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Abstract. A group of n agents with numerical preferences for each other
are to be assigned to the n seats of a dining table. We study two natural
topologies: circular (cycle) tables and panel (path) tables. For a given
seating arrangement, an agent’s utility is the sum of their preference
values towards their (at most two) direct neighbors. An arrangement
is envy-free if no agent strictly prefers someone else’s seat, and it is
stable if no two agents strictly prefer each other’s seats. Recently, it was
shown that for both paths and cycles it is NP-hard to decide whether
an envy-free arrangement exists, even for symmetric binary preferences.
In contrast, we show that, if agents come from a bounded number of
classes, the problem is solvable in polynomial time for arbitrarily-valued
possibly asymmetric preferences, including outputting an arrangement
if possible. We also give simpler proofs of the previous hardness results
if preferences are allowed to be asymmetric. For stability, it is known
that deciding the existence of stable arrangements is NP-hard for both
topologies, but only if sufficiently-many numerical values are allowed. As
it turns out, even constructing unstable instances can be challenging in
certain cases, e.g., binary values. We propose a complete characterization
of the existence of stable arrangements based on the number of distinct
values in the preference matrix and the number of agent classes. We
also ask the same question for non-negative values and give an almost-
complete characterization, the most interesting outstanding case being
that of paths with two-valued non-negative preferences, for which we
experimentally find that stable arrangements always exist and prove it
under the additional constraint that agents can only swap seats when
sitting at most two positions away. Similarly to envy-freeness, we also
give a polynomial-time algorithm for determining a stable arrangement
assuming a bounded number of classes. We moreover consider the swap
dynamics and exhibit instances where they do not converge, despite a
stable arrangement existing.

Keywords: Hedonic Games - Stability - Computational Complexity.

1 Introduction

Your festive dinner table is ready, and the guests are arriving. As soon as your
guests take their assigned seats, two of them are unhappy about their neighbors
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and rather want to switch seats. Alas, right after the switch, two other guests
become upset, and then pandemonium ensues! Could you have prevented all the
social awkwardness by seating your guests “correctly” from the get-go?

In this paper, we study the difficulty of finding a stable seating arrangement;
i.e. one where no two guests would switch seats. We focus on two natural seating
situations: a round table (cycle), and an expert panel (path). In either case, we
assume guests only care about having the best possible set of direct left and right
neighbors. In certain cases, not even a stable arrangement might make the cut,
as a single guest envying the seat of another could potentially lead to trouble.
Therefore, we are also interested in finding envy-free arrangements.

Formally, n guests have to be assigned bijectively to the n seats of a dining
table: either a path or a cycle graph. Guests express their preferences for the
other guests numerically, with higher numbers corresponding to a greater desire
to sit next to the respective guest. The utility of a guest g for a given seating
arrangement is the sum of ¢’s preference values towards ¢g’s neighbors. A guest g
envies another guest if ¢g’s utility would strictly increase if they swapped places.
Two guests want to swap places whenever they envy each other. Our goal is to
compute a stable (no two guests want to swap) respectively envy-free (no guest
envies another) seating arrangement.

Besides the table topology, we conduct our study in terms of two natural
parameters. The first parameter is the number of numerical values guests can
choose from when expressing their preferences for other guests. For instance,
an example of two-valued preferences would be when all preference values are
either zero or one (i.e., binary, also known as approval preferences), in which
case every guest has a list of “favorite” guests they want to sit next to, and is
indifferent towards the others. In contrast, if the values used were +1; i.e., every
guest either likes or dislikes every other guest; then the preferences are still two-
valued, but no longer binary. Increasing the number of allowed values allows for
finer-grained preferences. It is also interesting to distinguish the special case of
non-negative preferences; i.e., no guest can lose utility by gaining a neighbor.

Our second parameter is the number of different guest classes. In particular,

dinner party guests can often be put into certain categories, e.g., charmer, en-
tertainer, diva, politico, introvert, outsider. Each class has its own preferences
towards other classes, e.g., outsiders would prefer to sit next to a charmer, but
not next to an introvert.
Our Contribution. We study the existence and computational complexity of
finding stable/envy-free arrangements on paths and cycles. Some of our results
can be surprising. For instance, six people with binary preferences can always be
stably seated at a round table, while for five (or seven) guests some preferences
are inherently unstable, so we better invite (or uninvite) another guest. However,
even for six people with binary preferences, for which a stable arrangement
always exists, the swap dynamics might still never converge to one.

Our computational results are exhibited in Table 1. In summary, if the num-
ber of guest classes is bounded by a constant (which can be arbitrary), then
both stable and envy-free arrangements can be computed in polynomial time
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No. of Classes No. of Classes
‘Bounded Unbounded ‘Bounded Unbounded
EF | Poly® NP-hard' EF | Poly* NP-hard'
STA| Poly* NP-hard* STA| Poly* NP-hard®

(a) Complexity results for cycles. (b) Complexity results for paths.

Table 1: Summary of computational results for envy-free (EF) and stable (STA)
arrangements. We distinguish between two cases, depending on whether the
total number of guest classes is bounded by a constant or not. Hardness results
are for the existential questions “do such arrangements exist?” Polynomial-time
algorithms recover an envy-free/stable arrangement whenever one exists.

# are shown in Theorems 4 and 5 (working for arbitrary values).

{ are shown in Theorems 1 and 2 (using binary values). They were also recently shown
in [10] for symmetric binary preferences, although with more complex proofs.

* is shown in [10] using four non-negative values, the binary case is open.

§ is shown in [10] using six values including negatives, the non-negative case is open.

whenever they exist with no assumption on the preference values, while drop-
ping this assumption makes the two problems difficult even for very constrained
preference values. For envy-freeness, this already happens for binary preferences,
arguably the most prominent case. For stability, on the other hand, this requires
more contrived values (four non-negative values for cycles and six values in-
cluding negatives for paths), so it would be interesting to have a finer-grained
understanding of stability in terms of the values allowed when expressing one’s
preferences. For instance, is it still hard to find stable arrangements for binary
preferences? As we show, it turns out to be surprisingly difficult to even construct
unstable binary preferences, setting aside the computational considerations. To
this end, we conduct a fine-grained study aiming to answer for which combina-
tions of our two parameters, i.e., number of preference values and guest classes,
do stable arrangements always exist and for which combinations this is not the
case. Our results are exhibited in Table 2. Notably, for cycles we give a full char-
acterization, either showing guaranteed stability with arbitrary values or giving
unstable instances with (simple) non-negative values. Similarly, for paths, we
close all cases, with the notable exception of two-valued preferences with three
or more classes being permitted, where all the unstable instances we found re-
quire negative values. We conjecture that for non-negative values stability on
paths is guaranteed in the two-valued case. We support this conjecture with ex-
perimental evidence, as well as a partial result under the additional assumption
of guests only being willing to swap seats if they are separated by at most one
seat (see Table 2 for more details).

Appendix. In the appendix, we supply the proofs omitted from the main text,
as well as supporting material. Moreover, we show that stability is a highly fra-
gile notion, being non-monotonic with respect to adding/removing guests. We
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Classes Classes

< >
Values S23 425 Values <23 =24
<2 S STU* U <2 S U U
3 s u'u U 3 s U'u
=4 S*U U U =>4 s*U U
(a) Characterization results for cycles. (b) Characterization results for paths.

Table 2: Summary of results characterizing the existence of unstable instances
for different combinations of constraints on the number of preference values and
classes of guests. Our stability (S) results mean that all instances satisfying
the constraints admit a stable arrangement, and hold for arbitrary preference
values. Our constructions with no stable arrangements (U) only use small non-
negative values (except e, discussed below), often 0,1,2,..., and work for any
large enough number of guests.

# are shown in Theorems 6 and 7 (working for arbitrary values).
f are shown in Theorems 8 and 9 (using non-negative values).
* is shown in Theorem 11 (working for arbitrary values).
§ is shown in Theorem 10 (using binary values).

is shown in Theorem 12 (using also negative values). The case of non-negative values
is open, and we believe that the answer is S. We have exhaustively established this for
4-class instances with at most ten guests per class and 5-class instances with at most
four guests per class, as well as all 7-guest instances. Moreover, it holds irrespective of
the number of classes assuming that guests are only willing to swap places with other
guests that they are separated from by at most one seat (Theorem 13).

also give evidence that knowledge about stability on paths is unlikely to transfer
to computing cycle-stable arrangements. Finally, we use probabilistic tools to
study the expected number of stable arrangements of Erdés-Rényi binary pref-
erences.

2 Related Work

The algorithmic study of stability in collective decision-making has its roots in
the seminal paper of Gale and Shapley [12], introducing the now well-known
Stable Marriage and Stable Roommates problems. Classically, the former is pre-
sented as follows: an equal number of men and women want to form couples such
that no man and woman from different couples strictly prefer each other over
their current partners, in which case the matching is called stable. The authors
give the celebrated Gale-Shapley deferred acceptance algorithm showing that a
stable matching always exists and can be computed in linear time. Irving [14]
later extended the algorithm to also handle preferences with ties; i.e., a man
(woman) being indifferent between two women (men). The Stable Roommates
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problem is the non-bipartite analog of Stable Marriage: an even number of stu-
dents want to allocate themselves into identical two-person rooms in a dormitory.
A matching is stable if no two students allocated to different rooms prefer each
other over their current roommates. In this setting, stable matchings might no
longer exist, but a polynomial-time algorithm for computing one if any exist is
known [13]. However, when ties are allowed, the problem becomes NP-hard [16].

The seating arrangement problem that we study is, in fact, well-connected
with Stable Roommates. Instead of one table with n seats, the latter considers
n/2 tables with two seats each. However, there is another more subtle differ-
ence: in Stable Roommates, two people unhappy with their current roommates
can choose to move into any free room. This is not possible if there are exactly
n/2 rooms. Instead, the stability notion that we study corresponds to the distinct
notion of exchange-stability in the Stable Roommates model, where unhappy stu-
dents can agree to exchange roommates. Surprisingly, under exchange-stability,
finding a stable roommate allocation becomes NP-hard even without ties [9].

One can also see our problem through the lens of coalition formation. In
particular, hedonic games [2] consider the formation of coalitions under the
assumption that individuals only care about members in their own coalition.
Then, fixing the sizes of the coalitions allows one to generalize from tables of
size two and study stability more generally. Bilo et al. [5] successfully employ
this approach to show a number of attractive computational results concerning
exchange-stability. The main drawback of this approach, however, is that it as-
sumes that any two people sitting at the same table can communicate, which
is not the case for larger tables. Our approach takes the topology of the dining
table into account.

