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Abstract

Lucrative incentives in grid computing do not only at-
tract honest participants, but also cheaters. To prevent self-
ish behavior, verification mechanisms are required. Today’s
solutions mostly base on redundancy and inherently exhibit
a considerable overhead. Often, however, the verification
of a result takes much less time than its computation. In this
paper we propose a distributed checking scheme that ex-
ploits this asymmetry. Our mechanism detects wrong results
and excludes cheaters in a distributed manner and hence
disburdens the central grid server. We show how the ver-
ification scheme is used in an application which aims at
breaking the discrete logarithm problem by a parallel im-
plementation of the Pollard-ρ algorithm. Our implemen-
tation extends the BOINC server software and is robust to
various rational attacks even in the presence of colluders.

1 Introduction

Computational grids are typically used to solve large
mathematical problems, for example for brute-force attacks
of encrypted messages [10], to predict the climate [9], or
to study the forming process of proteins [20] in computa-
tional biology. In these systems, a server distributes tasks
to the participating clients; the clients subsequently process
their input data, and send the calculated results back to the
server. Systems such as SETI@home and distributed.net
involve millions of users. The motivation for these users
to contribute are manifold, including the altruistic desire to
help [8] or the visual feast of nice pictures on a screensaver
[23]. Another important motivation for participation is the
assignment of credit points proportionally to a user’s contri-
bution. These points allow to reward hard-working clients
in different ways; for instance, there may be a project web-
site listing the project’s top overall contributors, the “user of
the day” [4], etc. A recently proposed lottery scheme [12]

even offers monetary compensations for active participants.
Unfortunately, lucrative incentives also attract cheaters

who seek to obtain these rewards with little or no contribu-
tion to the system. Such selfish behavior can be achieved by
modifying the client software, for example.

This paper studies means to efficiently detect wrong re-
sults and to prevent cheaters from obtaining undeserved re-
wards in computational grids. After introducing and dis-
cussing the different parameters and properties influencing
the design of cheater-resistant grid frameworks, we propose
an algorithm for cheater identification. This algorithm is ef-
ficient in the sense that it aims at disburdening the server as
much as possible by distributing the checking process to the
participating hosts, implying a better scalability. In contrast
to many existing solutions which often base on redundant
computations, our mechanism exploits the fact that check-
ing is often faster than computing the results from scratch.

In the second part of this paper, we apply our findings
to the parallel Pollard-ρ algorithm for discrete logarithms
[22, 26]. We implemented our algorithm on the Berkeley
Open Infrastructure for Network Computing (BOINC) [2,
18] system, a grid framework written in C++ which has a
large user basis. In order to incorporate distributed checking
into BOINC, the server software had to be modified such
that jobs can be assigned specifically to a certain client.

To the best of our knowledge, this is the first solution for
efficient distributed checking in grid frameworks which ex-
ploits the asymmetry existing in many computational prob-
lems, coping effectively with both participants that are lazy
during the checking process and with entire coalitions.

The remainder of this paper is organized as follows. In
Section 2, related literature is reviewed. Our model and
design choices are introduced in Section 3. Section´4 then
presents the distributed checking mechanism. Simulation
results are presented in the evaluation section, Section 5.
We report on how to apply our algorithms to the parallel
Pollard-ρ algorithm and on our BOINC implementation in
Section 6. The paper is concluded in Section 7.
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2 Related Work

The presence of cheaters in grid computing system is
well-known and many countermeasures have been proposed
in literature [13, 14, 16, 17, 24]. With the wide-spread use
of rewarding mechanisms, also the problem of cheating is
likely to gain importance. Recently, for instance, Douceur
and Moscibroda [12] described a Lottery Tree mechanism,
which encourages contributions (and the solicitation of new
participants) in asymmetric network-effect systems such as
BOINC. This mechanism motivates the use of monetary in-
centives to participate in such systems, which, of course, is
also a good motivation for cheating.

To find wrong results created by lazy participants or
cheaters, today, many systems simply replicate the work-
units and use a majority rule to decide the correctness of
results [19]. However, this approach often implies a waste
of CPU cycles. For tasks whose verification is less expen-
sive than redoing the computations, alternative approaches
are preferable.

