALG makes only one of the dynamic algorithms move over the same edge.
Further, the delay cost of all dynamic algorithms is 0, because we can assume that each
offline algorithm first serves the newly arrived request at xi before moving the server away
from this node. For all 2k + 1 offline strategies together we receive the following costs:

CALGtotal

Cstatictotal + Cdynamictotal

=
CALGmoving + CALGdelay

Cstaticmoving + Cstaticdelay + Cdynamicmoving

≥
CALGmoving + CALGdelay

k + 1 + (1 + ε̄) · CALGdelay + CALGmoving

For large m, the moving costs of ALG will be significantly larger than k + 1, and thus202

the above ratio will converge to 1. On average, the 2k + 1 offline algorithms therefore have203

the same costs as ALG for m→∞. That is, there exists an offline algorithm for which ALG204

has a competitive ratio ≥ 2k + 1− ε, where ε > 0 is arbitrarily small.205

1 Note that our proof also works if we assume that all requests have the same linear delay cost function.
Then, instead of increasing the slope c(σi) of a request, we can set the number of requests appearing
simultaneously on this node to c(σi).

ISAAC 2020



27:6 The k-OSD Problem on Uniform Metrics

�206

Observe that the above lower bound can be extended to an arbitrary bounded metric207

space by adjusting the analysis: only the moving costs of the static algorithms will change,208

namely Cstaticmoving will be the sum of all shortest incoming edges of each node (each static209

algorithm has to move one server to serve the requests on its only hole). Since we can choose210

m to be arbitrarily large, the competitive ratio will also be 2k + 1 in the limit. Note that211

there is also a simpler lower bound proof for the k-OSD problem with delays, if the online212

algorithm is assumed to be non-clairvoyant.213

3 Upper Bounds on Uniform Metrics214

In this section, we present a non-clairvoyant algorithm for the k-OSD problem on uniform215

metrics with a competitive ratio of 2k+1, which we will refer to as ALG. This result will show216

that the lower bound from the previous section is tight. We assume that in the considered217

uniform metric space all nodes have a distance of one to each other. The corresponding218

metric is defined on k + n nodes and the algorithm has k servers for serving the requests,219

where n, k ≥ 1. We therefore can assume that at any point in the algorithm execution there220

are always k nodes covered by a server and n nodes with a hole.221

The presented algorithm will make use of accumulated delays on each node that has a222

hole. The idea is that as soon as the accumulated delay of a node reaches a certain threshold,223

the algorithm needs to move a server to the corresponding hole. We will refer to the nodes224

whose requests have reached this certain threshold, but have not been served by ALG yet,225

as critical nodes. Let s1,...,sk denote the servers of ALG. We assign a history counter to226

each server si that remembers the ordering in which the servers were moved. Note that the227

history counter therefore will need to remember the last time when si was used to serve a228

request and that the counters can be updated by ALG with every new request σi. Using the229

history counter, ALG is able to deterministically choose the server with the smallest history230

counter to be moved as we will discuss in Section 4.231

The Online Algorithm ALG232

The considered online algorithm ALG starts out with the same server constellation as its233

offline adversary OPT. At the beginning of the algorithm, the history counter of all servers234

is set to 0. Once a new requests appears, the algorithm ALG executes the following steps:235

1. If a new request appears on a node with a server of ALG, such a request is served236

immediately and the history counter of each server is updated.237

2. If a new request appears on a node with a hole, an accumulative delay counter is started238

at this node or incremented if already existing.239

3. Once some accumulative delay counter reaches a predefined threshold δ, where δ > 0 is240

a constant, ALG moves a server according to Properties 1 and 2 defined below to the241

corresponding hole and updates the history counters of all the servers.242

Note that we will determine the optimal value for δ later in the proof.243

In the case of concurrent requests, ties are broken arbitrarily. We will next define two244

properties that ALG needs to satisfy in order to be 2k + 1-competitive with respect to our245

analysis. The first property is conservativeness, which is often used for the paging problem,246

and the second property is the so-called perfect-usefulness. Both properties aim at the fact247

that an algorithm should reuse each server as few times as possible. These properties are248