Some previous works have also considered the topology of the dining table.
Perhaps closest to our paper is the model of Bodlaender et al. [6], in which »n in-
dividuals are to be assigned to the n vertices of an undirected seating graph. The
authors prove a number of computational results regarding both envy-freeness
and exchange-stability, among other notions. However, we found some of the
table topologies considered to be rather unnatural, especially in hardness proofs
(e.g., trees or unions of cliques and independent sets). Bullinger and Suksom-
pong [8] also conduct an algorithmic study of a similar problem, but with a few
key differences: (i) individuals are seated in the nodes of a graph, but there may
be more seats than people; (ii) for the stability notion, they principally con-
sider jump-stability, where unhappy people can choose to move to a free seat;
(iii) individuals now contribute to everyone’s utility, although their contribution
decreases with distance.

Last but not least, studying stability in the context of Schelling games has
recently been a popular area of research [11,1,4,15,3]. In Schelling games, indi-
viduals belong to a fixed number of classes. However, unlike in our model, agents
from one class only care about sitting next to others of their own class. This addi-
tional assumption often allows for stronger results; e.g., in [3] the authors prove
the existence of exchange-stable arrangements on regular and almost regular
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topological graphs such as cycles and paths, and show that the swap dynamics
are guaranteed to converge in polynomial time on such topologies.

Overall, it seems that exchange stability has been studied in the frameworks
of both hedonic and Schelling games. However, both approaches present some
shortcomings: on the one hand, Schelling games inherently consider a topol-
ogy on which agents evolve, but, being historically motivated by the study of
segregation (e.g., ethnic, racial), they usually restrict themselves to very sim-
ple preferences. On the other hand, works on hedonic games are accustomed
to considering diverse preferences. However, while multiple works have intro-
duced topological considerations, their analysis is usually constrained to graphs
that can be interpreted as non-overlapping coalitions, e.g., with multiple fully
connected components. One notable exception is the very recent work of Cey-
lan, Chen and Roy [10], appearing in IJCAT’23, also building on the model of
Bodlaender et al. [6]. In comparison to us, they also prove the NP-hardness of
deciding the existence of envy-free arrangements for binary preferences for both
topologies, in their case for symmetric preferences, but at the expense of more
complex proofs. They moreover show that hardness holds for stability, although
the presented proofs requires four non-negative values for cycles and six values
including negatives for paths. In our work, we aim to understand stability under
more natural preference values, such as approval preferences.

3 Preliminaries

We write [n] = {1,...,n}. Given an undirected graph G = (V(G), E(G)), we
write Ng(v) for the set of neighbors of vertex v € V(G). When clear from context,
oftentimes we will simply write V, E and N (v) respectively.

The model we describe next is similar to the one in [6]. A group of n agents
(guests) A has to be seated at a dining table represented by an undirected
graph G = (V, E), where vertices correspond to seats. We will be interested
in the cases of G being a cycle or a path. We assume that |V| = n and that
no two agents can be seated in the same place, from which it also follows that
all the seats have to be occupied. Agents have numerical preferences over each
other, corresponding to how much utility they gain from being seated next to
other agents. In particular, each agent i € A has a preference over the other
agents expressed as a function p; : A\{i} — R, where p;(j) denotes the utility
gained by agent ¢ when sitting next to j. Note that we do not assume symmetry;
i.e., it might be that p;(j) # p;(i¢). We denote by P = (p;)ica the collection
of agent preferences, or preference profile, of the agents. A number of different
interpretations can be associated to P. In particular, we will usually see P as
a matrix P = (p;;)i jea, where p;; = p;(j). Note that the diagonal entries are
not defined, but, for convenience, we will oftentimes use the convention that
pi;i = 0. Using the matrix notation, we say that the preferences in P are binary
when P € {0,1}"*" and k-valued if there exists I' < R, |I'| = k, such that
P e I'*™ (disregarding diagonal entries, since they are undefined). Note that
binary preferences are two-valued, but two-valued preferences are not necessarily
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binary. Moreover, we will often represent binary preferences as a directed graph,
where a directed edge between two agents signifies that the first agent approves
of the second. Finally, when p;; > 0 for any two agents 7, j € A we say that the
preferences are non-negative.

We define a class of agents to be a subset of indistinguishable agents C < A.
More formally, all agents in C share a common preference function pe : A — R
and no agent in 4 discriminates between two agents in C. Note that this implies
that the lines and columns of the preference matrix corresponding to agents in C
are identical, if we adopt the convention that diagonal entries inside a class are
all equal but not necessarily zero. We say that preference profile P has k classes,
or is a k-class profile, if A can be partitioned into k classes C; U ... U Cp = A.

We define an arrangement of the agents on G to be a bijection 7 : A — V(G),
i.e., an assignment of each agent to a unique vertex of the seating graph (and
vice-versa). For a given arrangement 7, we define for each agent i € A their utility
Ui(m) = Z%Nc(ﬂ(i))pi(ﬂ_l(v)) to be the sum of agent i’s preferences towards
their graph neighbors in the arrangement. We say that agent i envies agent j
whenever U;(7) < U;(7’), where 7’ is m with 7 (i) and 7 (j) swapped. We further
say that (¢, 7) is a blocking pair if both 7 envies j and j envies i; i.e., they would
both strictly increase their utility by exchanging seats. An arrangement is envy-
free if no agent envies another, and it is stable if it induces no blocking pairs.
Note that envy-freeness implies stability, but the converse is not necessarily true.
By extension, we call preference profile P stable (respectively envy-free) on G if
there exists a stable (respectively envy-free) arrangement 7 on G. Profile P is
unstable if it is not stable.

A few preliminary observations follow. Note that, for symmetric preferences;
i.e., pij = pj; for any two agents 7,7 € A; a stable arrangement always exists,
in fact on any graph G, not just cycles and paths. This is because swaps in
that case strictly increase the total sum of agent utilities, and hence the swap
dynamics will converge to a stable arrangement. Hence, the interesting case is
the asymmetric one. Observe that envy-free arrangements need not exist for
symmetric preferences (deciding existence is NP-hard for both paths and cycles
[10]). Moreover, note that, for cycles, and in fact any regular graph G, agents have
the same number of neighbors, so transforming the preferences of an agent i by
adding/subtracting/multiplying by a positive constant the values p;; does not
inherently change the preferences. This implies that for cycles the two-valued
case coincides with the binary case and the non-negative case coincides with
the unconstrained case. It also shows that for cycles the definition of k-valued
preferences: P € I'*™ where |I'| = k; can be restated equivalently to require
that every row of P consists of at most k different values.

4 Envy-Freeness

It is relatively easy to construct preferences with no envy-free arrangements: for
paths, even if all agents like each other, the agents sitting at the endpoints will
envy the others; for cycles, add an agent despised by everyone, agents sitting next
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to them will envy their peers. We now show that, furthermore, it is NP-hard to
decide whether envy-free arrangements exist, for both paths and cycles, even
under binary preferences. This has also been recently shown in [10] in a stronger
form, using only symmetric binary preferences, but we found the construction
rather involved and the correctness argument based on careful counting delicate.

Theorem 1. For binary preferences, deciding whether an envy-free arrangement
on a cycle exists is NP-hard.

Proof. We proceed by reduction from Hamiltonian Cycle on directed graphs. Let
G = (V,E) be a directed graph! such that, without loss of generality, V = [n].
If G has any vertices with no outgoing edges, then map the input instance to
a canonical no-instance, unless n = 1, in which case we map it to a canonical
yes-instance. Hence, from now on, assume that all vertices have outgoing edges.
For each vertex v € V introduce three agents z,,y,, z, such that agent z, only
likes y, and dislikes? everyone else, agent y, only likes z, and dislikes everyone
else, and agent z, likes agent x,, for all u € V such that (v,u) € E, and dislikes
everyone else. We claim that the so-constructed preference profile P has an envy-
free arrangement on a cycle precisely when G has a Hamiltonian cycle. To show
this, first assume without loss of generality that 1 - 2 - ... > n —> lisa
Hamiltonian cycle in G. Then, arranging agents around the cycle in the order
T1, Y1, 21, T2, Y2, 22, - - -y Ty Yn, 2 1S an envy-free arrangement. To see why, notice
that in this arrangement all agents get utility 1, so envy could only potentially
stem from an agent being able to swap places with another agent to get utility 2.
To prove this is not possible, first notice that agents (2;);er,) and (y:)ie[n] €ach
only like one other agent, so they can never get a utility of more than 1 in any
arrangement. Moreover, no agent z; can get to a utility of 2 by a single swap
because any two agents they like are seated at least three positions from each
other on the cycle. Conversely, assume that an envy-free arrangement 7 exists.
First, if x; is not sitting next to y; in m, then z; could improve by swapping to a
place next to y; (also similarly for y; and z;). Therefore, in arrangement 7 agent
x; is seated next to y; and y; is seated next to z;. Moreover, consider the other
neighbor of z; in 7. Since z; does not like y;, it follows that if z; also does not like
their other neighbor, then z; could strictly improve their utility by swapping next
to some agent they like, which is always possible because all vertices in G have
outgoing edges. Therefore, the other neighbor of z; has to be some agent that they
like, hence being of the form x;, where j # i. Note that, by construction, (¢, j) €
E. Putting together what we know, we get that under 7 the agents are arranged
around in the cycle in some order Tu,,VYo;; 201> TogsYoss Zoas -« Lons Yon s Zon s
where ¢ is a permutation of the n agents such that (o;,0;4+1) € E holds for all
i € [n].2 Therefore, a Hamiltonian cycle oy — 03 — ... — 0, — 0 exists in G.

A similar proof can be used to show hardness for the case of paths. We outline
the changes required in the appendix.

! In this proof G is not the seating graph but rather an arbitrary graph.
2 Technically, is indifferent to everyone else, but found this formulation reads better.
3 Assuming that addition is performed with wrap-around using n + 1 =1 (mod n).



Stable Dinner Party Seating Arrangements 9

Theorem 2. For binary preferences, deciding whether an envy-free arrangement
on a path exists is NP-hard.

Proving matching hardness results for stability under binary preferences
would be highly desirable but for the time being is left open. We in fact conjec-
ture that all instances with binary preferences are stable on a path (see Section
6.3). Moreover, one might ask how does the number of agent classes affect the
computational complexity of our problems. In the next section, we address this
question, showing that limiting the number of agent classes renders the problems
that we consider polynomial-time solvable, even for arbitrary preference values.

5 Polynomial Solvability for k-Class Preferences

In this section, we show that deciding whether envy-free and stable arrangements
exist for a given preference profile can be achieved in polynomial time, for both
paths and cycles, assuming that the number of agent classes is bounded by a
number k. Note that preferences in this case are not constrained to being binary,
and can in fact be arbitrary. By extension, our algorithms can also be used to
construct such arrangements whenever they exist.