Golle et al. [16] propose a solution where a server se-
cretely precomputes the results for a set of input values, the
so called ringers. These ringers are then interspersed among
the ordinary input values of a work-unit. If a lazy client
does not compute the entire unit, it is likely to miss a ringer
which can easily be detected by the server. The disadvan-
tages of this approach are the need for precomputation, the
redundant computation that inherently occurs, and the fact
that a cheater is still likely to be undetected when cheating
on a very small fraction of input values only. Lawson et
al. have generalized this approach in [24].

Du et al. [14] present a commitment-based sampling
scheme for cheater detection in grid computations based on
Merkle trees. A server selects some samples which are as-
signed to a participant. The participant has to commit to its
results which are subsequently checked. The drawback of
their approach is the additional burden on the server which
has to recompute some work-units itself.

There are also cryptographic protocols which allow to
implement provably optimal systems in theory [1, 6]. How-
ever, these algorithms are often computationally expensive
in practice.

In our system, the checking tasks are distributed to the
participants. Distributing the load of checking has been
studied before in the context of classic fault diagnosis.
Beigel et al. [3], for example, have introduced a round-
based distributed checking algorithm which is designed for
a set of processors that have to check each other. The al-
gorithm performs a preprocessing step in which processors
are recursively paired up to test each other. Hamiltonian
paths are then used to extract a strongly connected compo-
nent containing only good clients. Unfortunately, this ap-
proach is problematic in our setting for different reasons.

Most importantly, [3] assumes that processors are either
good or faulty, but do not cheat on purpose. As a conse-
quence, clients that correctly compute their ordinary tasks
also behave properly in the checking phase. This does not
hold for grid computing, where all sorts of rational attacks
can occur, possibly even performed by colluding groups of
clients rather than individuals. In particular, a node can
stay honest during computation and only behave badly if it
checks the result of another member of the collusion. Fur-
ther, the round based algorithm cannot directly be applied to
grid computing where hosts can join and leave at any time.
Our system attempts to circumvent the resulting problems
by using a more efficient scheme which is robust to various
attacks, both in static and dynamic environments.

3 Model and Design Choices

This section introduces our model and our goals, and
also gives some definitions. Moreover, we present differ-
ent parameters and properties which we believe are useful
to take into account when designing distributed checking
algorithms.

We consider a grid framework consisting of a server and
a potentially large number of clients. A client is the logic
entity with which the server interacts. The server sends its
work-units (or tasks or jobs) to clients, which return the
corresponding set of results. A participant is a user who
has registered an account for the project. She may use one
or more computers (or machines) working for her in the
project. Moreover, a computer can correspond to one or
several clients. The computational resources of the clients
are heterogeneous.

The server distributes two different kinds of tasks to the
clients. Work-units are the main computational tasks of the
grid computing framework; checking units require the client
to perform a number of checks for the different results.

We assume that the main incentive for participation in
the project are credit points: There may be websites listing
the credit points earned by the different users, or there may
even be ways to convert credit point into real money, by a
lottery, for example.

In our system, a client earns credit points for both com-
puting work-units and for computing checking units. The
number of points is thereby proportional to the amount of
work, such that a participant is indifferent between the two
tasks.

It is of prime importance that the credit points be earned
honestly, i.e., our algorithms’ goal is to make sure that par-
ticipants only get the credits they really deserve, and that
the system is not flooded with wrong results.

In this paper we distinguish between two kinds of clients:
good clients and bad clients (or cheaters). We consider
a harsh model where all cheaters form a single coalition.
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Today’s systems such as Seti@Home are reported to have
roughly 1% cheaters.

A checking algorithm which identifies dishonest behav-
ior can achieve a higher effectiveness if it interplays with
a mechanism to punish cheaters. We assume that a wrong
result or a improper check implies that the corresponding
client is a cheater.1 Being debunked as a cheater basically
implies that the corresponding client’s user loses all its cred-
its, and the corresponding account is closed. (See Section 4
for more details.)

Different parameters play an important role in the design
and analysis of distributed checking algorithms. To charac-
terize the power of cheaters, we introduce three variables:

1. Maximum fraction of cheating clients (p): p is an upper
bound on the fraction of cheaters among all clients. We
assume that all cheating clients form one large coali-
tion.

2. Maximum computing power (q): q is an upper bound
on the fraction of computing power the cheaters pos-
sess, compared to the total computing power in the
system. In practice, q is limited, as an increase in q
is expensive.

