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Abstract

Wireless sensor networks are applied across a diverse range of application
domains. These networks offer the potential to instrument the world at an
unprecedented scale, and to bring the pervasive computing vision to fruition.
Long-term surveillance of environmental conditions is a prevalent application
for wireless sensor networks. By spreading a large number of cheap unteth-
ered sensor nodes within an area of interest it is possible to monitor dense
temporal and spatial data over an extended period of time enabling scientists
to analyze complex interactions within the environment. To enable commu-
nication sensor nodes are equipped with a short-ranged radio allowing them
to convey their data to an information sink for further processing. Mini-
mizing energy consumption in such systems is of prime importance since the
desired operational periods without human interaction range from months to
several years.

This dissertation discusses important problem fields in the context of
energy-efficient data gathering in sensor networks. In particular, it tack-
les essential questions arising throughout the whole sensor network life-cycle.
Starting with investigations about interference restricting network topologies
and the impact of data aggregation on energy consumption, the thesis de-
scribes a practical implementation of a low-power network stack that allows
long-term continuous data collection. Furthermore, we study energy-efficient
management services applicable during node deployment and application re-
programming.





Zusammenfassung

Drahtlose Sensornetze werden in einer Vielzahl unterschiedlicher Szenarien
eingesetzt. Diese Netzwerke besitzen das Potential mit der Welt in einem
noch nie da gewesenen Massstab zu interagieren und damit die Pervasive
Computing Vision zu verwirklichen. Der vorherrschende Anwendungsbere-
ich für Sensornetze liegt dabei in der Überwachung von Umweltbedingun-
gen. Bei diesen Anwendungen werden viele batteriebetriebene Sensorknoten
innerhalb des zu beobachtenden Gebiets verteilt, um zeitlich und örtlich
hochauflösende physikalische Grössen wie Temperatur, Feuchtigkeit oder seis-
mische Aktivität zu messen. Die so gesammelten Informationen ermöglichen
die Erforschung komplexer Zusammenhänge in der Natur. Sensorknoten
kommunizieren dabei über Funk miteinander, um gemessene Daten an einen
vorgezeichneten Sammelknoten zu übermitteln. Zusammen bilden sie eine
dynamische Kommunikationsinfrastruktur, die das ganze zu überwachende
Gebiet abdeckt. Ein ökonomischer Umgang mit den stark limitierten En-
ergieressourcen ist in solchen Systemen von höchster Bedeutung, damit eine
wartungsfreie Lebensdauer mehrere Jahre erreicht werden kann.

Diese Dissertation befasst sich mit wichtigen Problemfeldern im Bere-
ich der energieeffizienten Datenkommunikation in drahtlosen Sensornetzen.
Insbesondere werden Fragen im Zusammenhang mit der Verwaltung solcher
Netzwerke aufgegriffen. Neben der Analyse von Netzwerktopologien, die Sig-
nalstörungen, oder Interferenz, zwischen den Sensorknoten verringern, unter-
sucht diese Arbeit auch den Einfluss von Datenaggregation auf den Energie-
verbrauch im Netzwerk. Ausserdem wird eine praktische Implementierung
eines energiesparenden Kommunikationsstacks vorgestellt, welcher die kon-
tinuierliche Extraktion relevanter Daten aus dem Netzwerk über beträchtliche
Zeitspannen ermöglicht. Des Weiteren werden Methoden zur energieeffizien-
ten Installation und schnellen drahtlosen Neuprogrammierung eines Sensor-
netzes besprochen.
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Chapter 1

Introduction

Observation and interpretation of natural phenomena has always been of
fundamental importance to gain scientific knowledge and ultimately obtain a
better understanding of the natural world. Advances in science and technol-
ogy are thereby deeply intertwined. The telescope allows the exploration of
outer space, satellites help tracking climatic changes, and microscopy enables
us to examine molecule structures, thereby expanding what we can perceive
and measure.

Recent progress in wireless networking and microelectronics have led to
the vision of wireless sensor networks forming a new scientific tool providing
dense sensing close to physical phenomena at scales and resolutions that were
difficult to obtain before. By spreading large numbers of cheap, untethered
sensor nodes we gain a macroscopic view of the region of interest enabling
the analysis of complex interactions. This task, known as data gathering or
environmental monitoring, consists of two fundamental parts. First, a large
number of sensing devices distributed in the area of interest monitor various
conditions of their surrounding environment. Second, the sampled data has
to be conveyed towards a central authority collecting the entire information
of all nodes.

A collection of challenges must be addressed to realize this vision. Indi-
vidual sensor nodes exhibit inherent resource constraints: They have limited
computational power, storage capacity, and communication bandwidth. As
one device by itself has only little impact we must aggregate them into so-
phisticated computation and communication infrastructures to achieve the
required temporal and spatial resolution.

The use of wireless communication technology broadens the field of pos-
sible applications for sensor networks since their deployments are far less
intrusive than tethered solutions. Furthermore, temporary measurements
and surveillance of secluded areas without mains supply is enabled. Once
deployed, a network is expected to operate for an extended period of time
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in a robust and autonomous manner. Therefore, the accessible energy re-
sources provided by batteries or energy harvesting techniques are the limit-
ing factor for network lifetime and availability. Consequently, sensor nodes
are equipped with low-power radios to minimize energy consumption. As
these radios only offer short transmission ranges, multi-hop routing tech-
niques must be applied to extract sensed information from large areas of
interest. This requires coordination among individual sensor nodes. Due to
the absence of any built-in infrastructure and because nodes are exposed to
changing environmental conditions, wireless sensor networks must be robust.

Despite these operational factors, deploying and maintaining nodes must
remain inexpensive. This raises the need for additional network management
services to avoid costly human interaction during the lifetime of the network.
We should be able to survey vital network information such as remaining en-
ergy resources at individual nodes or network topology to ensure the required
data fidelity or network lifetime. Furthermore, it may be necessary to adapt
the applications running on the nodes due to changing sensing demands.

Wireless sensor networks have been deployed in a variety of settings to
assist researchers with detailed information. In the domain of environmental
monitoring, sensor networks are currently employed to record the ecophysiol-
ogy of forests [140], gain understanding of the turbulent subgrid-scale physics
near the snow-atmosphere interface [131], measure soil moisture tension for
irrigation management [16, 20], or to survey glacier displacement [103]. Nat-
ural habitat studies use sensor networks to observe seabird colonies [101] or
track long term animal migrations [162]. These application examples depend
on continuous, periodic data samples at low rates. Sensor sampling inter-
vals of several minutes are sufficient to provide an adequate data resolution.
Furthermore, incurred network delay is of minor concern as the collected
information is often analyzed offline. On the other end of the spectrum lie
applications such as structural monitoring [156, 44, 46, 114] or the observa-
tion of volcanic activity [153, 154] which generate data at very high rates. In
these systems it critical for the sensor network to sleep as much as possible
and wake up quickly upon detection of an “interesting” phase, e.g. a volcanic
eruption, to save precious energy and prolong network lifetime. In the indus-
trial sector, sensor networks have the potential to play a significant role in
facility management, process monitoring, and security applications. Today,
the state of large chemical and refining plants is already assessed by wired
sensor systems. The prospect of having them replaced with wireless solutions
is bound to have a positive impact on future arising expenses. Furthermore,
wireless sensor networks are also expanding into medical, disaster relief, and
military sectors.

In this dissertation we will study problems arising in the field of wireless
networking thereby always aiming at energy-efficient solutions.1 The physical

1Introductions to wireless sensor networks can be found in [78, 163, 161].
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and medium access layers, topology control, and routing techniques must all
be optimized to comply with the stringent hardware limitations while offering
reasonable performance. In the context of topology control, we analyze the
trade-off between energy conservation and interference reduction on the one
hand and connectivity on the other hand. By allowing nodes to reduce their
transmission power levels interference is confined. This in turn lowers node
energy consumption by decreasing the number of collisions and consequently
packet retransmissions on the media access layer. Dropping communication
links however clearly takes place at the cost of network connectivity: If too
many edges are abandoned, connecting paths can grow unacceptably long or
the network can even become completely disconnected. We investigate this
conflict of objectives from a theoretical point of view.

Orthogonal to the question of which communication links should be es-
tablished, one may also ask which information needs to be transferred what
leads to the field of data aggregation and in-network processing. Sensor net-
works are often deployed to obtain a complete sensing coverage of the area of
interest. Therefore, nearby sensor nodes partially monitor the same spatial
region. This however results in correlated data at these nodes. Chapter 3
discusses how this data redundancy can be exploited to reduce the amount
data traffic in order to extract the desired information from the network.

In Chapter 4, we describe the design and implementation of a low-power
network stack for data gathering systems. In contrast to the approach in
Chapter 2, energy efficiency is achieved by restricting the uptime of a node’s
radio component instead of its radio power level. Sensor nodes are able to
deactivate their radios most of the time without impeding the overall system
performance since all communication follows precise schedules. This reduces
costly overhearing and idle listening phases to a minimum. In this context,
we also show that the presence of dynamic drift compensation is essential
to achieve exact timings and thus energy efficiency in real sensor network
deployments.

Chapter 5 and 6 are dedicated to problems arising during node deploy-
ment and code updating and have importance beyond the scope of data gath-
ering applications. In Chapter 5, we study the inherent trade-off between en-
ergy efficiency and rapidity of event dissemination which is characteristic for
wireless sensor networks. As described in Chapter 4 nodes may spend a large
portion of their lifetime in an energy-efficient sleep mode during which they
can neither receive nor send messages to save energy. On the other hand,
the longer nodes stay in sleep mode, the slower will be the reaction time
for disseminating an external event. The trade-off is prominently exhibited
during the deployment of sensor networks. Namely, if the deployment phase
takes long but once all sensor nodes are fully deployed, the network should
make the transition to the operational phase as quickly as possible. Once
this shift is performed other network management issues arise which need to
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be addressed to guarantee a long-lasting deployment. One of the most press-
ing problems is the need for an efficient application reprogramming service.
Reasons for updates are manifold ranging from small bug fixes to retasking
of the whole sensor network. The scale of deployments and the potential
physical inaccessibility of individual nodes ask for a wireless software man-
agement scheme. In Chapter 6, we present an efficient code update strategy
which utilizes the knowledge of former program versions to distribute mere
incremental changes.