We begin with the case of paths. For simplicity, we assume that n > 3, as
for n < 2 any arrangement is both stable and envy-free. Assume that the agent
classes are identified by the numbers 1,...,k and that ni,ns,...,n; are the
number of agents of each class in our preference profile, where ny +...+ng = n.
For ease of writing, we will see arrangements as sequences s = (s;);e[,], Where
s; € [k] and for any agent class j € [k] the number of values j in s is nj,.
Moreover, for brevity, we lift agent preferences to class preferences, in order
to give meaning to statements such as “class a likes class b.” To simplify the
treatment of agents sitting at the ends of the path, we introduce two agents of a
dummy class 0 with preference values 0 from and towards the other agents. We
require the dummy agents to sit at the two ends of the path; i.e., s = s,41 = 0.
In order to use a common framework for stability and envy-freeness, we define
the concept of compatible triples of agent classes, as follows. First, for envy-
freeness, let a,b,c,d, e, f be agent classes, then we say that triples (a,b,c) and
(d,e, f) are long-range compatible if py(a) + pp(c) = pp(d) + pu(f) and pe(d) +
De(f) = pela) + pe(c); intuitively, neither b wants to swap with e, nor vice-versa.
Furthermore, for a,b,c,d agent classes, we say that triples (a,b,c) and (b, ¢, d)
are short-range compatible if py(a) = pp(d) and p.(d) = p.(a); intuitively, if
a, b, c,d are consecutive in the arrangement, then neither b wants to swap with
¢, nor vice-versa. For stability, we keep the same definitions but use “or” instead
of “and.” Note that long-range and short-range compatibility do not imply each
other. We call an arrangement s compatible if for all 1 < ¢ < 7 < n the triplets
(8i—1, Si, Si41) and (sj—1, S5, Sj+1) are long-range compatible when j —i > 1 and
short-range compatible when j — ¢ = 1. Note that arrangement s is envy-free
(resp. stable) if and only if it is compatible. In the following, we explain how to
decide the existence of a compatible arrangement.
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Lemma 3. Deciding whether compatible arrangements exist can be achieved in
polynomial time.

Proof. We first present a nondeterministic algorithm (i.e., with guessing) that
solves the problem in polynomial time. The algorithm builds a compatible ar-
rangement s one element at a time. Initially, the algorithm sets sqg « 0 and
guesses the values of s; and sy. Then, at step 4, for 3 < ¢ < n + 1, the algorithm
will guess s; (except for ¢ = n + 1, where we enforce that s; < 0) and check
whether (s;_3,8;-2,8;—1) is short-range conflicting with (s;—2,8;—1,8;), reject-
ing if so. Moreover, the algorithm will check whether (s;_2, s;-1, s;) is long-range
conflicting with any (sj_2,s;-1,s;) for 2 < j < ¢ — 2, again rejecting if so. At
the end, the algorithm checks whether for each i € [k] value i occurs in s exactly
n; times, accepting if so, and rejecting otherwise.

Alone, this algorithm only shows containment in NP, which is not a very at-
tractive result. Next, we show how the same algorithm can be implemented with
only a constant number of variables, explaining afterward why this implies our
result. First, to simulate the check at the end of the algorithm without requiring
knowledge of the whole of s, it is enough to maintain throughout the execution
counts (z;)je[x) such that at step i in the algorithm x; gives the number of po-
sitions 1 < ¢ < ¢ such that sy = j. To simulate the short-range compatibility
check, it is enough that at step 7 we have knowledge of s;_3, ..., s;. Finally, for
the long-range compatibility check, a more insightful idea is required. In partic-
ular, we make the algorithm maintain throughout the execution counts mg ..
for each triple (a,b,c) of agent classes, such that at step i value mqp . gives the
number of positions 2 < £ < i such that (sy—a, s¢—1,8¢) = (a,b,¢). Using this
information, to check at step ¢ whether (s;_2,5;-1, $;) long range conflicts with
any (sj_q2,8j-1,8;) for 2 < j <i—2, it is enough to temporarily decrease by one
the values my, .o, ,.5,_, and ms, ,s,_,.s and then check whether there exists
a triple (a, b, ¢) of agent classes such that mgp . > 0 and (a, b, ¢) long-range con-
flicts with (s;—2,$;-1, ;). In total, at step i, the algorithm only needs to know
the values s;_3,...,s;, as well as (xj)je[k] and the counts mg . for all triples
(a,b,c) of agent classes. Since k + 1 bounds the total number of agent classes,
this is only a constant number of variables. As each variable can be represented
with O(logn) bits, it follows that our nondeterministic algorithm uses only loga-
rithmic space, implying containment in the corresponding complexity class NL.
It is well known that NL < P, from which our conclusion follows. For readers
less familiar with this result, we give a short overview of how our algorithm can
be converted into a deterministic polynomial-time algorithm, as follows. Since
our NL algorithm uses only logarithmic space, it follows that the space of algo-
rithm states that can be reached depending on the nondeterministic choices is
of at most polynomial size, since 20°2™) is polynomial. Therefore, building a
graph with vertices being states and oriented edges corresponding to transitions
between states, the problem reduces to deciding whether an accepting state can
be reached from the initial state, which can be done with any efficient graph
search algorithm.
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Theorem 4. Fizk = 1. Then, for k-class preferences, there are polynomial-time
algorithms computing an envy-free/stable arrangement on a path or reporting the
nonezistence thereof.

For the case of cycles, a similar approach can be used, although with rather
tedious, yet minor tweaks, presented in the appendix.

Theorem 5. Fizk > 1. Then, for k-class preferences, there are polynomial-time
algorithms computing an envy-free/stable arrangement on a cycle or reporting
the nonezistence thereof.

6 A Fine-Grained Analysis of Stability

Previously, we showed that deciding whether envy-free arrangements exist is
NP-hard for binary preferences on both topologies. For stability, in [10] it is
shown that similar hardness results hold, but this time more than two values
are needed in the proofs, namely four values for cycles and six for paths, the
latter also requiring negative numbers. It is unclear whether hardness is retained
without assuming this level of preference granularity, and a first step towards
understanding the difficulty of the problem constrained to fewer/simpler allowed
values is being able to construct instances where no stable arrangements exist;
after all, a problem where the answer is always “yes” cannot be NP-hard.

In this section, we conduct a fine-grained analysis of the conditions allowing
for unstable instances. In particular, for both topologies we consider how different
constraints on the number of agent classes as well as the number of different
values allowed in the preferences influence the existence of unstable preferences
The non-negativity of the values needed is also taken into account. Table 2
summarizes our results.

6.1 Two-Class Preferences

As a warm-up, note that when all agents come from a single class, any arrange-
ment on any given seating graph is stable. In the following, we extend this result
to two classes of agents for cycles and paths. We begin with cycles:

Theorem 6. Two-class preferences always induce a stable arrangement on a
cycle.

Proof. Suppose there are two classes of agents, say Blues and Reds. Without loss
of generality, preferences can be assumed to be binary, since for cycles one can
normalize the preference values as described towards the end of the preliminaries
section. First, note that any blocking pair must consist of one Blue and one Red.
Moreover, note that any arrangement is stable whenever one of the classes likes
the two classes equally. Now, suppose this is not the case, meaning that each
class has a preferred class to sit next to. There are only two cases to consider:
If one class, say Blue, prefers its own class, then sit all Blues together and
give the remaining seats to Reds: all Blues but two, say By and By, get maximum
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utility, and neither By nor By can improve since no Red has more than one Blue
neighbor. Hence, no Blue is part of a blocking pair, so the arrangement is stable.

If both classes prefer the opposite class, we may assume there are at least as
many Reds as Blues. Then we alternate between Reds and Blues for as long as
there are Blues without a seat, then seat all the remaining Reds next to each
other. Every Blue has maximum utility, and hence cannot be part of a blocking
pair, so the arrangement is stable.

The following extends the result to the case of paths. The proof is largely
similar, but the case analysis becomes more involved, because preferences can
no longer be assumed to be binary, so we present it in the appendix.

Theorem 7. Two-class preferences always induce a stable arrangement on a
path.

Note that a path of n is equivalent to a cycle of n + 1 where an agent with
null preferences is added. This explains why the case of paths is harder to study
than that of cycles, as it corresponds to having one more class of agents and
potentially one more value (zero).

6.2 Three-Class Three-Valued Preferences

We now consider the case of three-valued preferences with three agent classes,
exhibiting unstable non-negative preferences both for paths and for cycles. We
begin with the case of cycles.

Theorem 8. For n > 4, there exist three-class three-valued non-negative pref-
erences such that all arrangements on a cycle are unstable.

Proof. Consider three classes of agents: Alice, Bob, and n — 2 of Bob’s friends.
The story goes as follows: Alice and Bob broke up. Alice does not want to hear
about Bob and would hence prefer to sit next to any of his friends rather than
Bob. On the other hand, Bob wants to win her back, so he would above all
want to sit next to Alice. Finally, Bob’s friends prefer first Bob, then the other
friends, and finally Alice. Used preference values can be arbitrary, so to get the
required conclusion, we make sure that they are non-negative. To show that
these preferences are unstable on a cycle, there are two cases: Alice and Bob can
either sit next to each other, or separately.*

In the first case, Alice and her second neighbor, who is one of Bob’s friends,
would exchange seats. After the switch, Alice is better as she no longer sits next
to Bob, and the friend is better because he sits next to Bob.

In the second case, Bob and one of Alice’s neighbors would exchange seats.
Bob is better because he now sits next to Alice. To see that the neighbor, who
is one of Bob’s friends, is also better, distinguish two sub-cases: if the friend sits

4 The swap dynamics here will exhibit so-called run-and-chase behaviour [7], which is
common to many classes of hedonic games.
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n 3 4 5 6 7
Cycle 0 0 1 0 2
Path 0 0 0 0 0
Table 3: The number of non-isomorphic families of unstable non-negative two-
valued preferences. For cycles, this coincides with the case of binary values, and
also with that of general values.

() &
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a) Ps as a directed graph. (b) P;l) as a directed graph. (c) 73$2) as a directed graph.

Fig. 1: The three families of cycle unstable binary preferences for n < 7.

right between Alice and Bob, then he is better because he now no longer sits
next to Alice, while if this is not the case, he is better because before he was
sitting next to Alice and a friend, while now he is sitting next to two friends.

It is possible to use the same construction for paths by allowing negative
preference values, but otherwise, the proof of Theorem 8 does not directly trans-
fer to paths; e.g., for n = 5, path arrangement (F, F, B, A, F) is stable. Negative
preferences turn out to not be necessary for n large enough. The main trick here
is to use three copies of Bob to ensure that at least one of them does not sit at
either end of the path. Formally, we have the following, proven in the appendix:

Theorem 9. Forn > 12, there exist three-class three-valued non-negative pref-
erences such that all arrangements on a path are unstable.