3. Maximum fraction of incorrect results (r): r is an up-
per bound on the number of incorrect results the sys-
tem is infiltrated with. Note that a small fraction of
cheaters can feed a huge number of incorrect results
into the system, since such results are typically random
values that can be computed at virtually no cost. Thus,
1% of cheaters can easily be responsible for 99% of the
results. We thus assume that r = 1, if no appropriate
countermeasures are taken.

In the following, we discuss how these parameters influ-
ence the design of a distributed checking algorithm. Clearly,
the larger p, the larger the likelihood of wrong results and
checks. It is vital that a checking algorithm incorporates
sufficient redundancy in the verification process to account
for a given value of p. To keep p reasonably low we use two
techniques: A punishment strategy that constantly removes
cheaters from the system, and a partial coupling with q to
mitigate Sybil attacks [11].

At the first glance, a natural approach would be to as-
sign checking tasks proportional to the amount of results
calculated by the individual clients. However, cheaters can
provide results much faster than honest clients (as expressed
by the value of r). Consequently, such an assignment would
lead to a disproportional fraction of checking performed by
the cheaters (r instead of p). To overcome this problem,

1We do not consider the problem that there may occur random errors at
good clients; in practice, it would be possible to oblige clients performing
self-checks; that is, after having computed a result, the client is responsible
to briefly verify its result.

a main ingredient to our algorithm is to have each client
checking roughly the same amount of work, which ensures
that cheaters get only a fraction p of the overall checking
tasks assigned.

Our distributed checking algorithm makes use of the fol-
lowing three properties which facilitate a more effective ver-
ification process. We believe that in many architectures and
applications, these properties can be fulfilled.

1. Performance property: The verification of a result us-
ing the checking function is considerably faster than
the calculation of the result.

2. Uniqueness property: All reported results are either in-
herently unique or the checking function is able to ver-
ify each result’s dependence on the input values.

3. Fingerprint property: A check calculates a fingerprint
rather than a Boolean result. As a consequence only
honestly performed checks can lead to a positive result.

The performance property is only important for perfor-
mance reasons: If it is not fulfilled, our system will still
work, but not more efficiently than simpler, alternative ap-
proaches. Many cryptographic protocols rely on such asym-
metries.

The uniqueness property is useful for prohibiting replay
attacks, that is, it prevents a client from simply sending old
(correct) results over and over again.

The fingerprint property can be achieved by calculating
a witness value. Such a witness value is a fingerprint which
can be computed both during the calculation of the regular
result and during the calculation of the check. The server
can then compare the two witnesses. If they are equal, the
check is positive, otherwise it is negative. The fingerprint
property seeks to prevent lazy checking attacks: A lazy
checker is a client that correctly computes its work-units
but does not perform its checking tasks properly. Instead, it
simply claims that the results are correct.

4 Distributed Checking

This section describes our distributed checking algo-
rithm. A specific example of how to implement the ideas
developed here is given in Section 6 for the parallel Pollard-
ρ algorithm.

At the heart of our checking mechanism lies its distri-
bution of checking tasks. While each client is allowed to
compute as many results as possible, we maintain the in-
variant that all clients receive roughly the same amount of
checking units. This is needed to prevent a small group
of cheaters to check almost all results which in turn allows
them to hide each other’s wrong results. Due to our assump-
tion that checking is much faster than recomputation, this
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invariant can be maintained. However, we have to make
sure that a user cannot create a large number of “virtual”
clients; later in this section, we will briefly discuss how we
defend against such Sybil attacks [11].

Under the assumption that the fraction of cheaters p is
20% or less, and given that checking is performed uni-
formly by all participants, the correctness of a result can
be estimated by asking sufficiently many clients to perform
a check and then taking the majority’s decision. In our al-
gorithm, the following adaptive strategy is applied: Each
result is checked until the probability of a mistake falls be-
low a certain threshold. Note that issuing the next check
only after having received the result of the preceding check
does not only allow to be adaptive with respect to the re-
quired upper bound on the error probability, but has also the
advantage that a cheater does not know which other clients
will verify the result in future, rendering collusion attacks
more difficult.

Concretely, one objective of the distributed checking al-
gorithm is to minimize the number of false negatives and
the number of false positives. We define a false negative as
a test which does not discover a wrong result, and a false
positive a test which indicates that the result was wrong al-
though it was actually correct.