P. Krnetić and D. Melnyk and Y. Wang and R. Wattenhofer 27:7

necessary for the analysis and they will help us to derive tight bounds for some well-known249

paging algorithms that are equipped with delays in Section 4.250

I Property 1. (Conservativeness) An online algorithm ALG is called conservative if, for251

every subsequence of requests σ′ that contains requests on k or fewer critical nodes, ALG252

incurs a moving cost of at most k in order to serve the requests of σ′.253

I Property 2. (Perfect-usefulness) An online algorithm ALG is called perfectly-useful if it254

moves exactly one server for every critical node.255

Phase Partitioning256

The partitioning of the input sequence that we will introduce here is different from the analysis257

of the paging problem. In the paging problem, the phase partitioning is only dependent on258

the input sequence, since it aims at minimizing the moving cost of any online algorithm.259

When delays are added, such a static partitioning cannot be used anymore, as an optimal260

algorithm can incur arbitrarily much delay for some requests, thus making its own actions261

independent of the input sequence.262

In order to analyze the competitive ratio of the previously presented algorithm, we first263

define phases on every node with respect to the actions of the offline algorithm OPT. Consider264

therefore k servers and a fixed request sequence σ. We define the phases on the holes of265

OPT, i.e., the nodes that are not covered by a server of OPT. Let xj be such a hole of OPT266

and σi be the first unserved request on xj after xj has become a hole. Let σi appear at time267

ti and let ti′ be the point in time when OPT serves the request σi and potentially other268

request that appeared on xj within the time interval [ti, ti′ ]. We call the time interval [ti, ti′ ]269

a phase p of OPT. We further associate each phase with a delay and a moving cost, denoted270

COPTdelay(p) and COPTmoving(p) respectively. COPTdelay(p) is defined to be the delay cost incurred by271

all open requests on xj during the time interval [ti, ti′ ]. COPTmoving(p) only consists of a moving272

cost of 1 when OPT moves a server to xj at the end of phase p. Note that the phases defined273

with respect to the same node do not overlap, but the phases defined on different nodes274

may do so. We will order the phases on all nodes with respect to their starting point and275

enumerate them. We will further associate each i-th phase pi with a total delay cost denoted276

δi, where δi := COPTdelay(pi). In contrast to OPT, we will define the delay and the moving costs277

of ALG to be the accumulated delay and moving cost over all nodes during the time interval278

pi = [ti, ti′ ]. We denote these costs CALGdelay(p) and CALGmoving(p) respectively.279

Our basic proof idea to show the competitiveness of ALG will be to partition the input280

sequence σ into phases and analyze the competitive ratio of ALG on each phase separately.281

If ALG is strictly α-competitive for every subsequence of requests of a phase, then the whole282

sequence σ is also α-competitive, as the following lemma states:283

I Lemma 2. Let there be two phases p1, p2 and let p = p1 ∪ p2 be the union of the phases284

defined as the time interval between the start of phase p1 and the end of longest of the two285

phases. If the subsequences of requests p1 and p2 are strictly α-competitive, then p is also286

strictly α-competitive.287

Proof. Let CALG(p), CALG(p1), CALG(p2) be the costs of ALG and let COPT (p), COPT (p1),288

COPT (p2) be the costs of OPT during the phase p, p1, p2 described by the corresponding289

time interval respectively. Note that the following holds:290

CALG(p) ≤ CALG(p1) + CALG(p2)
COPT (p) = COPT (p1) + COPT (p2)

(1)291

ISAAC 2020



27:8 The k-OSD Problem on Uniform Metrics

Note that the equation for OPT holds because the delay and the space costs of OPT are292

defined with respect to a single node and that consecutive phases that take place on the293

same node do not intersect. In contrast to this, we defined the costs of ALG to be the costs294

over all nodes, i.e., in the case of overlapping phases on different nodes, some of the costs295

might be counted for both intervals. By the assumption of the lemma statement we have296