6.3 Two-Valued Preferences

It remains to study what happens for two-valued preferences with three or more
classes of agents. For cycles, we show that three classes always yield a stable
arrangement, while four classes allow for a counterexample with binary values.
For paths, we exhibit a counterexample with already three classes, but using
some negative values. For non-negative values, we conjecture that a stable ar-
rangement always exists, but have not been able to prove it. Instead, we gather
both experimental and theoretical evidence to support it.
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Two-Valued Preferences on Cycles. Cycles being regular graphs, it is suffi-
cient to study binary preferences. We exhausted all binary preferences for n < 7
using a Z3 Python solver (see Appendix G). Unstable preferences were found for
n =5 and n = 7, with one and, respectively, two non-isomorphic families of un-
stable preferences (see Table 3). Examples of such preferences from each family

Ps, 7751) and P§2) are illustrated in Figure 1. Analyzing why P5 is unstable turns
out to be quite complex (see Appendix B), and, as of our current understanding,
its instability seems to be more of a “small size artifact” than anything else. In
contrast, with their highly regular structure, the two instances with n = 7 seem
more promising. In particular, profile Péz) consists of only four classes, denoted

by A, B,C, D in Figure lc. In the following, we show that ’P§2) can be extended
to unstable preferences of any n > 7.

Theorem 10. For n > 7, there exist four-class binary preferences such that all
arrangements on a cycle are unstable.

Proof. For n = 7, we consider four classes A, B, C and D, as well as their
respective members a, by, by, ¢ and dy,...,d,_4. Similarly to Figure 1lc, we
suppose that: (i) a only likes ¢; (ii) b; and by both only like a and ¢; disliking
each other; (iii) ¢ only likes members of D; (iv) members of D all like each other,
as well as b; and by, only disliking a and ¢. We show in the appendix why such
preferences induce no stable arrangements on a cycle.

This result shows that four classes of agents are sufficient to make all arrange-
ments unstable on a cycle for two-valued preferences; we show in the following
it is also necessary, as three classes of agents with two-valued preferences always
induce a stable arrangement on a cycle.

Theorem 11. Three-class two-valued preferences always induce a stable ar-
rangement on a cycle.

Proof. We consider three classes: Reds, , and Blues, each containing 7,
g, and b agents respectively. Without loss of generality, assume that r, g,b > 1.
Since the seating graph is regular, recall that we may assume the preferences to
be binary. Note moreover that any blocking pair must have two agents of different
colors. A principled case distinction now allows us to relatively quickly exhaust
over all the possibilities for the preferences. We present the case distinction here
and delegate the proofs themselves to specialized lemmas in the appendix.

First, whenever at least one class likes its own kind, Lemmas 23, 24 and
25 together show the existence of a stable arrangement. Note that the proofs
are constructive and all the stable arrangements presented intuitively seat the
self-liking class consecutively.

Then, if no class likes itself, Lemmas 26 and 27 show the existence of a stable
arrangement whenever one class likes or is disliked by every other class. Note
this time that intuitively all constructions present an alternation of two classes.

This only leaves us to handle the case where each class likes and is liked by
exactly another class: this case is treated separately in Lemma 29, where we
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show that an arrangement maximizing utilitarian social welfare is always stable.
The proof also shows that a modified variant of the swap dynamics converges.

Two-Valued Preferences on Paths. We now consider the more complex
case of paths, where the endpoints and the associated loss of regularity artifi-
cially introduce an implicit comparison with zero, hence giving rise to a change
of behavior between positive and negative preferences. In general, if we allow
for negative values in the preferences, then there exist three-class two-valued
preferences such that no arrangement on a path is stable:

Theorem 12. For n > 3, there exist three-class two-valued preferences such
that all arrangements on a path are unstable.

Proof. Consider a variant of “Alice, Bob and Friends” where the preferences of
Bob towards Alice, Alice towards Friends, and Friends towards Bob and them-
selves are all one; the preferences of Alice towards Bob, Bob towards Friends,
and Friends towards Alice are all minus one. We show in the appendix why all
arrangements on a path are unstable.

For non-negative preferences, on the other hand, exhaustion for n < 7 using
a similar solver® yields no unstable instances (see Table 3). Surprised by the
outcome, we also wrote C++ code to test all k-class instances with at most b
agents per class for (k,b) € {(4,10), (5,4)}, also leading to no unstable instances.
We conjecture that two-valued instances with non-negative preferences always
induce a stable arrangement on a path. In the following, we show that this is true
under the additional assumption that two agents are only willing to swap seats
when they are at most two positions away on the path, no matter how much
their utilities would increase otherwise. This can be thought of as a practical
constraint: once the agents are seated, each agent knows which other agents
they envy, but finding out whether envy is reciprocal would be too cumbersome
if the other agent is seated too far away. For this setup, we prove that the swap
dynamics always converge, so a stable arrangement can be found by starting with
an arbitrary arrangement and swapping blocking pairs until the arrangement
becomes stable. This can be seen as a generalization of a result from [4], where
agents only have preference for others of their own kind and swaps are only with
adjacent agents. This is stated below and proven next.

Theorem 13. Two-valued non-negative preferences always induce a stable ar-
rangement on a path assuming that agents are only willing to exchange seats
with other agents sitting at distance at most two on the path. Moreover, the
swap dynamics converge in this case.

To begin showing this, note that no local swap could occur with an agent
seated at either endpoint, since the preferences are non-negative. Since the two
endpoints are the only irregularities, removing them from consideration, we can

® One can show that it suffices to try the cases I' € {{0,1}, {1,2}, {1, 3},{2,3}}.
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restrict our analysis from non-negative two-valued to binary without loss of
generality. For any arrangement 7, define the utilitarian social welfare W () =
Diea Ui(m). Moreover, to each arrangement 7 we associate a sequence S(7) of
length n — 1 with elements in {0, 1,2, 3}, constructed as follows. Let m; and ;41
be the agents sitting at positions ¢ and ¢ + 1 on the path: if they do not like
each other, then S(w); = 0, if they both like each other, then S(w); = 3, if
only 7; likes m;y1, then S(7); = 1, otherwise S(w); = 2. To prove that the
swap dynamics converge, we define the potential &(w) = (W (n), S(n)), where
sequences are compared lexicographically, and prove that swapping blocking
pairs always strictly increases the potential. The following two lemmas show
this for swaps at distances one and two, respectively.

Lemma 14. Let w be an arrangement where a and b form a blocking pair and sit
in adjacent seats. Let ' be m with a and b’s seats swapped. Then, &(n') > &(r).

Proof. When n < 2, there are no blocking pairs, so assume n > 3. First, notice
that swapping the places of a and b keeps a and b adjacent, from which the swap
changes the utility of any agent by at most one. Since a and b’s utilities have to
increase, they have to each change by exactly one. Moreover, note that neither a
nor b can be seated at the ends of the table, as otherwise swapping would make
one of them lose a neighbor while keeping the other one, hence not increasing
their utility. Hence, assume that x is the other neighbor of a and y is the other
neighbor of b; i.e., x,a, b,y are seated consecutively in this order on the path, at
positions say i,...,7 + 3. If either Uy (') = Uy (m) or Uy(n’) = Uy (m), it follows
that W (") = W(rm) = Uy(n') = Uy () + Uy(7') = Uy(7) +2 = 1, so &(7’) > &(m).
Otherwise, we know that U, (n") — Uy(m) = Uy(n’) — Uy(mw) = —1, from which
W(r") = W(r). Together with U, (7') — U, (7) = Up(7") — Up(7) = 1, this means
that preferences satisfy a — y — b — = — a, where an arrow v — v indicates
that agent u likes v but not the other way around. Therefore, S(7); = 1 and
S(n"); = 2. Since S(w) and S(n’) only differ at positions i,...,7 + 2, this means
that S(n') > S(n), so &(n') > &(r), as required.

Lemma 15. Let m be an arrangement where a and b form a blocking pair and
sit two seats away. Let w' be m with a and b’s seats swapped. Then, P(n') > &(7).

Proof. The same argument works, except that now we consider five agents
x,a,z2,b,y seated at positions ¢,...,72 + 4. This is because agent z remains a
common neighbor to a and b when swapping places, and can, essentially, be
ignored.

Therefore, since the potential is upper-bounded, we get that the swap dy-
namics have to converge. One might now rightfully ask whether convergence is
guaranteed to take polynomial time. While we could neither prove nor disprove
this, in Appendix C we give evidence of why exponential time might be required.
Moreover, note that for cycles convergence is not guaranteed even for swaps at
distance at most two; e.g., P5 in Figure la, where any two agents are seated at
most two seats away anyway. For paths, on the other hand, one could still hope
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(a) Pa as a directed graph. (b) Looping swap dynamics.

Fig.2: Four-agent binary preferences P, with path stable arrangement 7* =
(a,b,c,d) but where the swap dynamics necessarily alternate between m =
(a,d,b,c) and my = (¢,d, b,a), up to reversal, when started in either of them.

that the result generalizes beyond distance at most two when the preferences
are non-negative. This is however not the case, even when stable arrangements
exist, as we show next (details in the appendix).

Lemma 16. Consider profile Py in Figure 2. A path stable arrangement exists,
yet the swap dynamics started from certain arrangements cannot converge.

This generalizes to n > 4 agents by adding n — 4 dummy agents to Py liking
nobody and being liked by nobody and seating them at positions 5,...,n on the
path. Hence, non-convergence for distance < 3 is not a small-n artifact.

7 Conclusions and Future Work

We studied envy-freeness and exchange-stability on paths and cycles. For both
topologies, we showed that finding envy-free/stable arrangements can be achieved
in polynomial time when the number of agent classes is bounded, while for envy-
freeness the problem becomes NP-hard without this restriction, even for binary
preferences. For stability, it is known that for sufficiently many values the prob-
lem is also NP-hard [10]. However, it would be interesting to see, for instance,
if the same can be said about binary preferences. For cycles at least, we be-
lieve this to be the case, but were unable to prove it. In part, this is because
of the difficulty of constructing unstable instances in the first place. Moreover,
for both topologies, we gave a full characterization of the pairs (k,v) such that
k-class v-valued unstable preferences exist. For paths, the characterization re-
quires negative values in the two-valued case, and we are still unsure whether
two-valued non-negative preferences that are unstable on a path exist. We, how-
ever, partially answer this in the negative by showing that the swap dynamics are
guaranteed to converge if agents can only swap places with other agents seated
at most two positions away from them. Without this assumption, convergence
might not be guaranteed even when stable arrangements exist, so a different
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approach would be required to prove existence. It would also be interesting to
know if unstable preferences are exceptions or the norm. We give a probabilis-
tic treatment of this question for random preference digraphs of average degree
O(+4/n) in the appendix. As an avenue for future research, it would be attractive
to consider other kinds of tables commonly used in practice, the most relevant
being the one shaped as a 2 x n grid, with guests on either side facing each other.
It would additionally be interesting to consider non-additive utilities or to en-
force additional constraints on the arrangement, such as certain people coming
“in groups” and hence having to sit consecutively at the table. It would also be
worth investigating replacing addition by taking minimum in the agents’ utilities
(and also the more general lexicographical variant).
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A Omitted Proofs

In this appendix, we provide the proofs omitted from the main text of the paper.

A.1 Proofs Omitted From Section 4
In this section, we prove Theorem 2, restated below for convenience.

Theorem 2. For binary preferences, deciding whether an envy-free arrangement
on a path exists is NP-hard.