Theorem 4.1 Let α be the number of checks which are in
favor of the result’s correctness (including the result itself)
and β be the number of checks stating that the result is
wrong. Let P be the random variable denoting a false pos-
itive (α < β), and N the random variable denoting a false
negative (α > β). We have

P[P ] ≤

(
α+ β

β

)
pβP (1− pP )α

P[N ] ≤

(
α+ β

β

)
pβN (1− pN )α ,

where pP = min(β/(α + β), p) and pN = min(α/(α +
β), p).

PROOF. Let E denote the event that the result is correct. If
no cheater tells the truth and if the fraction of cheaters is p,
we have

P[α, β|E] =
(
α+ β

β

)
pβ(1− p)α.

Note that a cheater that behaves correctly for a given test im-
plicitly reduces p. Let the actual fraction of wrong checks
be p′ ≤ p. The only extremum of P[α, β|E] is the maxi-
mum at δ P[α, β|E]/δ p′ = 0 ⇒ p′ = β/(α + β), hence
the probability is maximized at p′ = min(β/(α + β), p).
Therefore,

P[α, β|E] =
(
α+ β

β

)
pβP (1− pP )α.

By the same argument, the claim also follows for false neg-
atives. �

Note that often, quite large probabilities of false nega-
tives can be acceptable: An example is the Pollard-ρ appli-
cation considered in Section 6, a small number of wrong
results hardly influence the total time until a real collision
is found.

A simplified version of our distributed verification mech-
anism is summarized in Algorithm 1. We use θP and θN
to denote acceptable thresholds for false positives and false
negatives.

Algorithm 1 Distributed Checking Algorithm
1: receive result ρ with fingerprint F ;
2: α, β := 0;
3: while ((α < β and P[α, β|E] > θP ) or (α > β and

P[α, β|Ē] > θN ))
4: choose online client c uniformly at random;
5: assign ρ to c;
6: if (c(ρ) = F ) then α+ +; else β + +;
7: S1 := {c|c(ρ) = F}; S2 := {c|c(ρ) 6= F};
8: if α > β then punish S1; else punish S2;

The parameters should be chosen such that the proba-
bility that a good client is accused falsely is small; however,
the possibility will always exist. Observe that in our system,
false positives are more problematic, as good clients are un-
justly punished. One solution is to allow clients to contact
the server and ask for a server check. If the server finds
that the result was indeed correct, appropriate measures can
be taken, for instance, all clients which falsely accused the
server unjustly are punished. In order to protect the server
from too many requests, we require a client to compute a
certain number of work-units for free before it can contact
the server. If it turns out that the participant was right, the
credit points are rewarded ex post. Moreover, it is not ratio-
nal to ask for a server check if the client’s result is indeed
wrong.

It remains to answer the question of how to guarantee
that clients receive roughly the same amount of checking
units. Our algorithm has to take into account the dynamics
of the network, i.e., the fact that clients can join and leave
at any time.

We propose the following solution: Whenever a result
needs to be checked, we choose a client uniformly at ran-
dom from all the clients which are currently online. We con-
sider a client to be online if it recently contacted the server.
If a client leaves before it has finished its checks, the un-
processed checks get distributed uniformly among the other
clients. Figure 1 gives an example of the online times of six
clients over time. Clients which are online at the considered
moment are colored grey. The server notices that the sec-
ond client has left and deletes its result queue; the pending
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Figure 1. Visualization of checking process
for 6 clients over time. At the time indi-
cated by the vertical line, only the four grey
clients are present. The server notices that
the second client has left and distributes
this client’s pending checking jobs uniformly
among clients 1, 3, 5, and 6. In addition, all
new results are distributed for checking sim-
ilarly.

jobs are distributed uniformly at random among the online
clients. In addition, the newly arrived results, e.g., from
client three, are also scheduled for checking.

Our solution is based on the assumption that cheaters
can only perform Sybil attacks [11] in a very limited form.
Fortunately, to the best of our knowledge, there have not
been many Sybil attacks on today’s grid computing systems.
Moreover, a simple approach to restrain users from opening
a large number of accounts, is the incorporation of Captcha
mechanisms [7] or requiring users to register with a valid
telephone or credit card number. In addition, we require
that a new client first computes a certain number of check-
ing units “for free”, that is, without being rewarded any
credit points. This renders the joining process expensive
and the Sybil attack cumbersome, essentially coupling p to
q. Concretely, in the beginning, we assign the new client
only checking units for which we already know the result.
Over time, the fraction of old checking units is reduced, and
we add new checking units and work-units which have not
been computed by the system at random; for these new jobs,
the client gets credits as described above.