Chapter 2

Interference-Aware Network

Structures

Since energy is the limiting factor for network lifetime, great efforts have
been made to reduce node power consumption in sensor networks and thus
extend their lifetime. One of the foremost approaches to achieve substantial
energy conservation is by minimizing interference between network nodes.
Confining interference lowers energy consumption by reducing the number
of collisions and consequently packet retransmissions on the media access
layer. The concept of topology control restricts interference by reducing the
transmission power levels at the network nodes and cutting off long-range
connections in a coordinated way. At the same time transmission power
reduction has to proceed in such a way that the resulting topology preserves
connectivity1.

Even though interference reduction has always been one of the main mo-
tivations for topology control, most of the previous work addresses the inter-
ference issue implicitly by constructing topologies featuring sparseness or low
node degree. However, such an implicit notion of interference is not sufficient
to reduce interference since message transmission can affect nodes even if they
are not direct neighbors of the sending node in the resulting topology. In this
chapter we attempt to precisely specify what is understood by interference.
From a algorithmic point of view, we are investigating the properties of dif-
ferent topology control algorithms thereby focusing on interference models
in graph representations of networks.

1The term “topology control” sometimes also refers to clustering and the computation
of dominating sets. In this chapter we exclusively consider topology control based on
transmission power reduction.
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2.1 Sender-Based Interference

In contrast to most previous work on the domain of topology control—where
the interference issue is seemingly solved by sparseness arguments—, we start
out by precisely defining a first concept of interference. This definition of in-
terference is based on the natural question of how many nodes are affected
by communication over a certain link. By prohibiting specific network edges,
the potential for communication over high-interference links can then be con-
fined.

We will employ this interference definition to formulate the trade-off be-
tween energy conservation and network connectivity. In particular we state
certain requirements that need to be met by the resulting topology. Among
these requirements are connectivity (if two nodes are—possibly indirectly—
connected in the given network, they should also be connected in the resulting
topology) and the constant-stretch spanner property (the shortest path be-
tween any pair of nodes in the resulting topology should be longer at most by
a constant factor than the shortest path connecting the same pair of nodes in
the given network). After stating such requirements, an optimization prob-
lem can be formulated to find the topology meeting the given requirements
with minimum interference.

For the requirement that the resulting topology retain connectivity of the
given network, we show that most of the currently proposed topology control
algorithms—already by having every node connect to its nearest neighbor—
commit a substantial mistake: Although certain proposed topologies are
guaranteed to have low degree yielding a sparse graph, interference becomes
asymptotically incomparable with the interference-minimal topology.

Furthermore we propose a centralized algorithm that computes an inter-
ference-minimal connectivity-preserving topology. For the requirement that
the resulting topology be a spanner with a given stretch factor, we present
(based on a centralized variant of the algorithm) a distributed local algorithm
that computes a provably interference-optimal spanner topology.

2.1.1 Model

We model the sensor network as a graph G = (V, E) consisting of a set of
nodes V ⊂ R

2 in the Euclidean plane and a set of edges E ⊆ V 2. Nodes
represent sensor nodes, whereas edges stand for links between nodes. In order
to prevent already basic communication between directly neighboring nodes
from becoming unacceptably cumbersome [120], it is required that a message
sent over a link can be acknowledged by sending a corresponding message
over the same link in the opposite direction. In other words, only undirected
(symmetric) edges are considered.

We assume that a node can adjust its transmission power to any value
between zero and its maximum power level. The maximum power levels are
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Figure 2.1: Nodes covered by a communication link.

not assumed to be equal for all nodes. An edge (u, v) may exist only if both
incident nodes are capable of sending a message over (u, v), in particular
if the maximum of the transmission radii of u and v is at least |uv|, their
Euclidean distance. A pair of nodes u, v is considered connectable in the
given network if there exists a path connecting u and v provided that all
transmission radii are set to their respective maximum values. The task
of a topology control algorithm is then to compute a subgraph of the given
network graph with certain properties, reducing the transmission power levels
and thereby attempting to lower interference and energy consumption.

With a chosen transmission radius—for instance to reach a node v—a
node u affects at least all nodes located within the circle centered at u and
with radius |uv|. Denoting D(u, r) to be the disk centered at node u with
radius r and requiring edge symmetry, we consequently define the coverage
of an (undirected) edge e = (u, v) to be the cardinality of the set of nodes
covered by the disks2 induced by u and v:

Cov(e) :=
∣∣{w ∈ V |w is covered by D(u, |uv|)}
∪ {w ∈ V |w is covered by D(v, |vu|)}∣∣.

In other words, the coverage Cov(e) represents the number of network nodes
affected by nodes u and v communicating with their transmission power levels
chosen such that they exactly reach each other (cf. Figure 2.1).

The edge level interference defined so far is now extended to a graph
interference measure as the maximum coverage occurring in a graph:

Definition 2.1. The interference of a graph G = (V, E) is defined as

I(G) := max
e∈E

Cov(e).

2The results of this section can also be adapted to the case where transmission ranges
are not perfect circles centered at the sending nodes. We adhere to this simplified model
for clarity of representation.
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Figure 2.2: Low degree does not guarantee low interference.

Since interference reduction per se would be senseless (if all nodes simply
set their transmission power to zero, interference will be reduced to a mini-
mum), the formulation of additional requirements to be met by a resulting
topology is necessary. A resulting topology can for instance be required

• to maintain connectivity of the given communication graph (if a pair of
nodes is connectable in the given network, it should also be connected
in the resulting topology graph),

• to be a spanner with constant stretch of the underlying graph (the
shortest path connecting a pair of nodes u, v in the resulting topology
is longer by a constant factor only than the shortest path between u
and v in the given network), or

• to be planar (no two edges in the resulting graph intersect).

Finding a resulting topology which meets one or a combination of such re-
quirements with minimum interference constitutes an optimization problem.

2.1.2 Interference in Known Topologies

The following basic observation states that—although often maintained—low
degree alone does not guarantee low interference. Figure 2.2, for instance,
shows a topology graph with degree 2 whose interference is however roughly
n, the number of network nodes. A node can interfere with other nodes
that are not direct neighbors in the chosen topology graph. Whereas twice
the maximum degree of the underlying communication graph of the given
network (with all nodes transmitting at full power) is an upper bound for
interference, the degree of a resulting topology graph is only a lower bound.
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i + 1i

2i

Figure 2.3: Exponential node chain with interference Ω(n).

There exist instances where also the optimum exhibits interference Ω(n),
for instance a chain of nodes with exponentially growing distances (cf. Fig-
ure 2.3, proposed in [105]), whose large interference is caused as a consequence
of the requirement that the resulting topology is to be connected. Every node
ui (except for the leftmost) is required to have an incident edge, which covers
all nodes left of ui. Evaluating the interference quality of a topology control
algorithm therefore implies that its interference on a given network needs to
be compared with the optimum interference topology for the same network.

To the best of our knowledge, all currently known topology control al-
gorithms constructing only symmetric connections (and not accounting for
explicit interference) have in common that every node establishes a symmet-
ric connection to at least its nearest neighbor. In the following we show that
by including the Nearest Neighbor Forest as a subgraph, the interference of a
resulting topology can become incomparably bad with respect to a topology
with optimum interference.

Theorem 2.1. No currently proposed topology control algorithm—required
to maintain connectivity of the given network—is guaranteed to yield a non-
trivial interference approximation of the optimum solution. In particular,
interference of any proposed topology is Ω(n) times larger than the inter-
ference of the optimum connected topology, where n is the total number of
network nodes.

Proof. Figure 2.4 depicts an extension of the example graph shown in Fig-
ure 2.3. In addition to a horizontal exponential node chain, each of these
nodes hi has a corresponding node vi vertically displaced by a little more
than hi’s distance to its left neighbor. Denoting this vertical distance di,
di > 2i−1 holds. These additional nodes form a second (diagonal) exponen-
tial line. Between two of these diagonal nodes vi−1 and vi, an additional
helper node ti is placed such that |hi, ti| > |hi, vi|.

The Nearest Neighbor Forest for this given network (with the additional
assumption that each node’s transmission radius can be chosen sufficiently
large) is shown in Figure 2.5. Roughly one third of all nodes being part
of the horizontally connected exponential chain, interference of any topol-
ogy containing the Nearest Neighbor Forest amounts to at least Ω(n). An
interference-optimal topology, however, would connect the nodes as depicted
in Figure 2.6 with constant interference.
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hi

vi

di

ti

vi−1

Figure 2.4: Two exponential node chains.

Figure 2.5: The Nearest Neighbor Forest yields interference
Ω(n).

Figure 2.6: Optimal tree with constant interference.
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In other words, already by having each node connect to the nearest neigh-
bor, a topology control algorithm makes an irreparable error. Moreover, it
commits an asymptotically worst possible error since the interference in any
network cannot become larger than n.

As roughly one third of all nodes are part of the horizontal exponen-
tial node chain in Figure 2.4, the observation stated in Theorem 2.1 would
also hold for an average interference measure, averaging interference over all
edges.