Proof. We proceed similarly as for Theorem 1, this time reducing from Hamil-
tonian Path on directed graphs. To make the reduction work, we require the
additional stipulation that the input graph G has a vertex with no outgoing
edges, which we assume without loss of generality to be vertex n. Note that
this preserves NP-hardness. Moreover, in the preprocessing step, will now only
check that vertices v € V\{n} have outgoing edges. Otherwise, the construction
of preference profile P stays the same. To show that if G has a Hamiltonian
path, then there exists an envy-free arrangement on a path, the same argument
as before can be used, except for the treatment of z,, who gets a utility of zero,
but they still can not envy another agent because they approve of nobody (all
other agents retain utility 1, as before). To show that an envy-free arrangement
on a path implies the existence of a Hamiltonian path, the argument stays sim-
ilar but again requires minor tweaks. In particular, for agent z,, and only for
them, it holds that they do not necessarily need a second neighbor other than
Yn, because they like no other agents, so they will be happy with a utility of 0,
obtained by sitting at one of the ends of the path. The analysis for the other
agents stays the same, as they do require a second neighbor to get a utility of 1,
and hence cannot sit at the ends.

A.2 Proofs Omitted From Section 5
In this section, we prove Theorem 5, restated below for convenience.

Theorem 5. Fizk > 1. Then, for k-class preferences, there are polynomial-time
algorithms computing an envy-free/stable arrangement on a cycle or reporting
the nonezistence thereof.

Proof. The proof idea stays similar to that for paths, first designing a nondeter-
ministic logarithmic space algorithm deciding whether a compatible arrangement
exists and then lifting this to one running in deterministic polynomial time. Since
cycles no longer have endpoints, the definition of compatible arrangements needs
adjusting. First, instead of introducing a dummy agent class 0 and placing it at
positions 0 and n + 1 in s, we now make sy stand for s, and s, .1 stand for s;.
Similarly, s,12 = ss, etc. Moreover, in order for arrangement s to be compatible,
we now require that for all 1 < ¢ < j < m such that 1 < j—¢ < n—1, the triplets
(si—1, i, Si+1) and (sj_1,8;,5;j4+1) are long-range compatible and, additionally,
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for all 1 < i < n the triplets (s;—1,8;,8;+1) and (s;, 8;41, Si+2) are short-range
compatible. Note, therefore, that the pair (i,j5) = (1,n) is the only pair for
which the required check differs from the path case: previously, the check was
for long-range compatibility, while now it is for short-range compatibility, and
technically with the roles of i and j reversed. This time, instead of beginning the
algorithm by guessing the values of s; and sq, we instead begin it by guessing
the values of sg,s; and ss. The algorithm then proceeds as before. However,
when the value ¢ = n is reached, naturally, no guessing takes place, as s,, has al-
ready been guessed, but all other computations execute as before. However, when
1 = n + 1 is reached, it is trickier; not only do we not have to guess s,+1 = s1,
but also the check performed has to be altered. In particular, instead of check-
ing whether (s,_1, sy, $1) is long-range compatible with (s, s1,s2), the check
now has to be for short-range compatibility. Checking for short-range compati-
bility can easily be incorporated, so it remains to show how to ensure that the
two triplets are not also tested for long-range compatibility like in the previous
implementation. This is done as follows: instead of temporarily decreasing the
values Mg, 4.5, 5.5, , and mg, , s, , 5. by one and then checking (s;—2, $i—1, $;)
against the counts in m, we now do the same but also decrease my,, s, s, by one.
We stress that these rather tedious modifications are only applied for i = n + 1.
The modified algorithm needs to store sg, s; and sy throughout its execution in
addition to the state it already stored, but this does not impact the logarithmic
space-bound, completing the proof.

A.3 Proofs Omitted From Section 6.1
In this section, we prove Theorem 7, restated below for convenience.

Theorem 7. Two-class preferences always induce a stable arrangement on a
path.

Proof. The introduction of agents sitting at the two endpoints calls for a more
careful analysis:

— If one class, say Blue, likes everyone equally.
Then Blues either prefer to be on the endpoint or in the middle of the path
(depending on the sign of their constant preference). If they prefer endpoints,
seating two Blues on the endpoints makes the arrangement stable; otherwise,
sitting all Blues in the middle ensures stability.
Those two solutions are not available if and only if there is a single agent in
one of the two classes: in that case, ensuring that this agent gets maximal
utility stabilizes the whole arrangement.

— If Blues and Reds prefer the same class, say Blues.
The reasoning from the previous proof still holds, as long as no Blue sits
at an endpoint. This would happen if and only if there is a unique Red:
ensuring maximum utility for that one agent would then give stability.

— If Blues and Reds both strictly prefer the opposite kind, alternate Blues and
Reds starting from the most numerous class, say Blue. Suppose:
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e Preferences for the opposite kind are positive for both. Whenever there
is strictly more of one class than the other, the reasoning from the pre-
vious proof still holds. In case of equality, only the Blue and Red at the
endpoints would want to swap: it is not the case, as they would exchange
a “different colour” neighbor for a “same colour” one.

e Preferences for the opposite kind are negative for both. Now at most
two agents have maximum utility: the Blue extremal one, and the Red
extremal one if there are as many Reds as Blues. If both have maximum
utility, the others cannot improve, and the arrangement is stable. The
arrangement is still stable if there are strictly more Blues than Reds, as
the extremal Blues could only agree to swap between two Reds. As only
Blues are sitting between two Reds, this cannot happen.

e Preference of Blues for Reds is negative, but Reds for Blues is positive.
Then non-extremal Blues would envy the extremal Red, which would
envy them back if and only if the preference of Reds towards Reds is
strictly positive. In this latter case, proceed to the exchange: Blues in
the middle can only improve by switching with an extremal Blue, which
would never be accepted. This new arrangement is therefore stable.

— If Blues and Reds both strictly prefer their own kind, sit all Blues on one

side and all Reds on the other. Let B,,; be the extremal Blue, B;, be the
only Blue with both a Blue and a Red neighbor R;,, and let R,,; be the
extremal Red. As previously, (B, Ri») is never a blocking pair. Suppose:

e Preferences for their own kind are positive for both. We verify that
(Bin, Rout) is not a blocking pair, as B;, would lose his only Blue
neighbor. By symmetry, the only remaining possible blocking pair is
(Bout, Rout): it is also not a blocking pair since both would only gain an
“opposite colour” neighbor.

e Preferences for their own kind are negative for both. Both B,,; and R,
have maximum utility, hence B,,; an R,,; are not part of a blocking pair.
Other Blues except By, can only improve their utility by moving to an
endpoint, i.e., by switching with R,,; or B,,:, both being impossible.
The only remaining possibility (Bjn, Ri,) is also not a blocking pair.
Therefore, the arrangement is stable.

o Preference of Blues for Blues is negative, but that of Reds for Reds is
positive. Note that all Reds but R;, and R,,; have maximum utility,
hence cannot be part of a blocking pair. Moreover, since B,,; has max-
imum utility, R;, could only switch with Blues having at least one blue
neighbor, so it cannot improve. If Reds dislike Blues, R, is also unable
to improve, and the arrangement is stable. On the contrary, suppose
Reds strictly like Blues, and consider the arrangement obtained after ex-
changing R,,; and B;,: now both extremal Reds have the second highest
utility, and cannot improve since no Blue is sitting between two Reds,
so the arrangement is stable.

Hence, it is always possible to sit two classes in a stable manner on a path.
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0000O0[1..1
1000/0...0
1 000/0...0
P=|1000/0..0
0 3 3 3[1...1
| 0 3 3 3|1 1|

Fig. 3: Possible instance of preferences for the proof of Theorem 9, with the
ordering (Alice, 1°* Bob, 2°¢ Bob, 3" Bob, Friends).

A.4 Proofs Omitted From Section 6.2
In this section, we prove Theorem 9, restated below for convenience.

Theorem 9. Forn > 12, there exist three-class three-valued non-negative pref-
erences such that all arrangements on a path are unstable.

Proof. We consider the same instance of preferences as in the proof of Theorem
8, with the following modifications: we add two copies of Bob, and we suppose
there are at least eight friends. Alice likes everyone but the Bobs, the Bobs only
like Alice, the friends like the Bobs the most and Alice the least. We furthermore
suppose that friends would rather be next to one Bob than between two other
friends. Figure 3 displays a possible instance of such preferences.

Suppose one of the Bobs is sitting next to Alice. Since there are at least
eight different friends, at least one of them is neither sitting beside a Bob nor
at an endpoint of the table. Indeed, at most five friends are sitting next to Bobs
(since Alice sits next to one of them), and two more friends can be sitting at an
endpoint. Hence, Alice and this friend would both agree to switch places since
it is always worth it for a friend to move beside a Bob, even if this means sitting
at an endpoint.

Now, suppose no Bob is sitting next to Alice. Since there are three Bobs,
at least one of them is not sitting at an endpoint, say B;. The only case where
one of Alice’s neighbors would not agree to switch with Bj is if it was already
sitting next to another Bob, say Bsy; moreover, the only reason for him not to
switch with By is if By is sitting at the endpoint of the table. Hence, the seating
arrangement is of the form (By, F, A, F, ..., By, ...). Alice is not sitting at
an endpoint, therefore possesses a second friend as a neighbor, and that second
friend would agree to swap with at least one of the two remaining Bobs.

A.5 Proofs Omitted From Section 6.3

In this section, we complete the proof of Theorem 10. Then, we prove the lemmas
used in the proof of Theorem 11. Subsequently, we complete the proof of Theorem
12. Finally, we prove Lemma 16.
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Proving Theorem 10. We now complete the proof of Theorem 10, restated
below for convenience.

Theorem 10. For n > 7, there exist four-class binary preferences such that all
arrangements on a cycle are unstable.

Proof (continued). We now show that all arrangements on a cycle are unstable
for our preference profile, by considering every possible local arrangement around
¢ and showing that they all induce a blocking pair.

— If the local arrangement around ¢ consists of (b1, ¢, ba), then ¢ has utility
0 and would agree to swap with anyone having a neighbor in D. Since D
contains strictly more than two agents, one of the d; neighbors of a has
another member of D as a neighbor. Performing a swap with ¢ would increase
its utility from 1 to 2, while ¢ would improve to utility 1, so it is a blocking
pair.

— If it consists of (b1, ¢, a), ¢ has again utility 0 and would switch with
whoever has a neighbor in D. In particular, if the local arrangement is
(b1, ¢, a, ba), then (by,c) is a blocking pair, as b; second neighbor is in
D. If it is (ba, b1, ¢, a), then (by,c) is a blocking pair, as by’s second neigh-
bor is in D. Otherwise, the local arrangement must be (d;, b1, ¢, a, d;),
and (b, ¢) forms once again a blocking pair. The same reasoning naturally
holds for local arrangements of the form (ba, ¢, a).

— If the local arrangement around ¢ consists of (d;, ¢, a), then at least one
member of B, say by, is no neighbor of a and has utility 0. In that case, both
d; and by can increase their utility by exchanging seats.