Finally, observe that the main mechanism of our algo-
rithm, namely, that all clients perform roughly the same
amount of checks, requires also that the performance dif-
ferences of the clients are limited. Clearly, the more asym-
metric the computational task, the more heterogeneity we
can allow. However,—although very unlikely—during the
grid’s computations it might occur that we can no longer
guarantee that a result is checked the mandatory number of
times, because a small number of participants produces too
many results. In this case, we issue only old checking units

and wait until all checking units are finished, such that the
clients can continue to earn credits. This comes at a certain
cost as wasted resources; however, due to the small proba-
bility of the event, we believe is a useful solution to guar-
antee the results’ integrity. Alternatively, it would also be
possible to continue issuing work-units and just use a best
effort approach to distribute the checks.

Possible extensions. So far, our checking algorithm em-
ploys a quite simple analysis to debunk cheaters. However,
the server has actually access to much more information
which could be exploited. We plan to integrate a more so-
phisticated analysis in future versions of our tool, and only
briefly sketch some ideas here. The server knows the en-
tire graph where a direct edge (u, v) denotes that client u
has accused client v. The in-degree of a client is related
to its trustworthiness. However, it is also important to take
the clients’ out-degree into account, as cheaters may seek to
harm the reputation of good clients to hide other cheaters’
behavior. We believe that an analysis in the spirit of page
rank [5] can yield a more effective verification. In addition,
in order to find colluders, clustering methods can be applied
to the graph with the clients as vertices and where edges de-
note clients which computed the same fingerprints.

5 Evaluation

This section presents results of our simulation runs. The
goal of our system is to balance the checks uniformly
among the clients, while there is no such restriction on
the distribution of the work-units. In all our experiments,
we immediately replace an unmasked cheater with a new
cheater in order to have a constant cheater fraction. Figure 2
shows a histogram of the workload due to the work-units
(WU) and the checking units (CU) at the different clients.
While the faster clients compute a larger share of all results,
the checking workload is almost independent of the client’s
speed.

The number of checks per result depends on the proba-
bility of the false positives and the false negatives that we al-
low. Figure 3 shows the average number of pending checks
at the clients for different error probabilities.

Finally, we have studied the effect of different cheater
strategies. In the experiments, 10% of the client population
were cheaters. The results are given in Figure 4. The first
column states the percentage of results for which the cheater
did not compute the correct result. The second column gives
the percentage of wrong checks. In case a cheater checks
another cheater’s result, we assume that the result will al-
ways be accepted. The third column then states the percent-
age of results that the cheaters process, whereas the forth
column gives the percentage of checks that are assigned to
cheaters. Our simulations reveal that for all these cheater
strategies, the influence of the bad clients, i.e., the percent-
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Figure 2. Histogram of the workload at the different clients. The speed of the clients is chosen
uniformly at random from an interval [1, 100] and it is assumed that checking is 50 times faster than
computing a result. The fastest clients on the right of the x-axis compute much more work-units
(WU) than the slower clients, but roughly the same amount of checking units (CU).

% Cheated on WU % Cheated on CU Processed WU Processed CU
0% 0% 9.8% 9.9%
50% 5% 16.9% 8.3%
50% 50% 17.3% 8.3%

100% 10% 98.4% 10.7%
100% 100% 98.3% 10.3%

7

Figure 4. Effect of different cheater strategies.

age of checks they carry out, is limited.

6 Sample Application: Pollard-ρ in BOINC

This section shows how to apply our techniques for a
sample application, namely for distributed verification in
the parallel Pollard-ρ algorithm. We present our checking
function in detail, and also briefly sketch the changes we
had to implement in order to make the BOINC server capa-
ble of distributed checking.