CALG(p1)
COPT (p1) ≤ α,

CALG(p2)
COPT (p2) ≤ α (2)297

Now we show for phase p = p1 ∪ p2 that298

CALG(p)
COPT (p)

(1)
≤ CALG(p1) + CALG(p2)
COPT (p1) + COPT (p2) =

CALG(p1)
COP T (p1)·COP T (p2) + CALG(p2)

COP T (p1)·COP T (p2)
1

COP T (p2) + 1
COP T (p1)

(2)
≤

1
COP T (p2)α+ 1

COP T (p1)α

1
COP T (p2) + 1

COP T (p1)
= α

(3)299

�300

3.1 Algorithm Analysis301

Let ALG be an algorithm from the set of online algorithms defined in Section 3 and let OPT302

be any optimal offline algorithm, both equipped with k servers. We need to handle the first303

phase p1 together with the last phase, since requests in the last phase might only be open304

for ALG, but not for OPT. In the next lemma we will present the competitiveness analysis305

for any middle phase, i.e., not the first or the last phase, of the partitioning:306

I Theorem 3. The presented deterministic online algorithm based on conservativeness and307

perfect-usefulness in Section 3 is 2k + 1-competitive for the uniform k-OSD problem.308

Proof. We will start this proof by showing that the considered deterministic algorithm is309

max{k · (1 + δ), 2k+ 1, 1
δ · (k+ 1) · (1 + δ)}-competitive on each phase pi. By setting δ := k+1

k310

at the end of this proof, we will achieve the optimal competitive ratio of 2k + 1 for ALG, as311

stated in the theorem statement. In order to show the above formula for the competitive312

ratio, we fix any request sequence σ and consider its phase partition. For each phase, we313

make a case distinction based on the size of δi where δi is the delay cost of OPT in pi defined314

in the previous section.315

We claim that for any phase pi with a total delay cost of δi, ALG incurs costs for at most316

k + b δi

δ c · (1 + k) requests on holes, each of which has a delay cost of δ. The main idea for317

this proof is that every time OPT incurs a delay cost of δ, ALG can afford to move a server.318

Throughout the proof, we will assume that a phase of OPT starts at xj with a request σi for319

which both algorithms, OPT and ALG, have a hole on xj . This assumption is justified since320

all requests that can be immediately served by ALG but not by OPT do not contribute to a321

larger competitive ratio and can therefore be omitted in the analysis. Note that all requests322

that can be immediately served by OPT but not by ALG do increase the competitive ratio323

and will be taken care of in so-called post-phases that will be defined later.324

Let the phase pi begin with an open request on node xj which is a hole for both algorithms.325

Assume at first that δi > δ. At the beginning of the request sequence, both algorithms have326

the same server constellation. Since we assumed δi > δ, ALG will have to serve the node xj327

at least once before OPT does. In the worst case, due to the definition of the accumulative328

delay cost of ALG, ALG will have to serve xj at most b δi

δ c times before OPT moves a server329



P. Krnetić and D. Melnyk and Y. Wang and R. Wattenhofer 27:9

to xj . After ALG serves xj for the first time, there can be requests on at most k distinct330

nodes that are covered by the servers of OPT but not by the servers of ALG. These requests331

are served by OPT immediately whereas ALG incurs delay and moving costs for each of the332

requests. Note that there cannot be more than k such requests due to Property 1. Moreover,333

ALG would end up with the same server constellation as OPT after k such requests, as a334

request would appear on a hole for ALG and OPT otherwise. Observe that each request is335

served after time δ and only one server is moved to serve that request according to Property336