2.1.3 Low-Interference Spanners

In this section we present two algorithms that explicitly reduce interference
of a given network. They compute an interference-optimal topology with the
requirement of constructing a spanner of the given network. Whereas the
first spanner algorithm assumes global knowledge of the network, the second
can be computed locally. A spanner with stretch factor t can be formally
defined as follows:

Definition 2.2 (t-Spanner). A t-spanner of a graph G = (V, E) is a sub-
graph G′ = (V, E′) such that for each pair (u, v) of nodes c(p∗

G′(u, v)) ≤
t · c(p∗

G(u, v)), where c(p∗
G′(u, v)) and c(p∗

G(u, v)) denote the length of the
shortest path between u and v in G′ and G, respectively.

In this section we consider Euclidean spanners, that is, the length of a
path is defined as the sum of the Euclidean lengths of all its edges. With
slight modifications, our results are however extendable to hop spanners,
where the length of a path corresponds to the number of its edges.

Algorithm LISE (Algorithm 2.1) is a topology control algorithm that
constructs a t-spanner with optimum interference. LISE starts with a graph
GLISE = (V, ELISE) where ELISE is initially the empty set. It processes all
eligible edges of the given network G = (V, E) in descending order of their
coverage. For each edge (u, v) ∈ E not already in ELISE , LISE computes
a shortest path from u to v in GLISE provided that the Euclidean length
of this path is less than or equal to t |u, v|. As long as no such path exists,
the algorithm keeps inserting all unprocessed eligible edges with minimum
coverage into ELISE .

To prove the interference optimality of GLISE , we introduce an additional
lemma, which shows that GLISE contains all eligible edges whose coverage
is less than I(GLISE).

Lemma 2.2. The graph GLISE = (V, ELISE) constructed by LISE from a
given network G = (V, E) contains all edges e in E whose coverage Cov(e)
is less than I(GLISE).

Proof. We assume for the sake of contradiction that there exists an edge e in
E with Cov(e) < I(GLISE) which is not contained in ELISE . Consequently,



18 CHAPTER 2. NETWORK STRUCTURES AND INTERFERENCE

Input: a set of nodes V , each v ∈ V having attributed a maximum trans-
mission radius rmax

v ; a stretch factor t ≥ 1
1: E = all eligible edges (u, v) (rmax

u ≥ |uv| and rmax
v ≥ |uv|)

// E will contain all unprocessed edges
2: ELISE = ∅
3: GLISE = (V, ELISE)
4: while E 	= ∅ do
5: e = (u, v) ∈ E with maximum coverage
6: while c(p∗(u, v) in GLISE) > t |uv| do
7: f = edge ∈ E with minimum coverage
8: move all edges ∈ E with coverage Cov(f) to ELISE

9: end while
10: E = E \ {e}
11: end while
Output: Graph GLISE

Algorithm 2.1: Low Interference Spanner Establisher (LISE)

LISE never takes an edge with coverage Cov(e) in line 7, since the algorithm
would insert all edges with Cov(e) into ELISE in line 8 instantly (thus also
e). There exists however an edge f in ELISE with Cov(f) = I(GLISE)
eventually taken in line 7. Therefore the inequality Cov(e) < Cov(f) holds.
At the time the algorithm takes f in line 7, all edges taken in line 5 must
have had coverage greater than or equal to Cov(f), since the maximum of an
ordered set can only be greater than or equal to the minimum of the same
set. Hence e has never been taken in line 5 and therefore has never been
removed from E in line 10. Consequently, e is still in E when f is taken as
the edge with minimum coverage in E. Thus it holds that Cov(f) ≤ Cov(e)
which leads to a contradiction.

With Lemma 2.2 we are ready to prove that the resulting topology con-
structed by LISE is an interference-optimal t-spanner.

Theorem 2.3. The graph GLISE = (V, ELISE) constructed by LISE from a
given network G = (V, E) is an interference-optimal t-spanner of G.

Proof. To show that GLISE meets the spanner property, it is sufficient to
prove that for each edge (u, v) ∈ E there exists a path in GLISE with length
not greater than t |u, v|. This holds, since for a shortest path p∗(u, v) in G
a path p′(u, v) in GLISE with |p′| ≤ t |p| can be constructed by substituting
each edge on p with the corresponding spanner path in GLISE . For edges in
E which also occur in ELISE the spanner property is trivially true. On the
other hand an edge (u, v) can only be in E but not in ELISE if a path from
u to v in GLISE with length not greater than t |u, v| exists (see if-condition
in line 6). Thus GLISE is a t-spanner of G.
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Interference optimality of LISE can be proved by contradiction. We as-
sume, that GLISE is not an interference-optimal t-spanner. Let G∗ = (V, E∗)
be an interference-optimal t-spanner for G. Since GLISE is not optimal, it
follows that I(GLISE) > I(G∗). Thus all edges in E∗ have coverage strictly
less than I(GLISE). From Lemma 2.2 follows that E∗ is a nontrivial subset
of ELISE . Let T be the set of edges in ELISE with coverage I(GLISE) and
G̃ = (V, Ẽ) the graph with Ẽ = ELISE \ T . G̃ is a t-spanner, since E∗ is
still a subset of Ẽ, and I(G̃) ≤ I(GLISE)− 1 holds. Because T is eventually
inserted into ELISE in line 8, there exists an edge (u, v) ∈ E that was taken
in line 5 and for which no path p(u, v) exists in G̃ with |p| ≤ t |u, v|. Thus
G̃ is no t-spanner (and therefore also G∗), which contradicts the assumption
that G∗ is an interference-optimal t-spanner.

As regards the running time of LISE, it computes for each edge at most
one shortest path. This holds since multiple shortest path computations for
the same edge in Line 6 cause at least as many edges to be inserted into
ELISE in Line 8 without computing shortest paths for them. Since finding a
shortest alternative path for an edge requires O

(
n2
)

time and as the network
contains at most the same amount of edges, the overall running time of LISE
is polynomial in the number of network nodes.

In the following we describe a local algorithm similar to LISE that is
executed at all eligible edges of the given network. In reality, algorithm
LLISE (Algorithm 2.2) is executed for each edge by one of its incident nodes.
The description of LLISE assumes the point of view of an edge e = (u, v).
The algorithm consists of three main steps:

1) Collect ( t
2
)-neighborhood,

2) compute minimum interference path for e, and

3) inform all edges on that path to remain in the resulting topology.

In the first step, e gains knowledge of its ( t
2
)-neighborhood. For a Eu-

clidean spanner, the k-neighborhood of e is defined as all edges that can
be reached (or more precisely at least one of their incident nodes) over a
path p starting at u or v, respectively, with c(p) ≤ k c(e). Knowledge of the
( t
2
)-neighborhood at all edges can be achieved by local flooding.
During the second step, a minimum-interference path p from u to v with

c(p) ≤ t c(e) is computed. LLISE starts with a graph GLL = (V, ELL)
consisting of all nodes in the ( t

2
)-neighborhood and an initially empty edge

set. It inserts edges consecutively into ELL, in non-decreasing order accord-
ing to their coverage, until a shortest path p∗(u, v) is found in GLL with
c(p∗) ≤ t c(e).

In the third step, e informs all edges on the path found in the second step
to remain in the resulting topology. The resulting topology then consists of
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1: collect ( t
2
)-neighborhood GN = (VN , EN ) of G = (V, E)

2: E′ = ∅
3: G′ = (VN , E′)
4: repeat
5: f = edge ∈ EN with minimum coverage
6: move all edges ∈ EN with coverage Cov(f) to E′

7: p = shortestPath(u − v) in G′

8: until c(p) ≤ t |uv|
9: inform all edges on p to remain in the resulting topology.

Note: GLL = (V, ELL) consists of all edges eventually informed to remain
in the resulting topology.

Algorithm 2.2: LLISE

all edges receiving a corresponding message. In the following we show that it
is sufficient for e to limit the search for an interference-optimal path p(u, v)
meeting the spanner property to the ( t

2
)-neighborhood of e.

Lemma 2.4. Given an edge e = (u, v), no path p from u to v with c(p) ≤
t c(e) contains an edge which is not in the ( t

2
)-neighborhood of e.

Proof. For the sake of contradiction we assume that a path p from u to v with
|p| ≤ t |e| containing at least one edge (w, x) not in the ( t

2
)-neighborhood of e.

Without loss of generality we further assume that, traversing p from u to v, we
visit w before x. Since (w, x) is not in the ( t

2
)-neighborhood, by definition, no

path from u to w with length less than or equal to ( t
2
)|e| exists (the same holds

for any path from v to x). Consequently, the inequality |p| > t |e| + |(w, x)|
holds, which contradicts the assumption that |p| ≤ t |e|.

With Lemma 2.4 we are now able to prove that the topology constructed
by LLISE is a t-spanner with optimum interference.

Theorem 2.5. The graph GLL = (V, ELL) constructed by LLISE from a
given network G = (V, E) is an interference-optimal t-spanner of G.

Proof. The spanner property of LLISE can be proven similar to the first part
of the proof of Theorem 2.3, where LISE is shown to be a t-spanner.

To show interference optimality, it suffices to prove that the spanner path
constructed for any edge e = (u, v) ∈ G by LLISE is interference-optimal,
where interference of a path is defined as the maximum interference of an
edge on that path. The reason for this is that only edges that lie on one of
these paths remain in the resulting topology; non-optimality of GLL would
therefore imply non-optimality of at least one of these spanner paths. In
the following we look at the algorithm executed by e = (u, v). In line 6
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edges in E are consecutively inserted into E′, starting with E′ = ∅, until a
spanner path p from u to v is found in line 8. Since LLISE inserts the edges
into E′ in ascending order according to their coverage and p is the first path
meeting the spanner property, p is an interference-optimal t-spanner path
from u to v in the ( t

2
)-neighborhood. From Lemma 2.4 we know that the

( t
2
)-neighborhood of e contains all spanner paths from u to v and therefore

also the interference-optimal one. Thus it is not possible that LLISE does not
see the global interference-optimal t-spanner path due to its local knowledge
about G. Consequently, p is the global interference-optimal t-spanner path
of e.