6.1 The Parallel Pollard-ρ Algorithm

Let G be a finite cyclic group with a generator element
q ∈ G. Given an element r ∈ G, we wish to find the small-

est non-negative integer l such that ql = r.2 This prob-
lem is the well-known discrete logarithm problem, where
l is called the discrete logarithm of r to the base q, i.e.,
l = logq r. While exponentiation can be done efficiently,
it is widely believed that the opposite operation, i.e. com-
puting the discrete logarithm, is computationally hard. In
fact, many cryptographic protocols in use today rely on
this assumption. In the following, we consider the prob-
lem where the group G is an elliptic curve. Although we
seek to give as many details as possible to understand our
distributed checking algorithms, we cannot provide all the
cryptographic background and refer the interested reader to
extensive literature in this field [21].

An efficient method to solve the discrete logarithm prob-
lem is the Pollard-ρ algorithm [22]. The algorithm com-

2We denote the group operation as a multiplication, and ql denotes l
subsequent applications of the group operation to q.
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Figure 3. Number of pending checks at the
different clients on average for three different
error probabilities: 10−9, 10−6, and 10−3 (for
both false positives and false negatives). The
simulation has been performed using 100,000
clients among which 20% were cheaters. The
cheaters returned wrong results with proba-
bility 50% and did not check a result properly
with probability 10%. Note that for larger er-
ror probabilities, the required number of cor-
rect results is reached earlier.

putes values a, b, A, B ∈ Z|G|, such that qarb = qArB .
From these values, l can be computed as the solution of
the equation (B − b)l = (a − A)(mod |G|). To find
these exponents, the Pollard-ρ algorithm makes use of an
iteration function f : G → G: Given a starting value
qa0rb0 = e0 ∈ G, a sequence ei is computed according
to the rule ei+1 = f(ei). As G is finite, this sequence is
ultimately periodic so that there exist two uniquely deter-
mined smallest integers T ≥ 0, T0 ≥ 0 such that ei = ei+T
∀i ≥ T0. A pair (ei, ej) with ei = ej , (i 6= j) is called a
collision. A collision for which holds A = a and B = b is
called a duplicate. The goal of the Pollard-ρ algorithm is to
find a collision that is not a duplicate. From such a collision
the discrete logarithm can be computed efficiently, as seen
before. Pollard showed that due to the birthday paradox this
theory can be applied to solve the discrete logarithm prob-
lem in G in expected runtime O(

√
|G|).

We have implemented a distributed version of the
Pollard-ρ algorithm as follows. Each client c receives a
pair of random values (a0, b0) from the server, calculates
e0 from them, and then performs the iterations according to

the following iteration function on the elliptic curve:

f(ei) = ei+1 =


ei · q if ei ∈ S1

e2i if ei ∈ S2

ei · r if ei ∈ S3

where S1,S2,S3 are random sets of roughly the same size
which form a partition G. The series ai and bi are up-
dated accordingly. The idea of the iterations is to perform a
pseudo random walk (the sequence ei) on the elliptic curve.

While a client could basically report all points it com-
putes on the elliptic curve to the server such that the server
can look for collisions, this constitutes a large burden on the
server-side. Therefore, in our implementation, the clients
only send a subset, the so-called distinguished points (e.g.,
points p for which a certain hash function hash(p) = 0), to
the server. Note that since once two clients are on the same
path, i.e., once they have computed the same results, they
will continue computing the same results forever. Hence,
collisions will be found quickly even if only distinguished
points are reported. The situation is depicted in Figure 5.

P1

regular

distinguished

P2
P3

d1,1

d1,2

d1,3

d1,4= d2,3

d2,1

d2,2

d3,1

d3,2

d3,3

d1,1

d1,2

d1,3

d1,4
...

d2,1

d2,2

d2,3
...

d3,1

d3,2

d3,3
...

d1,4= d2,3

Server

Figure 5. Distributed Pollard-ρ algorithm: The
clients iterate along the group elements and
report distinguished points to the server. The
server maintains a database where points are
stored for collision detection.

6.2 Distributed Checking

We have implemented our distributed checking mecha-
nism in BOINC. Thereby we have extended the framework
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in several ways such that it takes the specific properties
of the distributed Pollard-ρ algorithm into account. This
section presents some of our defense mechanisms against
cheaters in more detail.

In order to apply our distributed checking algorithm, we
have to come up with an efficient verification method to
check the proper execution of a work-unit by a client (cf
Section 3). After the completion of a result, a client reports
the following:

• The distinguished point pd, together with the corre-
sponding exponents ad and bd.