— At last, if it consists of (d;, ¢, b1) or (d;, ¢, d;), then agent a has utility 0,
and d; can always increase its utility by switching with a. Indeed, if a was his
neighbor, he would exchange ¢ for a member of D U B while retaining a as
a neighbor; otherwise he would exchange ¢ for a second neighbor in D U B.
Since moving close to ¢ would always increase a’s utility, (d;,a) is a blocking

pair. The same reasoning of course holds for local arrangements of the form
(dia & b2)

Proving Theorem 11. We now prove the Lemmas used to prove Theorem 11,
restated below for convenience.

Theorem 11. Three-class two-valued preferences always induce a stable ar-
rangement on a cycle.

Lemma 23. Suppose at least two classes like their own kind. Then, there exists
a stable arrangement.

Proof. Suppose Reds like Reds and Blues like Blues. Then, consider the arrange-
ment where each class sits among themselves. Let 1?7 and B; be the neighboring
Red and Blue respectively, Ry (resp. Bs2) the Red (resp. Blue) with a

neighbor (we can potentially have Ry = R,). Note that all Reds but R; and
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Ry have maximum utility, 7, can only improve its utility by switching with a
, whereas R, cannot improve by switching with a . By symmetry,
this also applies to By and Bs, hence a blocking pair must include R, (or By)
and a . This constitutes a blocking pair only if g > 1, Reds like
but dislike themselves. If this is the case, separate the Reds and Blues
by seating one between them: all Reds and inner Blues now have maxi-
mum utility, and both extremal Blues are now in By’s previous case. Hence the
arrangement is stable.

Lemma 24. Suppose precisely one class likes its own kind, and that they like
at least another class. Then, there exists a stable arrangement.

Proof. Suppose that Reds like Reds and Blues, Blues dislike Blues and

dislike . We start building a stable arrangement by seating all Reds con-
secutively (on a path). Call the extremal Reds the two (or unique if r = 1)
Reds at the endpoints of the path, and note that all Reds but the extremal ones
already have maximum utility. We then complete the arrangement starting from
the neighbor of one of the extremal Reds.

— If ¢ < b, start with a Blue and alternate a and a Blue until all
are seated, giving the potential remaining seats to Blues: Reds have
maximum utility and no Blue would accept a swap with a (not even

a neighbor), hence the arrangement is stable.

—Ifg>band like Blues, start with a and alternate a Blue and
a until all Blues are depleted, giving the potential remaining seats
to . Note that an extremal Red would never accept a swap with a

unless it sits between two Blues, in which case the already has
maximum utility. Moreover, a would never accept a swap with a Blue,
even if it is a neighbor. Finally, since an exchange with a Blue also cannot
improve an extremal Red utility, the arrangement is stable.

—Ifg>=band dislike Blues, start with a and then alternate two
Blues and two until all Blues are depleted, give the remaining seats
to . In case there is a unique Blue, seat him between two
Note that no swap with a or a Blue would give an extremal Red two
neighbors Red or Blue, hence would never be profitable. Furthermore, a swap
with a Blue would always give zero utility to a , and would never be
agreed upon. Hence the arrangement is stable.

Lemma 25. Suppose precisely one class likes its own, and that they dislike both
other classes. Then, there exists a stable arrangement.

Proof. Suppose only Reds like their own kind, but they also dislike both Blues
and . Seat all Reds together and alternate Blues and starting from
the most numerous class, say Blue. Note that no Blue would agree to exchange
with a seating between two Blues, even if they are neighbors and the Blue
has a Red neighbor. Furthermore, in the case where g = b, the same reasoning
can be applied to all Blues sitting between two , and the arrangement
is stable because the Blue and with a Red neighbor would not exchange
seats. Hence the arrangement is stable.
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Lemma 26. Suppose no class likes itself, and one class is disliked by the two
others. Then, there exists a stable arrangement.

Proof. Suppose no class likes Reds, even themselves. Suppose without loss of
generality that b > g, start by seating all Reds together, then alternate between
a Blue and a starting from Blue until everyone is seated. No would
accept to exchange seats with a Blue sitting between two , even if they
are neighbors. Furthermore, no such Blue would benefit from switching with a
Red. By symmetry, it also holds for , and a blocking pair would have to
contain one of the Blue/ agents with a Red neighbor: those would neither
exchange seats between them nor with any Red, hence the arrangement is stable.

Lemma 27. Suppose no class likes itself, but one class likes the two others.
Then, there exists a stable arrangement.

Proof. Suppose Reds dislike their own kind but like the two other classes. Using
Lemma 26, we may assume that at least one class, say Blues, like Reds.

— If r > b, start by alternating Reds and Blues starting with Reds until all
Blues are depleted, then alternate Reds and starting with Reds until
one of them is depleted; seat the remaining agents altogether. Note that
all Blues have maximum utility, and if two are neighbors, then all
Reds also have maximum utility. Otherwise, all are seated between
two Reds, and no Red can improve by swapping with a . Hence the
arrangement is stable.

— If r < b, start by alternating Reds and Blues starting with Blues until all
Reds are depleted, then alternate Blues and starting with Blues until
one of them is depleted; seat the remaining agents altogether. Note that
all Reds have maximum utility. Suppose no has a neighbor,
i.e. every seats between two Blues: no Blue, not even a neighbor,
would profit from switching with a , hence the arrangement is stable.
Otherwise, no two Blues are neighbors: Blues sitting between two Reds have
maximum utility, and neither Blues with a Red and a neighbor, nor
Blues with two neighbors can improve by exchanging with a ,
even if it is a neighbor. Hence the arrangement is still stable.

— If r = b, alternate between Reds and Blues until depletion, and then seat all

together. All Reds have maximum utility, the same holds for all Blue
except the one with a neighbor. This extremal Blue cannot improve
by switching with a , and the arrangement is stable.

We are now left with a single case to handle, without loss of generality the
case where Reds only like , only like Blues, and Blues only like
Reds, and no class likes their own kind. Also without loss of generality, assume
n = 4. For brevity in what follows, and consistently with the notation of Section
5, denote Reds by 1, by 2, and Blues by 3, and write ni,ns and ng for
r,g, and b, respectively, where ny + no + nz3 = n. An arrangement 7 can be
seen as a sequence s = (5;);e[,] consisting of n; ones, ny twos and ng threes.
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Since s represents an arrangement on a cycle, one can assume that sy = s, and
Sn+1 = S1, etc. We will again lift agent preferences to class preferences. As in
Section 6.3, let W(s) = W (m) be the utilitarian social welfare induced by s/x.
Similarly in spirit to Section 5, it will be useful to think in terms of long/short-
range blocking triples. Namely, let a, b, ¢, d, e, f be agent classes, then we say that
triples (a, b, ¢) and (d, e, f) are long-range blocking if py(a)+py(c) < py(d)+py(f)
and pe(d) + pe(f) < pe(a) + pe(c); intuitively, neither b wants to swap with e, nor
vice-versa. Furthermore, for a, b, ¢, d agent classes, we say that triples (a, b, ¢) and
(b, ¢, d) are short-range blocking if py(a) < py(d) and p.(d) < p.(a); intuitively, if
a,b, c,d are consecutive in the arrangement, then neither b wants to swap with
¢, nor vice-versa. An arrangement s is stable if the following two conditions hold:

— Forall 1 <i<j<nsuchthat 1 <j—i<n—1,the triplets (s;_1, 5, Si+1)
and (sj_1,8;,8j41) are not long-range blocking;

— For all 1 < i < n the triplets (s;—1, 58, Si+1) and (s;, Si+1, Si+2) are not
short-range blocking.

Before proving our main assertion, the following observation will be instru-
mental:

Proposition 28. Given an arrangement s, the utilitarian social welfare W (s)
is equal to n minus the number of pairs of agents from the same class seated in
adjacent seats. Formally, W(s) =n — [{i € [n] | s; = siy1}]-

Proof. When two agents belonging to different classes are seated next to each
other, by construction of the preferences, exactly one of them will like the other.
Moreover, agents do not like agents from the same class as themselves.

We now prove our assertion, in fact in a stronger form, as follows:

Lemma 29. Assume 0 only likes 1, 1 only likes 2, and 2 only likes 0, then any
arrangement s mazimizing the utilitarian social welfare W (s) is stable.

Proof. Let s be any arrangement maximizing egalitarian social welfare. Assume
for a contradiction that s is not stable. This can be either because of short-range
or long-range blocking triples. We tackle the two cases separately:

1. Assume 1 < i < n is such that (s;—1, 5, 8;+1) and (8;, S;4+1, Si+2) are short-
range blocking. In other words, write (s;—_1, $i, Si+1, Si+2) = (a, b, ¢,d), then
pp(a) < pp(d) and p.(d) < p.(a). By symmetry, without loss of generality,
assume b = 1 and ¢ = 2. From this it follows that a = 3 and d = 2.
Hence, before b and ¢ swap seats we have (3,1,2,2) while afterward, we
have (3,2, 1,2), meaning that the swap would increase social welfare (recall
Proposition 28), contradicting the maximality of W(s).

2. Assume 1 <i<j<naresuchthatl <j—i<n—1and (s;_1,8;,8;+1) and
(sj—1,Sj, sj+1) are long-range blocking. In other words, write (s;_1, s;, Si4+1) =
(a,b,c) and (sj—1, 55, 8j+1) = (d, e, f), then py(a) +py(c) < po(d) +pp(f) and
Pe(d) + pe(f) < pe(a) + pe(c). By symmetry, without loss of generality, as-
sume b = 1 and e = 2. The conditions on the preferences require that there
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are more threes among a,c than d, f but more twos among d, f than a,c.
This implies that at least one of a and ¢ is 3, say ¢ = 3, and at least one of d
and f is 2, say f = 2. So far, we know that (a,b,¢,d, e, f) = (a,1,3,d,2,2).
Looking at the conditions one more time, we get that (a,1,3) and (d, 2, 2)
are long-range blocking if and only if d = 3 implies @ = 3 and a = 2 implies
d = 2. We can now list all the possibilities for (a, b, ¢,d, e, f) and write what
would happen after b and e would swap places:

(a) (1,1,3,1,2,2) — (1,2,3,1,1,2), the latter has higher welfare;
(b) (1,1,3,2,2,2) — (1,2,3,2,1,2), the latter has higher welfare;
(c) (2,1,3,2,2,2) > (2,2,3,2,1,2), the latter has higher welfare;
(d) (3,1,3,1,2,2) — (3,2,3,1,1,2), the latter has the same welfare;
(e) (3,1,3,2,2,2) — (3,2,3,2,1,2), the latter has higher welfare;
(6 (3,1,3,3,2,2) — (3,2,3,3,1,2), the latter has higher welfare.