2. Therefore, ALG will incur costs of at most k · (1 + δ) for these k requests. This situation337

can appear every time after ALG serves a request on xj . Thus, ALG would incur a cost of338

b δi

δ c · (k + 1) · (1 + δ).339

A phase might end with or only consist of a small delay interval of length δi − b δi

δ cδ just340

before OPT serves all open requests on xj . Note that the k requests that can be issued on341

the nodes which are covered by the servers of OPT are already accounted for in the previous342

analysis, if δi > δ. The costs of ALG for serving the last requests on this time interval are343

however not accounted for so far. Neither are the costs for the time before ALG serves xj344

for the first time, which corresponds to the whole phase if δi < δ. In fact, also during this345

time requests on the k nodes which are covered by the servers of OPT but not by the servers346

of ALG might appear. In order to account for these k requests and for the moving costs of347

1 for serving xj after OPT has done so, we will introduce the concept of a post-phase. A348

post-phase consists of requests on at most k nodes after the end of a phase. Since OPT has349

a server at xj at the end of phase pi, xj is one of the k nodes covered by a server of OPT in350

the post-phase. Therefore, the delay and the moving costs for serving the last requests on xj351

will also be covered in the post-phase. As the post-phase consists of requests on at most k352

nodes, the total cost for ALG during a post-phase is at most k · (1 + δ). This part of the353

analysis explains how the costs between two non-overlapping phases are covered.354

In the case when the phases overlap, or even when the next phase ends before the previous,355

the upper bound on the number of requests still holds. The serving times of requests of356

any number of overlapping phases can be ordered by the point in time when ALG moves357

a server to the corresponding node. Each movement thereby accounts for the requests on358

k nodes that are covered by the servers of OPT and which may appear after every served359

request by ALG. Since each phase can have at most one post-phase, it is also calculated in360

the above costs. Therefore, overlapping phases cannot increase the competitive ratio of ALG.361

An example of the phase partition on a small example with long, short, and overlapping362

phases as well as the corresponding post-phases is visualized in Figure 1.363

Finally, we can summarize the costs incurred by each of the algorithms for any phase.
OPT always incurs costs of COPTtotal (pi) = 1 + δi. The costs of ALG are calculated as the sum
of the costs during a phase and the costs of the post-phase. These costs are equal to

CALGtotal (pi) =
(⌊

δi
δ

⌋
· (k + 1) + k

)
· (1 + δ)

The competitive ratio for each phase can be calculated as the quotient of the two terms. In364

order to estimate the competitive ratio for the algorithm, we need to make a case distinction365

on δi - the delay cost of a phase pi:366

δi < δ: In this case we have b δi

δ c = 0. Therefore the competitive ratio becomes

CALGtotal (pi)/COPTtotal (pi) ≤ k · (1 + δ)

δi = δ: In this case we have b δi

δ c = 1 and the term 1 + δi = 1 + δ. The competitive ratio is

CALGtotal (pi)/COPTtotal (pi) ≤ k + (k + 1) = 2k + 1

ISAAC 2020



27:10 The k-OSD Problem on Uniform Metrics

x1, {}

x2, {s1}

x3, {}

post-phase pi−1 post-phase pi post-phase pi+1 post-phase pi+2

phase pi phase pi+1

phase pi+2

phase pi+3

δ δ δ

< δ

δ δ δ

δ δ δ

s1 s1 s1

Figure 1 An example of the partitioning of the phases into a phase and a post-phase on three
nodes, where k = 1. The server of OPT is located on the node x2 at the beginning of the visualized
sequence and the uncovered nodes are denoted with empty braces. OPT incurs delay for requests
on its holes, represented as unfilled circles, and moves the server at the end of the phase. Solid
circles represent requests that can be served immediately by OPT, possibly incurring a moving
cost. For visual purposes, we assume that all requests have the same delay function. Each phase
starts with an open request and ends once OPT serves this request, which is visualized by arrows
between the nodes. Moreover, a post-phase is appended at the end of any phase, where requests on
the two covered nodes by OPT may appear. Also between any two open requests, possibly from
different phases, requests may appear on the two uncovered nodes. The figure depicts three different
situations considered in the analysis: δi ≥ δ, δi < δ, and when two phases overlap.