• The point px that was reached x steps before the dis-
tinguished point, together with the corresponding ex-
ponents ax and bx. The value x is chosen by the server
and is considerably smaller than the expected number
of steps E to reach a distinguished point from a ran-
dom starting point, i.e. x� E.

• The series Sk of steps that lead from px to pd. This is
our witness value.

The input of a checking unit consists of px, ax, bx, and
y > x chosen by the server. The verification process works
as follows: The verifier iterates a maximum of y steps from
px and records these steps. If it reaches a distinguished
point, the iteration process is aborted and the performed
series of steps S′k is returned to the server, together with
the distinguished point p′d and the corresponding exponents.
The server now verifies whether Sk ≡ S′k and p′d = pd. If
so, the check is good, otherwise it is not.

In the following we will show that this checking mech-
anism fulfills the requirements from Section 3. The perfor-
mance property is clearly met, as only x � E number of
iterations have to be performed. The uniqueness property
follows from the characteristics of the Pollard-ρ algorithm.
In our system, a client does not receive any credit points
for a duplicate. As the probability to encounter a duplicate
is roughly the same as the probability to encounter a col-
lision that solves the problem, i.e., roughly approximately
1/
√
|G|,3, the resulting unfairness can be neglected. The

fingerprint property requires that the witness value can only
be calculated by honest computation and honest verifica-
tion. The verification part follows from the fact, that it is
impossible to guess the correct series, if the iterations are
not honestly performed. The computation part is a slightly
more involved. We have to show that it is not possible to
create any points px, pd (distinguished) and a correct series
between them, without actually performing all the iterations
from the random start values a0 and b0. As we require pd to
be a new distinguished point, it suffices to prevent a client

3In case of the ECC-109 challenge, the probability is approximately
2−55 for example.

from finding such a point (together with the correct expo-
nents) in an “illegal” way. To find such a point, in aver-
age H/2 points have to be tried, where H is the cardinality
of the output-domain of the underlying hash-function. The
best a cheater can do is choosing arbitrary values ã and b̃ and
check whether the resulting point qãrb̃ is distinguished.4

Notice that the expected number of points to be visited is
equal to the expected number of iterations. Therefore the
potential gain is defined by the speedup of randomly se-
lecting a point over calculating one iteration step. Once a
candidate pd is found, the corresponding point px and the
steps from px to pd have to be determined. The inversion of
the iteration steps is considerably more expensive than the
forward direction and for a randomly selected point a back-
ward path might even not exist (cf Section 6.4). Thus, if the
values x and H are chosen appropriately, properly follow-
ing the path is the most rational option. Note that it is still
possible to choose own values for the starting values ã0 and
b̃0 and then starting the iteration process. However, in this
case a client equally contributes to the overall project and
does therefore not need to be punished.

6.3 Remark on BOINC Implementation

In addition to the implementation of our parallel Pollard-
ρ algorithm, several changes were necessary at the orig-
inal BOINC code. In order to extend BOINC for dis-
tributed checking mechanisms, we had to adapt the BOINC
server such that it generates two different kinds of jobs,
regular work-units and checking units. Unfortunately, so
far BOINC does not support the assignment of specific
work-units to dedicated hosts as required by our verifica-
tion scheme. We modified the scheduler such that every
time a client arrives, it decides—depending on the client’s
state—whether the client is assigned a work-unit or a check-
ing unit, and in case of checking units, selects an appropri-
ate one.

6.4 Analysis of Backward Iteration

Instead of calculating an entire work-unit, a cheater
might try to find a random distinguished point pd, together
with the parameters ad and bd. Such a point can only be
found by choosing a and/or b at random and then checking
whether the property of a distinguished point is given. In
expectation, the same number of random points have to be
generated for this property to be fulfilled as there are iter-

4Note that although the server would learn about roughly the same
amount of distinguished points this way, this behavior is problematic, as
we lose the property that if two clients find the same point on the ellip-
tic curve they will remain on the same path until a distinguished point is
found; as a consequence, the expected running time of the algorithm is
much larger.
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ation steps per work-unit.5 Moreover, observe that finding
such a point is not sufficient, as our checking function re-
quires the client to report px. Thus, the cheater is bound to
iterate back x steps from pd in order to find a valid point px.
Fortunately, this backward iteration attack is expensive and
irrational, as there is a certain probability that for a given
point, there do not exist any predecessors.