In this chapter we have shown that the statement that graph sparseness or
small degree implies low interference is misleading. We have then proposed
two algorithms that yield low-interference topologies based on the explicit
interference model presented in Section 2.1.1. This sender-centric model
can however be accused to be somewhat artificial and to poorly represent
reality as interference occurs at the intended receiver of a message and not
the sender. In the following sections an alternative interference model is
discussed defining a receiver-centric concept of interference.

2.2 Receiver-Based Interference

The definition of interference introduced in the previous section is problem-
atic in two respects. First, it is based on the number of nodes affected by
communication over a given link. In other words, interference is considered
to be an issue at the sender instead of at the receiver, where message col-
lisions actually prevent proper reception. It can therefore be argued that
such sender-centric perspective hardly reflects interference as it occurs in
real networks.

The second weakness of the model introduced in Section 2.1 is of more
technical nature. According to its definition of interference, adding a single
node to a given network can dramatically influence the interference measure.
In the network depicted in Figure 2.7, addition of the rightmost node to the
cluster of roughly homogeneously distributed nodes causes the construction of
a communication link covering all nodes in the network; accordingly—merely
by introduction of one extra node—the interference value of the represented
topology is pushed up from a small constant to the maximum possible value,
that is the number of nodes in the network. This behavior contrasts to the
intuition that a single additional node also represents only one additional
packet source potentially causing collisions.

In contrast to that sender-centric interference definition, we explicitly
consider interference at its point of impact, particularly at the receiver in
this section. Informally, the definition of interference is no longer based on
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Figure 2.7: In the interference model presented in Section 2.1, addition of
a single node increases interference from a small constant to the maximum
possible value, the total number of network nodes.

the question of how many nodes are affected by communication over a certain
link but by how many other nodes a given network node can be disturbed.

Interestingly, this interference definition not only reflects intuition due to
its receiver-centricity. It also results in a robust interference model in terms
of measure increase due to the arrival of additional nodes in the network.
Particularly, an additional node causes an interference increase of at most
one at other nodes of the network. In clear contrast to the sender-centric
model from Section 2.1, this corresponds to reality, where one added node
contending for the shared medium constitutes only one additional possible
collision source for nearby nodes in the network.

As mentioned earlier, interference reduction as an end in itself is meaning-
less—every node setting its transmission power to a minimum value trivially
minimizes interference—without the formulation of additional requirements
to be met by the resulting topology. In this section we study the funda-
mental requirement that the considered topology control algorithms preserve
connectivity of the given network.

Similarly as in Section 2.1, we show that for this requirement most of the
currently proposed topology control algorithms trying to implicitly reduce
interference commit a substantial mistake—even by having every node con-
nect to its nearest neighbor. Based on the intuition that one-dimensional net-
works already exhibit most of the complexity of finding minimum-interference
topologies, we precisely anatomize networks restricted to one dimension—a
model also known as the highway model. We first look at a particular net-
work where distances between nodes increase exponentially from left to right.
[105] introduces this network as a high-interference example yielding inter-
ference O(Δ), where Δ is the maximum node degree. We show that it is
possible to achieve interference O(

√
Δ) in our model for this network, which
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matches a lower bound also presented in this section. Based on the insights
thereby gained, we then consider general highway instances where nodes can
be distributed arbitrarily in one dimension. For the problem of finding a
minimum-interference topology while maintaining connectivity, we propose
an approximation algorithm with approximation ratio O( 4

√
Δ).

2.2.1 Model

We model the wireless network with the well-known Unit Disk Graph (UDG)
[25]. In a UDG G = (V, E), there is an edge {u, v} ∈ E iff the Euclidean
distance between u and v is at most 1. That is, we assume all nodes to have
the same limited transmission ranges. In the following, let Δ refer to the
maximum node degree in G.

As in the previous sections, we are only considering undirected (sym-
metric) edges. Furthermore, we still assume that each node can adjust its
transmission power to any value between zero and its maximum transmis-
sion power level. Then, the main goal of a topology control algorithm is
to compute a low-interference subgraph of the given network graph G that
maintains connectivity.

Let Nu denote the set of all neighbors of a node u ∈ V in the resulting
topology. Then, each node u features a value ru defined as the distance from
u to its farthest neighbor. More precisely ru = maxv∈Nu |uv|, where |uv|
denotes the Euclidean distance between nodes u and v. Since we assume the
nodes to use omnidirectional antennas, D(u, ru) denotes the disk centered
at u with radius ru covering all nodes that are possibly affected by message
transmission of u to one of its neighbors. The transmission radii of the
network nodes having been fixed, the definitions of node-level and graph-
level interference correspond to the definition in the previous section. In
particular, the interference of a node v is defined as the number of other
nodes that potentially affect message reception at node v:

Definition 2.3. Given a graph G′ = (V, E′), the interference of a node
v ∈ V is defined as

I(v) = |{u|u ∈ V \ {v}, v ∈ D(u, ru)}|.
In other words, the interference of a node v represents the number of nodes
covering v with their disks induced by their transmission ranges set to a
value as to reach their farthest neighbors in G′. Note that although each
node is also covered by its own disk, we do not consider this kind of self-
interference. The node-level interference defined so far is now extended to
a graph interference measure as the maximum interference occurring in a
graph:

Definition 2.4. The interference of a graph G′ = (V, E′) is defined as

I(G′) = max
v∈V

I(v).
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v

u

Figure 2.8: A sample topology consisting of five nodes with their corre-
sponding interference radii (dashed circles). Node u experiences interference
I(u) = 2 since it is covered not only by its direct neighbor but also by node
v.

Note that Δ, the maximum node degree of the given unit disk graph
G = (V, E), is an upper bound for the interference of any subgraph G′ of
the given graph since in G each node is directly connected to all potentially
interfering nodes. However, in arbitrary subgraphs of G the degree of a
node only lower-bounds the interference of that node because a node can be
covered by non-neighboring nodes (cf. Figure 2.8).

In this section we study the combinatorial optimization problem of finding
a resulting topology which maintains connectivity of the given network with
minimum interference. Throughout the section we only consider topologies
consisting of a tree for each connected component of the given network since
additional edges might unnecessarily increase interference.

2.2.2 Interference in Known Topologies

As motivated earlier, we restrict our considerations to resulting topologies
consisting exclusively of symmetric links. To the best of our knowledge, all
currently known topology control algorithms (with the exception of the al-
gorithms presented in Section 2.1) constructing only symmetric connections
have in common that every node establishes a link to at least its nearest
neighbor. With the example configuration also used in Section 2.1, it can
be shown that this is already a substantial mistake, as thus interference be-
comes asymptotically incomparable with the interference-minimal topology,
also with this receiver-centric interference definition.

Although the topology control algorithms presented in Section 2.1 do not
necessarily include the Nearest Neighbor Forest, it can be shown that those
algorithms also perform badly for this receiver-centric interference model.
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3 3 2 2 1

Figure 2.9: Connecting the exponential node chain linearly yields interference
n − 2 at the leftmost node since each node connected to the right covers
all nodes to its left. The nodes are labeled according to their experienced
interference.

2.2.3 One-Dimensional Topologies

In this section we study interference for the highway model, in which the
node distribution is restricted to one dimension. After analyzing an impor-
tant artificially constructed problem instance, we provide a lower bound for
interference of general problem instances in the highway model as well as an
asymptotically optimal algorithm matching this bound. Finally, an approxi-
mation algorithm is presented.

The Exponential Node Chain

How can n nodes arbitrarily distributed in one dimension connect to each
other minimizing interference while maintaining connectivity? In [105], an
instance is introduced which seems to yield inherently high interference: The
so-called exponential node chain is a one-dimensional graph G = (V, E) where
the distance between two consecutive nodes grows exponentially from left to
right as depicted in Figure 2.3. The distance between two nodes vi and vi+1

in V is thus 2i. Throughout the discussion of the exponential node chain,
we furthermore assume that the whole node configuration is normalized in
a way that the distance between the leftmost and the rightmost node is
not greater than 1: Each node can potentially connect to all other nodes
in V and therefore Δ = n − 1, where n = |V |. The nodes are said to be
linearly connected if each node—except for the leftmost and the rightmost—
maintains an edge to its nearest neighbor to the left and to the right. In
other words, node vi is connected to node vi+1 for all i = 1, . . . , n − 1 in the
resulting topology. In addition to the disks D(vi, rvi) for each node vi ∈ V ,
Figure 2.9 also depicts their interference values I(vi). Since all disks but
the one of the rightmost node cover v1, interference at the leftmost node
is n − 2 ∈ Ω(n); consequently also interference of the linearly connected
exponential node chain is in Ω(n).

We show in the following that the exponential node chain can be con-
nected in a significantly better way. According to the construction of the
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exponential node chain, only nodes connecting to at least one node to their
right increase v1’s interference. We call such a node a hub and define it as
follows:

Definition 2.5. Given a connected topology for the exponential node chain
G = (V, E), a node vi ∈ V is defined to be a hub in G if and only if there
exists an edge (vi, vj) with j > i.