Hence, in all cases except (a, b, c,d, e, f) = (3,1,3,1,2,2), we get a contradic-
tion of the maximality of W (s). We now need to handle this last case, which
indeed requires further insight. For this case, we will now show that we can
construct an arrangement s’ such that W(s') > W (s), again contradicting
the maximality of W (s). The technique we will use, however, is different from
the usual swapping of the seats of b and e. Namely, let = be the agent sitting
to the left of 3,1, 3. For illustration, if we were to write s in full, it would be
o2, (3,1),3,...,1,2,2, ... We now take the two bracketed agents (3,1)
and reseat them between agents 2, 2. The seating arrangement s’ obtained as
a result looks as follows: ..., z,3,...,1,2,(3,1),2,.... Comparing the social
welfares W (s) and W(s') notice that the moved pair (3,1) has “broken” the
two adjacent twos 2,2. Moreover, irrespective of the value of x, in s agent x
is sitting next to a 3, and the same is true in s’. As a result, by Proposition
28, we get that W(s') — W(s) = 1, contradicting the maximality of W (s).

Proving Theorem 12. We now complete the proof of Theorem 12, restated
below for convenience.

Theorem 12. For n > 3, there exist three-class two-valued preferences such
that all arrangements on a path are unstable.

Proof (continued). Suppose Alice sits next to Bob. On one hand, if Alice is
seated at an endpoint of the path, then both Alice and Bob would improve by
exchanging seats: after the exchange, Alice gets utility zero instead of minus one,
whereas Bob gets utility one instead of zero. On the other hand, if Alice is not
extremal, there is a Friend at one endpoint of the path not a neighbor of Bob:
swapping seats with him would increase Alice’s utility from zero to one, while
the Friend would improve from one (respectively minus one if its only neighbor
is Alice) to two (respectively zero).

Now suppose Bob is sitting away from Alice: exchanging with a neighbor
of Alice would increase its utility from at most minus one to at least zero,
whereas the Friend would improve from at most zero to at least one. Hence no
arrangement on a path is stable.
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Fig. 4: Pictorial proof of the instability of Ps.

Proving Lemma 16. We now prove Lemma 16, restated below for convenience.

Lemma 16. Consider profile Py in Figure 2. A path stable arrangement ezists,
yet the swap dynamics started from certain arrangements cannot converge.

Proof. Let * be the arrangement (a, b, ¢, d). Since each agent approves of
exactly one other agent, they can never get utility strictly greater than one.
Since only d does not achieve utility one in 7*, it is stable. Moreover, consider
arrangements m = (a, d, b, ¢) and w2 = (¢, d, b, a). The only blocking pair
in m is (a, ¢) as both b and d have utility one. Exchanging them leads to
arrangement 7o. Similarly, in 7, the only blocking pair is (b, d). Exchanging
them gives 71 back, up to reversal of the seat numbers. Hence, the swap dynamics
cannot converge. See Figure 2b for an illustration.

B Stability Analysis of Profile Ps5

In this appendix, we briefly analyze the stability of profile P5 from Figure 1a,
which is the only preference profile with n = 5 that is unstable on a cycle.
Despite our best efforts, there does not seem to be an easy explanation for the
emergence of instability in this case.

Lemma 32. Binary preferences Py induce no stable arrangements on a cycle.

Proof. Figure 4 provides a pictorial proof of the instability of Ps. Each of the
twelve possible cyclic arrangements is displayed and a blocking pair is shown
in red. The outgoing edges of the nodes participating in the blocking pairs are
shown in blue for effortless verification.
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C Evidence for Exponential Convergence

In this appendix, we revisit the potential function used to prove convergence of
the swap dynamics in the proof of Theorem 13. In essence, we show that each
increase in potential might be very small, leading to an exponential number of
increases. Note, however, that we do not exhibit preference instances where such
exponential behavior can be observed.® Moreover, we also do not exclude the
possibility that the function can be shown to increase enough with each swap
on average when the dynamics are carried out. What we show, instead, is that
there is an exponentially long chain of potential values such that between any
two consecutive values in the chain there are preferences for which the transition
could occur by exchanging a blocking pair.

Lemma 33. The potential argument alone cannot guarantee polynomial time
convergence of swap dynamics.

Proof. We first consider the auxiliary potential sequence S(m) with values in
{1,2}, and study the effect of exchanges at distances one and two that keep
the social welfare constant. To simplify notation, we map S(r) € {1,2}"1 to
Sp(m) € {0,1}"~! by subtracting one.

Performing an exchange at distance one while keeping the social welfare
constant corresponds to the following modification of a subsequence of Sp(7):
0x1 — 170, where z € {0,1} (see Figure 5). Indeed, an exchange at distance
one modifies the utility of at most four people, hence modifies a subsequence of
length at most three of the auxiliary potential, the latter being defined not on
vertices but edges; we call this operation fs.

f3: 0r1 — 170

Similarly, we define the operation corresponding to exchanging at distance
two that keeps the social welfare constant: it maps the subsequence of Sy(7) of
length four Oxyl to 17yz0. For the same reason as above, we call this operator

fa.
f1: 0zyl — 1yz0

In the following, we denote by “Apply f; at position j” the application of f;
on the subsequence of indices [, + i].

Based on those two operators, we further define the operator fg mapping the
sequence of length 8 (0,0,0,0,0,0,0,1) to (1,0,0,0,0,0,0,0). It consists of the
following operations:

Apply f3 at position 6: (
Apply f4 at position 3: (
Apply f4 at position 2: (

(

S o=

5 We did not manage to construct such preferences.
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Sp(abed)= 0 ’ 1

a —> b —= ¢ <« d

l ~ ~ 7

Swap (b,c)
a «— ¢ = b — d
Sp(achd)= 1 : 0

Fig.5: Change of Sp(7) after an exchange at distance one preserving the social
welfare.

6. Apply fs at position 1: (0,1,1,0,0,0,0,0) — (1,0,0,0,0,0,0,0).

For k > 3, we then recursively define the operators fs;_1 mapping the se-
quence of length 3k —1 (0,...,0,1) to (1,0,...,0) through the following opera-
tions:

1. Apply f3 at position 3(k —1): (0,...,0,1) — (0,...,0,1,1,0);

2. Apply f34—1)-1 at position 2: (0,...,0,1,1,0) — (0 1,0...,0,1,0);
3. Apply f3—1)—1 at position 3: (0, 1,0 .,0,1,0) — (0,1, 1,0, oo, 0);
4. Apply f3 at p081t10n 1: (0,1,1,0,.. 0) — (1,0,...,0).

Note that this is well-defined since fs is defined separately.
Noting that operator fs,_; contains more than 2¥~! uses of f5 and f, for all
k = 3 concludes the proof.

D Non-Monotonicity of Stability

In this section, we show that stability is non-monotonic, i.e., adding agents to
a given instance can both introduce or destroy stability. For instance, consider
preferences Ps in Figure la. On a cycle, all binary preferences with either four
or six agents possess a stable arrangement, implying that adding a fifth agent
could destroy stability while adding a sixth agent would restore it. We now show
that this phenomenon can occur for all values n > 7:

Theorem 34. For all n > 7, adding an agent can both destroy stability or
restore it.

Proof. We first prove that for n > 7 adding an agent can break stability. Consider
the unstable preferences of size n + 1 in Theorem 10: we show that removing
one agent creates a stable arrangement. Indeed, remove agent a and consider
sitting ¢ between by and bs: everyone but ¢ has maximum utility (since b; and
by love only one person, they cannot get utilities higher than 1), hence ¢ cannot
exchange seats with anyone and the arrangement is stable.
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We now prove that for n > 7 adding an agent can create stability. Consider
the unstable preferences of size n in Theorem 10, and add one extra agent b3 € B;
i.e., which only likes @ and ¢ and is only liked by the members of D. Consider
placing by, ¢, ba, a, bs consecutively on the cycle in this order: agent b, and all
members of D have utility 2, hence only by, b3 or ¢ can be part of a blocking pair.
However, b; and b3 both have utility one and would therefore only exchange for
a seat with utility 2: there exists only one such seat, currently held by b, who
has maximum utility and would hence not agree to swap places. As a result,
neither b; nor b3 are part of a blocking pair, so the arrangement is stable.

E Blockwise-Diagonal Preferences

In this section, we show that, even when the preferences of the agents are, in a
certain sense, highly decomposable, knowledge about the stability of the subparts
is unlikely to help us to find stable arrangements for the instance as a whole.
In essence, we show why non-monotonicity can make reasoning about stabil-
ity rather challenging, even in reasonably simple cases. To make the previous
statements precise, we introduce the concept of agent components, as follows.

Definition 35. We say that a set of agents C < A is isolated if for all a € C
and b e A\C, it holds that p,(b) = pa(b) = 0. Set C is called a component if none
of its proper subsets are isolated.

Note also that components and classes are two different notions: agents in
the same component may not have the exact same preferences, but instead are
limited to only caring about agents in their component. Assume that the set
of agents A is partitioned into components A = C; U ... u C (this partition
always exists and is unique).” The preference matrix can then be represented,
after a potential reordering of the agents, as a blockwise-diagonal matrix. When
the partition into components is non-trivial; i.e., k > 1; intuitively, finding an
arrangement that is stable for such preferences should be easier than for general
ones: first, find a stable arrangement on a path for each component, and then join
all those paths to obtain a stable arrangement on a cycle (or on a path). While
this method is indeed guaranteed to produce a stable arrangement whenever
each component admits a path stable arrangement (at least for non-negative
preference values), we will actually show that there are many instances where
a stable arrangement exists but can not be produced by this approach. Before
showing this, we need a technical lemma for cycles, stated next.

Lemma 36. Let w be an arrangement where each agent sits between two agents
from different components. If for any two distinct components C; and C; there is
at most one pair of agents (a,b) € C; x C; such that a and b are neighbors in m,
then m is stable on a cycle.

7 This is because the components correspond to the connected components of the
undirected graph with vertex set A and edges (a,b) for any two distinct agents such
that either uq(b) # 0 or up(a) # 0.
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Proof. First, notice that in such an arrangement all agents get utility zero. Let
a # b be two agents. We want to show that they do not form a blocking pair.
Assume ¢, j € [k] are such that a € C; and b e C;. If i = j, then by assumption a
would also have utility zero when seating in b’s seat, so (a,b) is not a blocking
pair. Now, assume i # j. Let ap and a, denote the two neighbors of a on m;
we define by and b, similarly. Suppose a and b wanted to switch place: this
means a would have strictly positive utility at b’s seat, and b would have strictly
positive utility at a’s seat. Assuming a and b are not neighbors, this means that
{ag,a,}nC; # @ and {by, b, } NC; # &. Let o’ and V' be such that o’ € {a¢, a,}NC;
and b’ € {by, b} N C;. Since (a,a’) and (b',b) are both in C; x C; and are distinct
pairs of adjacent agents in 7, this contradicts the hypothesis. Furthermore, if a
and b are neighbors, then b envying a implies that a’s second neighbor is also
in C;, from which the pairs of agents formed by a and its neighbors similarly
contradict the hypothesis. Therefore, the arrangement is stable.