Our simulations (cf Figure 6) show that the likelihood
that all required predecessors exist for a given point de-
clines sharply with the number of iterations x. For fifty iter-
ations, for example, the success probability is already below
10%. Generating ten random points is more expensive than
one forward iteration step. Thus, in expectation, this attack
requires more computational resources than computing the
work-units properly.

6.5 Towards the ECC Challenge

To increase trust into their security solutions, and stim-
ulate research in the area of elliptic curve based cryptogra-
phy, Certicom6, has launched the ECC challenge7 in 1997.
The challenge consists of a series of discrete logarithm
problems on elliptic curves of increasing complexity. Each
solved problem is rewarded with a price ranging from 5k$
to 100k$, dependent on the problem’s complexity. Clearly,
attacking such a problem seems to be an ideal application
for the grid computing system presented throughout this pa-
per. In the following, we briefly want to sketch the required
modifications in order to participate in this challenge. Some
of the outlined optimizations are, in fact, already integrated
in the client.

It is important to note that today even with a large num-
ber (say 1 million) of participants only the easiest not yet
solved problem in this series is computationally feasible to-
day. This problem is, however, defined on a special variant
of elliptic curves that, the so called Koblitz curves. These
curves are defined over the finite field F2m , and allow for a
speedup of a factor

√
m if the Pollard-ρ algorithm is mod-

ified accordingly, as pointed out by Gallant et al. [15] as
well as by Wiener and Zuccherato [27]. In particular, these
authors show that to a certain point X0 = a0P + b0Q on
the curve, m−1 corresponding pointsXi = aiP +biQ (in-
cluding the values ai and bi) can be found with little effort.
Selecting the point with lowest x-coordinate after each iter-
ation reduces the search space by a factor ofmwhich results
in the mentioned speedup of

√
m. The most efficient way to

calculate these points makes use of the so called normal ba-
sis representation for elliptic curves. Our client is currently

5Note that choosing a distinguished point first and then looking for a
and b implies solving the discrete logarithm problem.

6See www.certicom.com.
7See www.certicom.com/

index.php?action=ecc,ecc challenge.

implemented using the less efficient polynomial representa-
tion.
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Figure 6. Success probability of backward it-
eration attack for different numbers of itera-
tions.

Wiener and Zuccherato further present two additional
improvements to the original Pollard-ρ algorithm, which
are not restricted to Koblitz curves. First, they point out
that, given a point X = aP + bQ, it is cheap to find the
point −X = (−a)P + (−b)Q. They thus suggest to only
consider the point with smaller y-coordinate after each it-
eration, which in fact reduces the search space by a factor
of 2 and consequently results in a further speedup of

√
2.

This speedup is bought at the cost of some countermeasures
against trivial two-cycles, which complicates the implemen-
tation.

Finally, Wiener and Zuccherato refer to the work of
Teske [25] that proposes the use of a better iteration func-
tion, which distinguishes 20 rather than 3 cases. This itera-
tion function results in an effective running time very close
to the theoretic estimates.

7 Conclusion

It is widely believed that the Internet will become more
service-oriented in the near future. In line with this trend we
can observe the emergence of computing frameworks con-
sisting of a large number of machines on which scientists or
companies run their tasks or applications for a certain time
period and cost. To ensure the scalability of such services,
many of them require the participants to contribute in order
to get benefits. This tendency becomes manifest most sig-
nificantly in peer-to-peer systems such as BitTorrent and is
also present in grids.

It is often necessary to verify the work contributed by the
participants. This paper has studied mechanisms to check
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the results returned by the hosts in a grid computing frame-
work in a distributed manner. By performing only a small
number of additional checks, cheaters are prevented from
obtaining credit points which they do not deserve. The sys-
tem is resilient to more sophisticated rational attacks such
as replay attacks and lazy checking. In preliminary exper-
iments we have finally shown that the delineated mecha-
nisms can smoothly be integrated in the widespread grid
computing framework BOINC.

There remain several interesting directions for future re-
search. For instance, while we have shown how to cope
with selfish participants in our system, the question of how
to prevent malicious attacks such as DDoS attacks or exter-
nal attacks, remains open.

It would also be interesting to study distributed verifi-
cation in other settings, such as a Napster-like peer-to-peer
system where participants are required to check whether the
shared files are of good quality, e.g., whether they do not
contain a virus, or a collaborative editing project such as
Wikipedia.
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