The following algorithm Aexp constructs a topology for the exponential
node chain G which yields interference O(

√
n). The algorithm starts with a

graph Gexp = (V, Eexp), where V is the set of nodes in the exponential node
chain and Eexp is initially the empty set. Following the scan-line principle,
Aexp processes all nodes in the order of their occurrence from left to right.
Initially, the leftmost node is set to be the current hub h. Then, for each node
vi, Aexp inserts an edge (h, vi) into Eexp. This is repeated until I(Gexp) in-
creases due to the addition of such an edge. Now node vi becomes the current
hub and subsequent nodes are connected to vi as long as the overall interfer-
ence I(Gexp) does not increase. Figure 2.10 depicts the resulting topology if
Aexp is applied to the exponential node chain. The exponential node chain
is thereby depicted in a logarithmic scale. For clarity of representation, some
edges in Eexp are drawn as curved arcs. In addition, Figure 2.10 shows the
individual interference values at each node.

In the following we show that Aexp reduces interference in the exponential
node chain.

Theorem 2.6. Given the exponential node chain G, applying Algorithm
Aexp results in a connected topology with interference I(Gexp) ∈ O(

√
n).

Proof. The topology resulting from the application of Aexp shows a clear
structure (cf. Figure 2.10). Each hub, not taking into account the first two,
is connected to one more node to its right than its predecessor hub to the left.
This follows from the fact that if the current topology leads to interference
I(Gexp) = I immediately after the determination of a new hub, this hub can
be connected to I − 1 nodes to its right until I(Gexp) is again increased by
one. Therefore the minimum number of nodes n required in an exponential
node chain, such that interference I(Gexp) = I is obtained, results in

n =

I−1∑
i=1

i + 2 =
1

2
I2 − 1

2
I + 2.

By solving for I, with n ≥ 2, we have

I =

⌊√
8n − 15 + 1

2

⌋
∈ O
(√

n
)
.
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Figure 2.10: The interference of the exponential node chain—shown in a
logarithmic scale—is bounded by O(

√
n) by the topology control algorithm

Aexp. Only hubs (hollow points) interfere with the leftmost node. For clarity
of representation, some edges are depicted as curved arcs.

This is an intriguing result since we show in the sequel that
√

n is a lower
bound for the interference of the exponential node chain. We therefore again
consider the exponential node chain introduced in Section 2.2.3 with all n
nodes located within distance one.

Theorem 2.7. Given an exponential node chain G = (V, E) with n = |V |,√
n is a lower bound for the interference I(G).

Proof. Let H denote the set of hubs (cf. Definition 2.5) in G and S the
nodes in G \ H. In order to prove the theorem, we state two properties
for I(G) in the exponential node chain G. First, it holds that I(G) is at
least |H| − 1, since the leftmost node is interfered with by exactly all hubs
except itself (Property 1). On the other hand, I(G) is at least the maximum
degree of the resulting topology (Property 2). This holds since a node with
maximum degree is covered by at least all disks of its neighboring nodes.
We assume for the sake of contradiction that there exists a connected graph
that yields interference less than

√
n for the exponential node chain G. In

other words, the degree of any node is required to be at most
√

n − 1, and
the number of hubs must not exceed

√
n, including the leftmost node. By

the definition of H and S, each node in the graph is either in H or in S and
therefore |H| + |S| = n holds. Due to Property 1, it follows that |H| ≤ √

n.
Without loss of generality we assume that the hubs are linearly connected
among themselves to guarantee connectivity of the graph. Consequently,
with Property 2, each hub can connect to at most

√
n − 3 nodes in S (the

leftmost and the rightmost hub, respectively, to
√

n − 2). By the definition
of a hub, nodes in S are only connected to hubs and not among themselves.
Therefore we obtain

|S| ≤ √
n
(√

n − 3
)

+ 2.

Consequently, |H|+ |S| results in n− 2
√

n+2, which is less than n for n ≥ 2
and thus leads to a contradiction.

From Theorems 2.6 and 2.7 it follows that Algorithm Aexp is asymptoti-
cally optimal in terms of interference in the exponential node chain.
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Arbitrary One-Dimensional Node Distributions

We have considered an important artificially constructed instance in the high-
way model in the previous section, yielding a lower bound for the interference
in arbitrary network graphs. In this subsection we go beyond the study of
particular network instances and consider arbitrarily distributed nodes in one
dimension.

The question arises if there are instances in the highway model that
are asymptotically worse than the exponential node chain, that is, where
a minimum-interference topology exceeds Ω(

√
Δ). We answer this question

in the negative by introducing the Agen algorithm, which yields interference
in O(

√
Δ) for any given node distribution.

In a first step, the algorithm determines the maximum degree Δ of the
given unit disk graph G = (V, E) and partitions “the highway” into segments
of unit length 1. Within such a segment, each node can potentially connect
to every other node in the segment.

In a second step, Agen considers each segment independently as follows:
Starting with the leftmost node of the segment, every �√Δ�-th node (ac-
cording to their appearance from left to right) becomes a hub. A hub is
thereby redefined along the lines of Definition 2.5 as a node that has more
than one neighboring node, in contrast to regular nodes, which are connected
to exactly one hub. To avoid boundary effects, the rightmost node of each
segment is also considered a hub. Then the Agen algorithm connects the
hubs of a segment linearly. That is, each hub, except the leftmost and the
rightmost, establishes an edge to its nearest hub to its left and to its right.
Two consecutive hubs enclose an interval. Agen connects all regular nodes
in a particular interval to their nearest hub—ties are broken arbitrarily. Fig-
ure 2.11 depicts one segment of an example instance after the application of
Agen. The nodes within a segment form one connected component.

Finally, Agen connects every pair of adjacent segments by connecting
the rightmost node of the left segment with the leftmost node of the right
segment. This yields a connected topology provided that the corresponding
unit disk graph is also connected. Note that with this construction, the
hubs may have a comparatively high transmission range (smaller than one
unit, though). However, the interference range of regular nodes is restricted
to their corresponding intervals. This is due to the fact that regular nodes
are connected to their nearest hub only, which determines their transmission
ranges.

To prove that the resulting topology of Agen yields O(
√

Δ) interference,
we introduce an additional lemma, which shows that the interference of a
node caused by other nodes in the same segment constructed by Agen is in
O(

√
Δ).
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segment

interval

Figure 2.11: Agen partitions the highway into segments of length 1. In each
segment, every �√Δ�-th node becomes a hub (hollow points). While the hubs
are connected linearly, each of the remaining nodes in the interval between
two hubs is connected to its nearest hub.

Lemma 2.8. Each node in a segment of the Agen algorithm experiences at
most O(

√
Δ) interference in the resulting topology of Agen caused by nodes

inside this segment.

Proof. By definition of a segment, Δ is an upper bound on the number of
nodes in the segment. Algorithm Agen nominates only every �√Δ�-th node
a hub. Thus, the number of hubs in σ is upper-bounded by Δ

�√Δ� ∈ O(
√

Δ).

Let hub hl delimit the interval of a regular node v to the left, and hub hr to
the right, respectively. Furthermore, we can assume without loss of generality
that |hl, v| < |v, hr|. Therefore, Agen establishes a connection between hl

and v. Because this is the only connection of v it follows that rv = |hl, v|.
Consequently, a regular node only interferes with nodes in the same interval.
Since a node v is in at most two intervals—hubs are in two intervals—with at
most �√Δ� nodes, v exhibits interference of at most O(

√
Δ) regular nodes.

Furthermore v is interfered with at most O(
√

Δ) hubs.

With this lemma we are ready to prove that the topology constructed by
Agen results in O(

√
Δ) interference.

Theorem 2.9. The resulting topology constructed by the Agen algorithm
from a given graph G = (V, E) yields interference O(

√
Δ).

Proof. By Lemma 2.8, the interference of a detached segment constructed
by Agen is bounded by O(

√
Δ). However, interference at node v in segment

σ depends also on nodes in the adjacent segments of σ, referred to as σl for
the segment to the left of σ and σr for the segment to the right, respectively.
Nodes in other segments do not interfere with v as the length of a segment
is chosen according to the maximum transmission range and thus the inter-
ference range of a node is limited to two adjacent segments. We know that
at most O(

√
Δ) nodes of σ interfere v. On the other hand, by Lemma 2.8,

the rightmost node v′ of σl is also covered by at most O(
√

Δ) disks of nodes
in σl. This implies that at most O(

√
Δ) nodes of σl interfere with v since all
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nodes interfering with v must also cover v′ with their disks. By symmetry,
the same holds for segment σr. Consequently, Agen results in interference
at most three times the interference of an individual segment at each node,
which is in O(

√
Δ).

Approximation Algorithm

In contrast to Agen, achieving interference in O(
√

Δ) for any network in-
stance, this section introduces an algorithm that approximates the optimum
for the given network instance. Particularly it yields interference at most a
factor in O( 4

√
Δ) times the interference value resulting from an interference-

minimal connectivity-preserving topology.
Algorithm Agen is in a sense designed for the worst-case. Consider for

example an instance where the distances between consecutive nodes are iden-
tical. Connecting these nodes linearly, that is, connecting each node to its
nearest neighbor in each direction, yields constant interference. Algorithm
Agen however constructs a topology resulting in O(

√
Δ) interference since a

hub connects to one half of the nodes in its corresponding interval for this
instance and an interval contains �√Δ� nodes. Based on this observation,
we introduce Algorithm Aapx, a hybrid algorithm which detects high inter-
ference instances and applies Agen, or otherwise connects the nodes linearly.

In the following, we first present a suitable criterion to identify ”high
interference” instances. Given a network graph G = (V, E) in the highway
model, let the graph Glin = (V, Elin) denote the graph where all nodes in V
are linearly connected. To cause high interference at a node v in Glin, it is
required that many nodes cover v with their corresponding disks. However,
with increasing distance to v these nodes need increasing distances to their
nearest neighbors in the opposite direction of v to interfere with the latter.
This leads to an exponential characteristic of these nodes since the edges in
Elin accounting for the interference at v form a fragmented exponential node
chain. Consequently, the critical nodes of v are defined as follows:

Definition 2.6. Given a linearly connected graph Glin = (V, Elin). The
critical node set of a node v is defined as

Cv = {u|u 	= v; ∃w, |u, w| ≥ |u, v| ∧ {u, w} ∈ Elin}.

