Aggregating Information in Peer-to-Peer Systems for Improved Join and Leave

Keno Albrecht **Ruedi Arnold** Michael Gähwiler Roger Wattenhofer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Overview

- Introduction
 - P2P Topologies: "Tree" Structure
 - Join & Leave in P2P
- Distributed Approximation System Information Service (DASIS)
- Join Algorithms using DASIS
- Simulation Results
- Conclusion & Outlook

P2P Topologies

Different P2P Topologies

 Ring, d-dimensional address space...

• Tree Topology

- Unique ID (bit string) per peer
- ID specifies "domain space"
- Peer is responsible for storing all keys with IDs within its domain space (longest prefix match)
- Example: Kademlia (P. Maymounkov and D. Mazieres. Kademlia: A Peerto-peer Information System Based on the XOR Metric. In Proceedings of IPTPS, Cambridge, MA, USA, March 2002.)

٥

0

o

Tree P2P Topology

- Tree-Example:
 - Neighbors p_i
 - Neighbor p_i has the same (i-1) first bits and bit i inverted
 - Allow efficient logarithmic search (lookup) operation
 - Consider peer with ID 001

Joins and Leaves in P2P Systems

- Lingering Problem: Assignment of ID to peers
- P2P systems are decentralized and dynamic: random assignment is used
 - Used as reference in simulations
- This does not well balance the peers

- Logarithmic imbalance factor (balls-into-bins analysis)
- A highly loaded peer stores a factor $\Theta(\log n)$ more keys than a peer with average load, whp.
- Different random remedies have been proposed
- Our proposal: a **non-randomized join-algorithm**
 - based on a distributed approximative information service for P2P systems

P2P2004

Distributed Approximation System Information Service

- Abstract decentralized service
- Provides approximate information about the P2P system
- Built on top of the regular P2P structure
- Accuracy depends on the message propagation mechanism
- Can deliver a wide range of information, e.g.:
 - number of peers in the system (illustrative example)
 - minimal depth of peers in the system
 - average up-time
 - total amount of bytes stored in the system

DASIS Example: Number of Peers

- Main idea: peer p is considered an "expert" on all the sub domains of the prefixes of its bit string ID b₁b₂...b_n
- The expert knowledge is constructed **inductively** through information exchange with the neighbor peers

DASIS - accuracy

- For the implementation of DASIS, several update strategies were employed
 - Periodical: regular updates to neighbors
 - Adaptive: only if changes occurred
 - **Piggyback**: along with regular (e.g. lookup) messages
- Favorite: Piggybacking no additional (message) cost!
 - Quality reduces gracefully

Join Algorithms using DASIS

- Idea: insert peer where they are "most needed"
 How is this need specified?
- We want a **well-balanced** topology!
 - Assumption: large and uniform distributed key population

- All Peers should be at more or less the same depth
 - **Depth** of a peer = length of its bit string

Depth Join

• Uses DASIS minimal depth service

• Algorithm

- New peer is **routed** through the P2P system to sub domains with smallest depth
- At every peer passed, one bit of the bit string of the "joiner" is fixed -> Termination guaranteed
- If further routing is not possible -> insert
 - Inserting peer assigns joining peer its own bit string plus a 1 and appends a 0 to its own bit string
 - Splitting the local domain space in half

> 0

Simulation – the Criterion

- Two evaluation criteria
 - minimal depth D
 - Balance measure B
 - More fine-grained
 - taking the number of peers with small depth into account
 - $B = \sum 2^{-2d_i} > 0$
 - Sum over all peers in the system
 - $d_i = depth of peer i$
 - Normalized with optimal balance B_{Opt} : ρ_{Alg} = B_{Opt} / B_{Alg} > 0 ρ_{Opt} = 1
- Random Join (RJ) for reference

Simulation – Inserting 22k Peers

 \circ

- Depth Join (DJ) performs better than Random Join (RJ)
 - minimal depth service only piggybacking regular messages

▶0

Simulation – Steady State

- Peers joining, leaving and performing lookup operations
 - Load parameter L: average number of lookups before leaving
 - Lookup messages for piggybacking
 - Higher load -> more accurate depth information -> better balanced system
- steady state is quickly reached!
 - Independent of start distribution
- Better than RJ

P2P2004

Conclusion

- We introduced DASIS the Distributed Approximation System Information Service
 - Powerful tool, many applications
 - Sample application: Minimal depth information for improved Join and Leave
- Join Algorithm based on depth information leads to better balanced P2P systems
 - Better than random assignment of IDs (Random Join)
 - Especially in cases of imbalances (e.g. due to a high number of leaving peers, or malicious attackers)

P2P2004

Another Conclusion

- Similar ideas contemporaneously developed for "Willow"
 - follow-up work of Astrolabe
 - Support for publish/subscribe
 - Uses SQL-like queries for information aggregation
 - Not employed for an improved join algorithm
 - Shows variety of applications of aggregation mechanism.
 - (R. van Renesse and A. Bozdog. Willow: DHT, Aggregation, and Publish/Subscribe in One Protocol. In Proceedings of IPTPS 2004.)

P2P2004

Outlook 1

- DASIS was explained on a "Tree Style" P2P topology
- Could also be integrated into existing P2P systems
 - Skip List based topologies such as Skip Graph, SkipNet
 - Ring topologies like Chord or Pastry
 - Sketch of DASIS on Chord in the paper
 - "How many peers in interval" instead of "How many peers with prefix x"
 - Finger intervals may overlap
 - Adjustment approximately possible
 - No problem for min or max functions

August 27 2004

P2P2004

Outlook 2

- Theoretical analysis in progress...
 - To be published soon by Kuhn, Schmid and Wattenhofer
 - Surprising results
 - Synchronous model
 - system with diameter D
 - ⇒ "Every node knows exact state of system D time ago"
- Still to be done...
 - Implement DASIS and Join Algorithm for real-world measurement

Thank you. 😳