δi → ∞: In this case the delay cost for an interval δi is maximized. We can divide the
numerator and the denominator of the competitive ratio by δi and consider the limit for
δi →∞. This results in a competitive ratio of

CALGtotal (pi)/COPTtotal (pi) ≤
1
δ
· (1 + k) · (1 + δ)

For all other values of δi, the competitive ratio lies between k·(1+δ), 2k+1 and 1
δ ·(k+1)·(1+δ).367

This holds, since the competitive ratio as a function of δi is minimized for the values of δi368

considered in the three cases of the case distinction. The competitive ratio in this case can369

be defined as max{k · (1 + δ), 2k + 1, 1
δ · (1 + k) · (1 + δ)}, just as in the statement of this370

lemma. Note that we omitted the case δ →∞, as it can be easily shown that ALG cannot371

be competitive in this case.372

In order to show that ALG is 2k+1-competitive, we will consider the maximum competitive
ratio achieved in the above case distinction. As a function of δ, the competitive ratio of
Case 1 is a strictly monotonically increasing function, while the one of Case 3 is strictly
monotonically decreasing. The global minimum can be found by looking at their intersection
point. Setting these functions equal to each other, we obtain

1
δ
· (k + 1) · (1 + δ) = k · (1 + δ)

which is equal if and only if δ = k+1
k . This means that ALG is optimal, if δ is set to the373

value k+1
k . Applying this δ to Case 1 or Case 3, we get a competitive ratio of 2k + 1, which374

is equal to the competitive ratio of Case 2. �375



P. Krnetić and D. Melnyk and Y. Wang and R. Wattenhofer 27:11

4 Deterministic Paging Algorithms with Delays376

In our analysis of the upper bound, we considered an online algorithm with the properties of377

conservativeness and perfect-usefulness, where we move the server with the smallest history378

counter in case of a critical node based on its replacement policy. In this section, we will379

draw a connection between our ideas in the analysis and the well-known deterministic paging380

algorithms. In the paging problem, online algorithms are often divided into two kinds of381

algorithms - the marking and the conservative algorithms, a broad analysis of which can382

be found in the book of Borodin and El-Yaniv [5]. We will restrict ourselves to three main383

conservative algorithms that we will equip with delays according to the definition of our384

k-OSD algorithm in Section 3. We will then show that these generalized algorithms satisfy385

Properties 1 and 2 and thus are 2k+1 competitive. We will further address the flush-when-full386

algorithm, a marking algorithm, whose competitive ratio does not directly follow from our387

analysis in Section 3.1. The following paging algorithms are considered in this section:388

(i) LRU (least recently used): In the case where a server has to leave a node in order to389

cover a new node that has become critical, it chooses the server on the node whose390

most recent request was earliest. That is, the history counter of each server is updated391

with each served request, and the server with the smallest history counter is moved.392

(ii) CLOCK (clock replacement): This algorithm is an approximation of the LRU where a393

single "use" bit represents the implicit timestamp of LRU.394

(iii) FIFO (first-in/first-out): In case of a critical node, let the server from the node that395

has been covered by a server longest be moved to the critical node. This strategy396

corresponds to updating history timers whenever a server was moved last.397

(iv) FWF (flush-when-full): Here, the idea is to only let servers with a history counter 0398

serve critical nodes and update the history counter to the time when the server was399

moved. Once all history counters are non-zero and a new critical node appears, all k400

counters are reset to 0, i.e., they are "flushed".401

Note at first that all presented algorithms are paging algorithms without delay and402

therefore only define which servers will be moved and not at which point in time. The time403

at which a server is moved is defined in the definition of the generalized k-OSD algorithm in404