In other words, the critical nodes of a node v are those nodes interfering
with v if the graph G is connected linearly. Based on the previous results
in this section we are able to lower-bound the interference of a minimum-
interference topology of G as follows.

Lemma 2.10. Given a graph G = (V, E), let γ = maxv∈V |Cv| be the maxi-
mum number of critical nodes at any node. A minimum-interference topology
for G yields interference in Ω(

√
γ).
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Proof. Let v ∈ V be the node with maximum interference in Glin. Thus,
|Cv| = γ as all nodes interfering with v are in Cv. Without loss of generality,
we assume that at least half of the nodes in Cv are to the right of v. Let
Cr

v be the set of all nodes in Cv to the right of v. We number the nodes
ci ∈ Cr

v according to their occurrence from left to right. Note that the
nodes in Cr

v constitute a virtual exponential node chain as the distance to
their nearest neighbor to the right must at least double from ci to ci+1.
Therefore, Theorem 2.7 applies directly to the nodes in Cr

v . Due to the fact
that |Cr

v | ≥ |Cv|/2 and together with Theorem 2.7 we obtain O(
√|Cv|) as a

lower bound for the interference at v.

Algorithm Aapx makes use of Lemma 2.10 to decide whether the existing
instance exhibits inherently high interference. In particular Algorithm Aapx

works as follows: Aapx first computes γ. If γ >
√

Δ, Agen is applied to the
graph. Otherwise, if γ ≤ √

Δ, Aapx connects all nodes of the given graph
linearly.

Theorem 2.11. Given a graph G, Algorithm Aapx computes a resulting
topology which approximates the optimal interference of G up to a factor in
O( 4

√
Δ).

Proof. We analyze the two possible cases in Aapx.

Case γ >
√

Δ: According to Theorem 2.9, Agen yields interference in
O(

√
Δ). On the other hand, by Lemma 2.10, a minimum-interference topol-

ogy produces at least Ω(
√

γ) interference. We therefore obtain an approxi-

mation ratio in O(
√

Δ)/Ω(
√

γ) ∈ O( 4
√

Δ).

Case γ ≤ √
Δ: By Lemma 2.10, the minimum-interference topology re-

sults in interference of at least Ω(
√

γ). Connecting G linearly we obtain
interference γ by definition. Consequently, the approximation ratio of Aapx

is in γ/Ω(
√

γ) ∈ O( 4
√

Δ).

2.3 Interference in Heterogeneous Networks

Heterogeneous sensor networks, also known as multi-tier networks, consist
of sensor nodes with different capabilities and power requirements. In this
section, we assume a two-tier sensor network composed of powerful gateways
such as Stargate class nodes [4] and low-power sensor nodes [47]. The gate-
ways are interconnected by an external backbone network; sensor nodes are
connected via radio links to gateways. The totality of the gateways forms
the infrastructure for distributed applications running on the nodes.

Since communication over wireless links takes place in a shared medium,
interference may occur at a node if it is within transmission range of more
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than one gateway.3 To prevent such collisions, coordination among the con-
flicting gateways is required. Commonly this problem is solved by segmenting
the available frequency spectrum into channels to be assigned to the gate-
ways in such a way as to prevent interference, in particular such that no two
gateways with overlapping transmission range use the same channel.

We assume a different approach to interference reduction. Along the lines
of Section 2.2 our analysis is based on the observation that interference effects
occurring at a node depend on the number of gateways by whose transmis-
sion ranges it is covered. In particular for solutions using frequency division
multiplexing as described above, the number of gateways covering a node
is a lower bound for the number of channels required to avoid conflicts; a
reduction in the required number of channels, in turn, can be exploited to
broaden the frequency segments and consequently to increase communica-
tion bandwidth. On the other hand, also with systems using code division
multiplexing, the coding overhead can be reduced if only a small number of
gateways cover a nodes.

The transmission range of a gateway—and consequently the coverage
properties of the nodes—depends on its position, obstacles hindering the
propagation of electromagnetic waves, such as walls, buildings, or mountains,
and the gateway transmission power. Since due to legal or architectural con-
straints the former two factors are generally difficult to control, we assume a
scenario in which the gateway positions are fixed, each gateway can however
adjust its transmission power. The problem of minimizing interference then
consists in assigning every gateway a transmission power level such that the
number of gateways covering any node is minimal (cf. Figure 2.12). At the
same time however, it has to be guaranteed that every node is covered by at
least one gateway in order to maintain availability of the network.

In Figure 2.12 the area covered by a gateway b transmitting with a given
power level is represented by a disk centered at b and having a radius corre-
sponding to the chosen transmission power. Practical measurements however
show that this idealization is far from realistic. Not only are mechanical inac-
curacies inevitable in the construction of antennas, but more importantly the
presence of obstacles to the propagation of electromagnetic signals—such as
buildings, mountains, or even weather conditions—can lead to areas covered
by signal transmission that hardly resemble disks in practice. These consid-
erations motivate that in order to study the described interference reduction
problem we abstract from network node positions and circular transmission
areas.

In our analysis we formalize the task of reducing interference as a combi-
natorial optimization problem. For this purpose we model the transmission
range of a gateway having chosen a specific transmission power level as a set

3Note that a gateway may resolve contention between associated nodes by employing
a time division multiple access protocol.
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c

Figure 2.12: If the gateways (hollow points) are assigned identical transmis-
sion power levels (dashed circles), node c experiences high interference, since
it is covered by all gateways. Interference can be reduced by assigning ap-
propriate power values (solid circles), such that all nodes are covered by at
most two gateways.

containing exactly all nodes covered thereby. The totality of transmission
ranges selectable by all gateways is consequently modeled as a collection of
node sets. More formally, this yields the Minimum Membership Set Cover
(MMSC) problem: Given a set of elements U (modeling nodes) and a col-
lection S of subsets of U (transmission ranges), choose a solution S′ ⊆ S
such that every element occurs in at least one set in S′ (maintain network
availability) and that the membership M(u, S′) of any element u with respect
to S′ is minimal, where M(u, S′) is defined as the number of sets in S′ in
which u occurs (interference).

Having defined this formalization, we show—by reduction from the re-
lated Minimum Set Cover problem—that the MMSC problem is NP-com-
plete and that no polynomial time algorithm exists with approximation ratio
less than ln n unless NP ⊂ TIME(nO(log log n)). We additionally present a
probabilistic algorithm based on linear programming relaxation asymptoti-
cally matching this lower bound, particularly yielding an approximation ratio
in O(log n) with high probability. Furthermore we study how the presented
algorithm performs on practical network instances.

2.3.1 Minimum Membership Set Cover

As described in the introduction, the problem considered in this chapter is
to assign to each gateway a transmission power level such that interference
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is minimized while all nodes are covered. For our analysis we formalize this
problem by introducing a combinatorial optimization problem referred to
as Minimum Membership Set Cover. In particular, nodes are modeled as
elements and the transmission range of a gateway given a certain power level
is represented as the set of thereby covered elements. In the following, we
first define the membership of an element given a collection of sets:

Definition 2.7 (Membership). Let U be a finite set of elements and S be
a collection of subsets of U . Then the membership M(u, S) of an element u
is defined as |{T | u ∈ T, T ∈ S}|.

Informally speaking, MMSC is identical to the MSC problem apart from
the minimization function. Where MSC minimizes the total number of sets,
MMSC tries to minimize element membership. Particularly, MMSC can be
defined as follows:

Definition 2.8 (Minimum Membership Set Cover). Let U be a finite
set of elements with |U | = n. Furthermore let S = {S1, . . . , Sm} be a collec-
tion of subsets of U such that

⋃m
i=1 Si = U . Then Minimum Membership Set

Cover (MMSC) is the problem of covering all elements in U with a subset
S′ ⊆ S such that maxu∈U M(u, S′) is minimal. 4

Note that—as motivated in the introduction—the problem statement
does not require the collection of subsets S to reflect geometric positions
of network nodes. For a given problem instance to be valid,

⋃m
i=1 Si = U is

sufficient.

2.3.2 Problem Complexity

In this section we address the complexity of the Minimum Membership Set
Cover problem. We show that MMSC is NP-complete and therefore no
polynomial time algorithm exists that solves MMSC unless P = NP .

Theorem 2.12. MMSC is NP-complete.

Proof. We will prove that MMSC is NP-complete by reducing MSC to MMSC.
Consider an MSC instance (U, S) consisting of a finite base set of elements
U and a collection S of subsets of U . The objective is to choose a subset S′

with minimum cardinality from S such that the union of the chosen subsets
of U contains all elements in U .

We now define a set Ũ by adding a new element e to U , construct a new
collection of subsets S̃ by inserting e into all sets in S, and consider (Ũ , S̃)

4Besides minimizing the maximal membership value over all elements, also minimiza-
tion of the average membership value can be considered a reasonable characterization
of the interference reduction problem. The fact however that—given a solution S′—the
sum of all membership values equals the sum of the cardinalities of the sets in S′ shows
that this min-average variant is identical to the Weighted Set Cover [24] problem with
the set weights corresponding to their cardinalities.
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as an instance of MMSC. Since element e is in every set in S̃, it follows that
e is an element with maximum membership in the solution S′ of MMSC.
Moreover, the membership of e in S′ is equal to the number of sets in the
solution. Therefore MMSC minimizes the number of sets in the solution by
minimizing the membership of e. Consequently we obtain the solution for
MSC of the instance (U, S) by solving MMSC for the instance (Ũ , S̃) and
extracting element e from all sets in the solution.