Armed as such, we now show that any preference profile inducing no stable
arrangements on a path can be used to construct preferences whose components
all resemble this profile and yet the joint profile admits an arrangement that is
stable on a cycle. In other words, even when a profile decomposes non-trivially
into components, knowledge about the stability of the components does not
necessarily help in resolving the stability of the instance as a whole.

Theorem 37. Let Ppau, € {0, 1}4%¢ be a one-component preference profile such
that mo stable arrangement on a path exists. Then, there exists a preference
profile P whose components all resemble Ppqs, admitting a stable arrangement
on a cycle.

Proof. We construct a larger blockwise-diagonal preference matrix P € {0, 1}***

by copying Ppe:, @ number k = 2¢ 4+ 1 of times:

1)
Ppath @) 0
D= Ppath
(k)
0 Ppath
Note that P;Zh, ce Pé’;gh naturally gives a partition into components Cy, . .., Cy;
moreover, the choice of Ppqy, immediately gives that all Cq,...,C; are unstable

on paths.

We now construct a cycle stable arrangement for P. Since k is odd, graph
K, which is the undirected clique graph with k vertices, possesses an Euler tour
T where each vertex is visited ¢ times. We construct the arrangement 7 (more
precisely m—1) on the cycle by replacing every occurrence of i in T by an agent
a; € C;, without repetition, starting for example from seat one. For the 7 we
have just constructed, it then holds that the conditions to apply Lemma 36 are
satisfied since the Euler Tour traverses each edge in K, precisely once. By the
lemma, 7 is a cycle stable arrangement of P.
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F Stability of Random Binary Preferences

In this chapter, we conduct a study of stability using probabilistic tools. In
particular, we employ the Lovasz Local Lemma:

Lemma 38 (Lovéasz Local Lemma). Let Aj, Ag, ..., Ax be a sequence of
events such that each event occurs with probability at most p and is independent
of all but at most d other events. If epd < 1, then the probability that none of

_ k
the events occurs P (mleAi) is greater than or equal to (1 — ﬁ) .

We now give a lower bound on the expected number of arrangements stable
on a cycle when the preference graph is sampled from the Erdés-Rényi model
G(n,p) with average node degree either O(y/n) or n — O(+/n).

Theorem 39. Suppose a binary preference graph P is drawn at random using
the Erdds-Rényi model G(n,p) with p < Cn~/2, where C' = (96¢)~1/2.
Then, the expected number of stable arrangements on a cycle is at least:

2n —3

1
i(n — 1)lexp <
The same results holds for p =1 — Cn~'2.

Proof. Let S =}, Sr be the random variable counting the stable arrangements
on a cycle for preference P, where S; = 1 if arrangement 7 is stable and 0
otherwise. Since all permutations of P follow the same distribution, all S, have
the same expectation and we only need to consider the identity arrangement
= id. th th

For i,j € [n], event L;; corresponds to the ¢ agent liking the j  one, event

th ) th . .

E;; to the i agent envying the j  one, and event B;; to agents (,j) forming

a blocking pair. Finally, let the random variable U; denote the utility of the ith
agent. First, note that events F;; and Ej; are independent for all ¢ # k; from
which Pr(E;;) = Pr(Ej;). We therefore get:

Pr(Bi;) = Pr(Ei; n Ej;)

= PT(Eij)PT(Eji) (1)
= Pr(E;)?
By symmetry, we only have to calculate (Pr(E1;))2<j<n-
If j € {2,3):
PT(EU) = Pr (Elj | Lln) Pr (Lln) = p(l _p)
If je{n—1,n}:

Pr(Eyj) = Pr(Ey; | Liz) Pr (L12) = p(1 —p)
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f3<j<n-—1
P'I"(Elj) :PT‘(EU | U1 :O)P’I’(Ul :O)+P7"(E1j | U1 :1)P7’(U1 = 1)
= (2p(1 —p) +p*)(1 — p)* + p*2p(1 — p)

Together with Equation (1), we subsequently get that:

p*(1—p)? 21f|i_j|<2
(2p3(1 —p)+2p(1 —p)® +p*(1 —p)2) otherwise.

Pr(Bi;) = { (2)
Now, consider the family of events (B;;)i<i<j<n. Note that each even B;; is
independent of events By, where {i,j} n {k,I} = &, but dependent of events
with which it shares an index, so B;; depends on at most d = 2(n — 2) other

events. Therefore, when Pr(B;;) < Wl—ﬁ’ Lemma 38 gives:

n(n—1)
2

_ 1

E[S:] = Pr(Sy=1) = (1

> exp (—

By linearity of expectation, we finally get:

E[S] > %(n ~1)lexp <_”(”—1))

2n —3 )

It is only left to verify that Pr(B;;) < Note that B;; has at most six

1
2e(n—2)"

1
terms all strictly smaller than 8p?. Hence, for p < < , wWe
Y b b V96en — 4/96e(n — 2)
have:
Pr(B;;) < 6 x 8p?
48 1

< =
96e(n —2) 2e(n—2)

1
V96en

In practice, our result implies that, for random preferences of average out-
degree at most O(4/n), a naive approach sampling arrangements uniformly at
random on average determines a stable arrangement using exponentially fewer
samples than the theoretically required (n — 1)!/2.

Comparison with 6 x 8(1 — p)? instead gives the result for p > 1 —

G Z3 Solver for Non-Negative Two-Valued Preferences

In this section, we describe the Z3 solver® employed in Section 6.3 to check
whether all non-negative two-valued preferences for n < 7 are stable on paths

8 https://github.com/Z3Prover/z3
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and cycles. We only describe the case of cycles, as for paths it is enough to add
one additional agent with null preferences from and toward all other agents.
We note that for cycles it is enough to consider the binary case. For paths it
is enough to consider the cases I" € {{0,1},{1,2},{1,3},{2,3}}. For clarity, we
describe here only the binary case, but the necessary modifications for the other
cases are straightforward.

Listing 1 shows the main body of the solver. In line 8, we introduce a function
associating the boolean “i likes j” to each pair (7, j). In line 14, we define an array
of n integers encoding the index of the agent placed in each seat; lines 17 to 24
constrain this array to be a permutation representing one of the (n—1)!/2 cycles.
In lines 15, 16, and 26 we implement the main constraint: all arrangements on
a cycle must induce a blocking pair.

Note that all simultaneous permutations of rows and columns of a solution
are themselves solutions, as this corresponds to relabeling the agents. Therefore,
it is desirable for efficiency to implement some kind of symmetry breaking. We
do this in Listing 2 by requiring that the agents are sorted by the number of
agents they approve of, breaking ties by the number of agents that approve them.

Finally, Listing 3 shows how to check whether agent-pair (7, j) is a blocking.
Note that adjacent and non-adjacent seats require different treatments, and so
lead to different logical expressions.

Finally, note that Z3 returns either “Unsatisfiable” when no solutions ex-
ist, or “Satisfiable” and one solution otherwise. Finding all possible solutions is
therefore rather tedious: after finding a solution, to get another one, we need to
add a constraint that “the preferences are not these ones.” This detail is omitted
for brevity.
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from z3 import *
N=7

def UnstableCounterExample():
s = Solver()
# Pref(i, j): bool("Agent i likes agent j").
Pref = Function('Pref', IntSort(), IntSort(), BoolSort())
Constrains Pref(i, i) = False.
.add([Not(Pref (i, i)) for i in range(N)])
Symmetry breaking on Pref.
.add (SymBreakSumRowCol (Pref))
Seat i is taken by agent Arr[i].
Arr = [Int(f"Arr_{i}") for i in range(N)]
s.add (ForAll(
Arr, Implies(
# Seat O is taken by agent O.
And(Arr[0] == O,
# Arr is a permutation.
And([Arr[i] > O for i in range(1, N)]),
And([Arr[i] < N for i in range(1, N)]),
Distinct([Arr[i] for i in range(N)]),
# Symmetry breaking on Arr.
Arr[1] < Arr[N - 1]),
# Agents at seats (i, j) form a blocking pair.
Or([isBlockingPair(Pref, Arr, i, j) for i in range(l, N) for j in range(i)1))))
SolveAndPrint(s)

0 H= o0 #*

def SolveAndPrint(s):
print("Solving", s)
val = s.check()

if val == sat:
print("Satisfiable", s.model())
elif val == unsat:
print("Unsatisfiable")
else:

print ("Unknown")

UnstableCounterExample ()

Listing 1: Main body of the solver.
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def SymBreakSumRowCol (pref) :
"""Returns True iff rows of pref have increasing sums, and in case of
equality, the sums on the corresponding columns are increasing."""
sums_row = [Sum([pref(i, j) for j in range(N)]) for i in range(N)]
sums_col = [Sum([pref(i, j) for i in range(N)]) for j in range(N)]
# First order on the sums of the rows.
sum_row_ord = And([sums_row[i] <= sums_row[i + 1] for i in range(N - 1)])
# Then order on the sums of the columns.
sum_col_ord = And([Implies(sums_row[i] == sums_row[i + 1], sums_col[i] <= sums_col[i])

for i in range(N - 1)])

return And(sum_row_ord, sum_col_ord)

Listing 2: Symmetry breaking of preferences.

def isBlockingPair(pref, arr, i, j):
"""Returns True if agents at seats i and j form a blocking pair.
We suppose 0 <= j < i <= N - 1."""
if j ==1 - 1: # Seats i and j adjacent.
blockpair = And(Not(pref(arr[i]l, arr[(i + 1) % N1)), pref(arr[i], arr[(j - 1 + N) % NI1),
# Agent at seat i envies agent at seat j.
Not (pref(arr([jl, arr[(j - 1 + N) % N1)), pref(arr[jl, arr[(i + 1) % NI))
# Agent at seat j envies agent at seat i.
return blockpair
if j==0and i == N - 1: # Seats i and j adjacent.
blockpair = And(Not(pref(arr[i], arr[(i - 1 + N) % N1)), pref(arr[i], arr[(j + 1) % NI1),
# Agent at seat i envies agent at seat j.
Not (pref(arr([jl, arr[(j + 1) % N1)), pref(arr[jl, arr[(i - 1 + N) % NI))
# Agent at seat j envies agent at seat i.
return blockpair
else: # Seats i and j non adjacent.
blockpair = And(Sum(pref(arr[i], arr[(i - 1 + N) % N]), pref(arr[i], arr[(i + 1) % NI))
< Sum(pref (arr[i], arr[(j - 1 + N) % NI1), pref(arr[i]l, arr[(j + 1) % NI)),
# Agent at seat i envies agent at seat j.
Sum(pref (arr[jl, arr[(j - 1 + N) % N1), pref(arr[jl, arr[(j + 1) % NI))
< Sum(pref (arr[jl, arr[(i - 1 + N) % NI1), pref(arr[jl, arr[(i + 1) % NI)))
# Agent at seat j envies agent at seat i.
return blockpair

Listing 3: Testing for a blocking pair.
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