Section 3. This algorithm demands that for each critical node only one server movement is405

performed using one of the above strategies. Therefore, all these algorithms equipped with406

delays satisfy Property 2.407

I Lemma 4. The LRU, CLOCK and FIFO algorithms equipped with the delay function from408

Section 3 are 2k + 1-competitive for the k-OSD problem.409

Proof. It has been shown in the literature that the LRU, CLOCK, and FIFO algorithms are410

conservative, see for example [5]. Since we defined the algorithms and the conservativeness411

property with respect to server movements and their history counters, we will use the LRU412

algorithm to show that it satisfies conservativeness with respect to the definition of Property413

1. Assume that there is a subsequence σ with requests on k distinct holes. Since there exists414

a well-defined order of the history counters, for any critical node, the LRU algorithm chooses415

the server on the node whose most recent request was the earliest. The history counter of416

that server is updated and never used again in σ, since the other k − 1 history counters are417

smaller. That means LRU moves exactly one server for each critical node, i.e., k movements418

in total for the whole sequence σ. This fulfills the conditions of Property 1. �419

ISAAC 2020



27:12 The k-OSD Problem on Uniform Metrics

I Lemma 5. The FWF algorithm equipped with the delay function from Section 3 is 2k + 1-420

competitive for the k-OSD problem.421

Proof. Observe that FWF is not a conservative algorithm. This is because, within a422

subsequence of k critical nodes, FWF can reset all its history counters and reuse some of423

its servers for this subsequence, thus moving servers more than k times. Between two flush424

operations, the algorithm however does satisfy Property 1. We will not give the full proof425

for the competitiveness of FWF here, but instead the idea of how the reused servers can be426

accounted for in the analysis. Consider therefore consecutive phases defined as in Section 3:427

At the beginning of the sequence, the servers of OPT and FWF start on the same nodes.428

Assume that the first phase is of the kind δi < δ. In this case, after a movement of OPT,429

FWF has to serve at most k additional requests on k nodes that are already served by OPT.430

That is, FWF would update all k history counters and have a critical node at the end of431

phase p1 in the worst case. In addition, its servers will reach the same constellation as the432

servers of OPT. With the critical node, all counters will be reset to 0 and a new phase will433

begin. In this case, the competitive ratio of 2k + 1 holds. The interesting cases are when434

the phases overlap or when requests are not issued on all k nodes covered by OPT. This435

way, OPT and FWF will not have their servers on the same nodes when entering the next436

phase p2 and not all history counters of FWF will be equal to zero. In this case, FWF might437

have to reset its history counters during the next phase and reuse some of the already used438

servers in that phase. Note that the number of reused servers can be upper bounded by the439

number of nodes that are covered by the servers of OPT but not by the servers of FWF at440

the beginning of p2. Therefore, we can always count the delay and moving costs of reused441

servers to the post-phase of the previous phase. In the case when δi > δ, a similar argument442

can be derived for all subphases with delay cost δ. �443

From the above analysis, it follows that conservative algorithms can be used to extend our444

analysis and obtain tight results for the uniform k-OSD problem. The same observations were445

shown in the paging problem without delays with a competitive ratio of k in [5] by Borodin446

and El-Yaniv. There are of course also some well-known deterministic paging algorithms447

that are not competitive for the paging problem and therefore also for the uniform k-OSD448

problem. Such algorithms are for example the LIFO (last-in/first-out) or the LFU (least449

frequently used).450

5 Discussion451

In this paper, we have considered a special case of the k-server problem with delays, where452

the distances between all nodes in the system are equal. We devised deterministic online453

algorithms with competitive ratio 2k + 1 by equipping known conservative algorithms with454

a carefully chosen delay function. We have also shown that this bound is tight. The tight455

bound for the k-OSD problem on general finite metric spaces is not known yet. Our results,456

however, inspire the following question which is analog to the classical k-server conjecture:457