We have shown a reduction from MSC to MMSC, and therefore the latter
is NP-hard. Since solutions for the decision problem of MMSC are verifiable
in polynomial time, it is in NP , and consequently the MMSC decision prob-
lem is also NP-complete.

Now that we have proved MMSC to be NP-complete and therefore not
to be optimally computable within polynomial time unless P = NP , the
question arises, how closely MMSC can be approximated by a polynomial
time algorithm. This is partly answered with the following lower bound.

Theorem 2.13. There exists no polynomial time approximation algorithm
for MMSC with an approximation ratio less than (1 − o(1)) ln n unless
NP ⊂ TIME(nO(log log n)).

Proof. The reduction from MSC to MMSC in the proof of Theorem 2.12 is
approximation-preserving, that is, it implies that any lower bound for MSC
also holds for MMSC. In [37] it is shown that ln n is a lower bound for the
approximation ratio of MSC unless NP ⊂ TIME(nO(log log n)). Thus, ln n is
also a lower bound for the approximation ratio of MMSC.

2.3.3 Approximating the MMSC Problem

In the previous section a lower bound of ln n for the approximability of
the MMSC problem by means of polynomial time approximation algorithms
has been established. In this section we show how to obtain a O(log n)-
approximation with high probability5 using LP relaxation techniques.

LP Formulation of MMSC

We first derive the integer linear program which describes the MMSC problem
and then formulate the linear program that relaxes the integrality constraints.

Let S′ ⊆ S denote a subset of the collection S. To each Si ∈ S we assign
a variable xi ∈ {0, 1} such that xi = 1 ⇔ Si ∈ S′. For S′ to be a set cover,
it is required that for each element ui ∈ U , at least one set Sj with ui ∈ Sj

is in S′. Therefore, S′ is a set cover of U if and only if for all i = 1, ..., n
it holds that

∑
Sj :ui∈Sj

xj ≥ 1. For S′ to be minimal in the number of sets

5Throughout the chapter, an event E occurring “with high probability” stands for
Pr[E] = 1 − O

(
1
n

)
.
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that cover a particular element, we need a second set of constraints. Let z be
the maximum membership over all elements caused by the sets in S′. Then
for all i = 1, ..., n it follows that

∑
Sj :ui∈Sj

xj ≤ z. The MMSC problem can

consequently be formulated as the integer program IPMMSC:

minimize z

subject to
∑

Sj :ui∈Sj

xj ≥ 1 i = 1, ..., n

∑
Sj :ui∈Sj

xj ≤ z i = 1, ..., n

xj ∈ {0, 1} j = 1, ..., m

By relaxing the constraints xj ∈ {0, 1} to x′
j ≥ 0, we obtain the following

linear program LPMMSC:

minimize z

subject to
∑

Sj :ui∈Sj

x′
j ≥ 1 i = 1, ..., n

∑
Sj :ui∈Sj

x′
j ≤ z i = 1, ..., n

x′
j ≥ 0 j = 1, ..., m

The integer program IPMMSC yields the optimal solution z∗ for an MMSC
problem. The derived linear program LPMMSC therefore obtains a fractional
solution z′ with z′ ≤ z∗, since we allow the variables x′

j to be in [0,1].

Algorithm and Analysis

We will now present a O(log n)-approximation algorithm, referred to as
AMMSC, for the MMSC problem. Given an MMSC instance (U, S), the algo-
rithm first solves the linear program LPMMSC corresponding to (U, S). In a
second step, AMMSC performs randomized rounding (see [121]) on a feasible
solution vector x′ for LPMMSC, to derive a vector x with xi ∈ {0, 1}. Finally
it is ensured that x is a feasible solution for IPMMSC and consequently a set
cover.

For the analysis of AMMSC the following two mathematical facts are re-
quired. Their proofs are omitted and can be found in mathematical text-
books.
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Algorithm AMMSC

Input: an MMSC instance (U, S)
1: compute solution vector x′ to the linear program LPMMSC corresponding

to (U, S)
2: pi := min{1, x′

i · log n}
3: xi :=

{
1 with probability pi

0 otherwise

4: for all ui ∈ U do
5: if

∑
Sj :ui∈Sj

xj = 0 then

6: set xj = 1 for any j such that ui ∈ Sj

7: end if
8: end for

Output: MMSC solution S′ corresponding to x

Fact 2.1. (Means Inequality) Let A ⊂ R
+ be a set of positive real num-

bers. The product of the values in A can be upper-bounded by replacing each
factor with the arithmetic mean of the elements of A:

∏
x∈A

x ≤
(∑

x∈A x

|A|
)|A|

.

Fact 2.2. For all n, t, such that n ≥ 1 and |t| ≤ n,

et

(
1 − t2

n

)
≤
(

1 +
t

n

)n

≤ et.

We prove AMMSC to be a O(log n)-approximation algorithm for IPMMSC

in several steps. We first show that the membership of an element in U after
the randomized rounding step of AMMSC is bounded with high probability.

Lemma 2.14. The membership of an element ui after Line 3 of AMMSC is
at most 2e log n · z∗ with high probability.

Proof. The optimal solution of LPMMSC leads to fractional values x′
j and

does not admit a straightforward choice of the sets Sj . Using randomized
rounding, AMMSC converts the fractional solution to an integral solution S′.
In Line 3, a set Sj is chosen to be in S′ with probability x′

j · log n. Thus, the
expected membership of an element ui is

E[M(ui, S
′)] =

∑
Sj :ui∈Sj

x′
j · log n ≤ log n · z′. (2.1)

The last inequality follows directly from the second set of constraints of
LPMMSC. Since z′ ≤ z∗, it follows that the expected membership for ui



38 CHAPTER 2. NETWORK STRUCTURES AND INTERFERENCE

is at most log n · z∗. Now we need to ensure that, with high probability,
ui is not covered too often. Since randomized rounding can be modeled as
Poisson trials, we are able to use a Chernoff bound [112]. Let Yi be a random
variable denoting the membership of ui with expected value μ = E[M(ui, S

′)].
Applying the Chernoff bound we derive

Pr [Yi ≥ (1 + δ) μ] <

(
eδ

(1 + δ)(1+δ)

)μ

.

Choosing δ ≥ 2e − 1, the right hand side of the inequality simplifies to(
eδ

(1 + δ)(1+δ)

)μ

≤
(

eδ

(2e)(1+δ)

)μ

<

(
eδ

(2e)δ

)μ

= 2−δμ. (2.2)

Since the above Chernoff bound corresponds to the upper tail of the proba-
bility distribution of Yi and as μ is at most log n · z∗, it follows that

Pr [Yi ≥ (1 + δ) log n · z∗] ≤ Pr [Yi ≥ (1 + δ) μ] .

But for this inequality to hold, only (1+δ)μ ≤ c log n ·z∗ for some constant c
is required. Thus, by setting (1+δ)μ = c log n ·z∗ and using Inequality (2.1),
we obtain

δμ ≥ (c − 1) log n · z∗. (2.3)

Using Inequalities (2.2) and (2.3) we can then bound the probability that the
membership of ui is greater than c log n · z∗ as follows:

Pr [Yi ≥ c log n · z∗] < 2−δμ ≤ 2−(c−1) log n·z∗

=
1

n(c−1)z∗ .

To compute c, we again consider the equation (1 + δ)μ = c log n · z∗. Solving
for δ, we derive

δ =
c log n · z∗

μ
− 1.

As a requirement for Inequality (2.2) we demand δ to be greater or equal to
2e − 1. Furthermore, the right hand side of the inequality is minimal if μ is
maximal. Thus, using Inequality (2.1) we obtain

c log n · z∗

log n · z∗ − 1 ≥ 2e − 1

or c ≥ 2e. Taking everything together and using z∗ ≥ 1 it follows that

Pr [Yi ≥ 2e log n · z∗] <
1

n(2e−1)z∗ ∈ O

(
1

n4

)
.
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Now we are ready to show that after randomized rounding all elements
have membership at most 2e log n · z∗ with high probability.

Lemma 2.15. The membership of all elements in U after Line 3 of AMMSC

is at most 2e log n · z∗ with high probability.

Proof. Let Ei be the event that the membership of element ui after Line
3 of AMMSC is greater than 2e log n · z∗. Then, the probability that the
membership for all elements in U is less than 2e log n · z∗ equals

Pr[
n∧

i=1

Ei ].

We know from Lemma 2.14 that the probability Pr[Ei] is less than 1/n(2e−1)z∗

.
Since the events are clearly not independent, we cannot apply the product
rule. However, it was shown in [136] that

Pr[

n∧
i=1

Ei ] ≥
n∏

i=1

Pr[ Ei ]. (2.4)

We can make use of this bound, since IPMMSC features the positive correlation
property assumed in [136]. Consequently, setting α = (2e − 1)z∗ and using
Inequality (2.4), it follows that

Pr[
n∧

i=1

Ei ] ≥
(

1 − 1

nα

)n

≥
(

1 − 1

nα

) nα−1

nα−1− 1
n

≥ e
− 1

nα−1− 1
n > 1 − 1

nα−1 − 1
n

.

For the third inequality we use Fact 2.2 with t = −1, which leads to the
inequality

e−1 ≤ (1 − 1/n)n−1.

The last inequality is derived through Taylor series expansion of the left hand
term. Consequently, using α = (2e − 1)z∗ and z∗ ≥ 1 we obtain

Pr[

n∧
i=1

Ei ] = 1 − O

(
1

n3

)
.

Since AMMSC uses randomized rounding, we do not always derive a fea-
sible solution for IPMMSC after Line 3 of the algorithm. That is, there exist
elements in U that are not covered by a set in S′. But we can show in the
following lemma that each single element is covered with high probability.
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Lemma 2.16. After Line 3 of AMMSC, an element ui in U is covered with
high probability.