Is there a 2k + 1-competitive deterministic algorithm for the k-server problem with delays on458

any finite metric space? This question has been answered negatively by Azar et al. [1] in the459

non-clairvoyant setting, where they show that the lower bound for a weighted start depends460

on the aspect ratio.461

On the other hand, our results can be positive evidence that there are many variants of462

the k-server problem for which the classic k-server conjecture does not generalize, i.e., the463

deterministic competitive ratio in uniform metrics is different than arbitrary metric spaces.464



P. Krnetić and D. Melnyk and Y. Wang and R. Wattenhofer 27:13

For example, in the weighted k-server problem, even for k = 2, there exists a 5-competitive465

deterministic algorithm on uniform metrics [8] but it is known that for the line metric the466

competitive ratio is more than 10 [14].467

Another natural extension to our work would be to consider randomized algorithms of468

uniform k-OSD problems. Without delays it is only possible to choose a random distribution469

of the servers which are to be moved, thus achieving a well-known tight bound of Hk for k470

servers. When delays are allowed, a new possibility is given to algorithms, namely to also471

make use of a randomized delay function. This opens the question of what is the tight bound472

can be achieved by a randomized algorithm for the uniform k-OSD problem.473

References474

1 Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. In475

Proceedings of the 49th Annual ACM SIGACT STOC, pages 551–563. ACM, 2017.476

2 Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph S. Naor. A polylogarithmic-477

competitive algorithm for the k-server problem. In 2011 IEEE 52nd Annual FOCS, pages478

267–276, 2011.479

3 Nikhil Bansal, Niv Buchbinder, and Joseph S. Naor. A primal-dual randomized algorithm for480

weighted paging. Journal of the ACM (JACM), 59(4):19, 2012.481

4 Marcin Bienkowski, Artur Kraska, and Paweł Schmidt. Online service with delay on a line. In482

SIROCCO, pages 237–248. Springer, 2018.483

5 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis, chapter 1,484

3, 10, pages 1–22, 32–43, 150–181. Cambridge University Press, 2005.485

6 Marek Chrobak, H. Karloff, Tom Payne, and Sundar Vishwnathan. New results on server486

problems. SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.487

7 Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k servers on trees.488

SIAM Journal on Computing, 20(1):144–148, 1991.489

8 Marek Chrobak and Jiří Sgall. The weighted 2-server problem. In Annual Symposium on490

Theoretical Aspects of Computer Science, pages 593–604. Springer, 2000.491

9 Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online Matching: Haste Makes Waste!492

STOC ’16, pages 333–344, New York, NY, USA, 2016. ACM.493

10 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator, and Neal E.494

Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.495

11 Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.496

12 Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. Journal of the497

ACM (JACM), 42(5):971–983, 1995.498

13 Elias Koutsoupias and Christos H. Papadimitriou. The 2-evader problem. Information499

Processing Letters, 57(5):249–252, 1996.500

14 Elias Koutsoupias and David Scot Taylor. The cnn problem and other k-server variants. In501

Annual Symposium on Theoretical Aspects of Computer Science, pages 581–592. Springer,502

2000.503

15 J. R. Lee. Fusible hsts and the randomized k-server conjecture. In 2018 IEEE 59th Annual504

Symposium on FOCS, pages 438–449, Oct 2018.505

16 Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algorithms for online506

problems. In Proceedings of the twentieth annual ACM STOC, pages 322–333. ACM, 1988.507

17 Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algorithms for server508

problems. Journal of Algorithms, 11(2):208–230, 1990.509

18 Prabhakar Raghavan and Marc Snir. Memory versus randomization in on-line algorithms. In510

International Colloquium on Automata, Languages, and Programming, pages 687–703. Springer,511

1989.512

19 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.513

Communications of the ACM, 28(2):202–208, 1985.514

ISAAC 2020


	Introduction
	Related Work
	Model
	Our Contribution

	Lower Bound for Deterministic Algorithms
	Upper Bounds on Uniform Metrics
	Algorithm Analysis

	Deterministic Paging Algorithms with Delays
	Discussion