Proof. For convenience we define Ci to be the set {Sj | ui ∈ Sj}. From
LPMMSC we know that

∑
Sj∈Ci

x′
j ≥ 1. Thus, it follows that∑

Sj∈Ci

pj ≥ log n. (2.5)

Let qi be the probability that an element ui is contained in none of the sets
in S′ obtained by randomized rounding, that is, qi = Pr [M(ui, S

′) = 0].
Consequently, we have

qi =
∏

Sj∈Ci

(1 − pj) ≤
(

1 −
∑

Sj∈Ci
pj

|Ci|

)|Ci|

≤ e
−∑Sj∈Ci

pj ≤ e− log n =
1

n
.

The first inequality follows from Fact 2.1, the second inequality follows from
Fact 2.2, and the third step is derived from Inequality (2.5).

In Lines 4 to 8 of AMMSC it is ensured that the final solution S′ is a
set cover. This is achieved by consecutively including sets in S′, until all
elements are covered. In the following we show that the additional maximum
membership increase caused thereby is bounded with high probability.

Lemma 2.17. In Lines 4 to 8 of AMMSC, the maximum membership in U
is increased by at most O(log n) with high probability.

Proof. To bound the number of sets added in the considered part of the
algorithm we again employ a Chernoff bound. Let Z be a random variable
denoting the number of uncovered elements after Line 3 of AMMSC. From
Lemma 2.16 we know that an element is uncovered after randomized rounding
with probability less than 1/n. Then, the expected value μ for Z is less than
1. Using a similar analysis as in Lemma 2.14, we obtain

Pr [Z ≥ c] < 2−c+1,

where c ≥ 2e is required. Setting c = log n + 2e, it follows that

Pr [Z ≥ log n + 2e] <
2

n · 4e
∈ O

(
1

n

)
.

The proof is concluded by the observation that each additional set added
in the second step of AMMSC increases the maximum membership in U by
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at most one. Since only O(log n) elements have to be covered with high
probability and as it is sufficient to add one set per element, the lemma
follows.6

Now we are ready to prove that AMMSC yields a O(log n)-approximation
for IPMMSC and consequently also for MMSC.

Theorem 2.18. Given an MMSC instance consisting of m sets and n ele-
ments, AMMSC computes a O(log n)-approximation with high probability. The
running time of AMMSC is polynomial in m · n.

Proof. The approximation factor in the theorem directly follows from Lem-
mas 2.15 and 2.17. The running time result is a consequence to the existence
of algorithms solving linear programs in time polynomial in the program
size [71] and to the fact that LPMMSC can be described using −1, 0, and 1
as coefficients only.

Alternative Algorithm

In an alternative version of the algorithm, the values x′ obtained by solving
LPMMSC can be directly employed as probabilities for randomized rounding
(without the additional factor of log n). In this case randomized rounding
is repeated for all sets containing elements not yet covered until resulting in
a set cover. With similar arguments as for AMMSC, it can be shown that
this modified algorithm achieves the same approximation factor and that it
terminates after repeating randomized rounding at most log n times, both
with high probability.

2.3.4 Practical Networks

Whereas the previous section showed that AMMSC approximates the optimal
solution up to a factor in O(log n), this section discusses practical networks.

In particular, the algorithms AMMSC and ÃMMSC—the alternative algorithm
described in Section 2.3.3—are considered. Since the approximation perfor-
mance of algorithms is studied, we denote by the membership of a solution
the minimization function value—that is the maximum membership over all
nodes—of the corresponding MMSC solution.

The studied algorithms were executed on instances generated by placing
gateways and nodes randomly according to a uniform distribution on a square
field with side length 5 units. Adaptable transmission power values were
modeled by attributing to each gateway circles with radii 0.25, 0.5, 0.75, and

6Since in the above Chernoff bound μ is at most a constant, a more careful analysis
would yield that the maximum membership in U is increased—with high probability—by
O(log n/ log log n) only. This improvement has however no impact on the main result of
this chapter.
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1 unit; each such circle then contributes one set containing all covered nodes
to the problem instance thereafter presented to the algorithms.

As shown in the previous section, the approximation factor of the algo-
rithms depends on the number of nodes. For this reason the simulations
were carried out over a range of node densities. Since the membership value
obtained by solving LPMMSC lies below the optimal solution and therefore
the gap between the algorithm result and the solution of the linear program
is an upper bound for the obtained approximation ratio, the LPMMSC result
z′ is also considered.

For a gateway density of 2 gateways per unit disk, Figure 2.13(a) shows
the mean membership values over 200 networks—for each simulated node
density—for the results computed by AMMSC, ÃMMSC, and the values ob-
tained by solving LPMMSC. The results depict that for this relatively low
base-station density all measured values are comparable and increase with
growing node density. In contrast, for a higher base-station density of 5 gate-
ways per unit disk (cf. Figure 2.13(b)), a gap opens between the AMMSC and
LPMMSC results. Whereas the ratio between these two result series—as men-
tioned before, an upper bound for the approximation ratio—rises sharply for
low node densities, its increase diminishes for higher node densities, which
corresponds to the O(log n) approximation factor described in the theoreti-

cal analysis. Additionally, it can be observed that ÃMMSC performs signif-
icantly better than AMMSC. The reason for this effect lies in the fact that
AMMSC multiplies the x′ values resulting from LPMMSC with the factor log n
to obtain the probabilities employed for randomized rounding, whereas this
multiplication is not performed by ÃMMSC. The approximation gap becomes
even wider for higher gateway densities, such as 10 gateways per unit disk
(Figure 2.13(c)). Our simulations showed however that beyond this gateway
density no significant changes in the membership results can be observed.

The increasing gap between the simulated algorithms and the LPMMSC

solution with growing gateway density can be explained by the following
observation: For low gateway densities—where problem instances contain a
small number of sets—a relatively large number of nodes are covered by only
one set, which consequently will have to be chosen in both the LPMMSC and
the algorithm solutions; for high gateway densities, in contrast, the solution
weights x′ computed by LPMMSC can be distributed more evenly among the
relatively high number of available sets, and the potential of “committing an
error” during randomized rounding increases.

In summary, the simulations show that the considered algorithms approx-
imate the optimum solution well on practical networks. Comparing AMMSC

and ÃMMSC, it can be observed that, in practice, the latter algorithm per-
forms even better than the former.
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Figure 2.13: Mean values of the membership results obtained by AMMSC

(dotted), ÃMMSC (dashed), and the LPMMSC solution with 2 (a), 5 (b), and
10 (c) gateways per unit disk.
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2.4 Related Work

The assumption that nodes are distributed randomly in the plane according
to a uniform probability distribution formed the basis of pioneering work in
the field of topology control in ad hoc networks [55, 138].

Later proposals adopted constructions originally studied in computational
geometry, such as the Delaunay Triangulation [57], the minimum spanning
tree [124], the Relative Neighborhood Graph [14], or the Gabriel Graph [129].
Most of these contributions mainly considered energy-efficiency of paths pre-
served by the resulting topology, whereas others exploited the planarity prop-
erty of the proposed constructions for geographic routing [77, 15, 84].

The Delaunay Triangulation and the minimum spanning tree not being
computable locally and thus not being practicable, a next generation of topol-
ogy control algorithms emphasized locality. The CBTC algorithm [151] was
the first construction to simultaneously focus on several desired properties, in
particular being an energy spanner with bounded degree. This process of de-
veloping local algorithms featuring more and more properties was continued,
partly based on CBTC, partly based on local versions of classic geometric con-
structions such as the Delaunay Triangulation [92] or the minimum spanning
tree [90]. Among the most recent such results are a locally computable pla-
nar constant-stretch distance (and energy) spanner with constant-bounded
node degree [149] or a construction with similar properties additionally hav-
ing low overall energy consumption [93]. Other approaches try to build on
minimal assumptions about the capabilities of nodes and signal propagation
characteristics [152] or takes up the average-graph perspective of early work
in the field; [12] for instance shows that the simple algorithm choosing the k
nearest neighbors works surprisingly well in such graphs. Yet another thread
of research considered topology control in three dimensions employing exist-
ing approaches such as the Delaunay Triangulation [43] or techniques based
on CBTC [6, 148] to generate connectivity preserving topologies.

A different aspect of topology control is considered by algorithms trying
to form clusters of nodes. Most of these proposals are based on (connected)
dominating sets [41, 42, 66, 3, 58, 2, 83, 80] and focus on locality and provable
properties. Cluster-based constructions are commonly regarded as a variant
of topology control in the sense that energy-consuming tasks can be shared
among the members of a cluster.

Topology control having so far mainly been of interest to theoreticians,
first promising steps are being made towards exploiting the benefit of such
techniques also in practical networks [73, 26, 18, 33]. A more detailed
overview of topology control techniques in general can be found in [130].

As mentioned earlier, reducing interference—and its energy-saving effects
on the medium access layer—is one of the main goals of topology control
besides direct energy conservation as a consequence of transmission power
restriction. However, all the above topology control algorithms at the most
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implicitly try to reduce interference. Where interference is mentioned as an
issue at all, it is maintained to be confined at a low level as a consequence of
sparseness or low degree of the resulting topology graph.

To the best of our knowledge, the authors of [105] are the first to define
an explicit notion of interference. Based on this interference model between
edges, a time-step routing model and a concept of congestion is introduced.
It is shown that there are inevitable trade-offs between congestion, power
consumption and dilation (or hop-distance). For some node sets, congestion
and energy are even shown to be incompatible.

The static interference models—in the sense that they are defined inde-
pendent of current network traffic—, as introduced in this chapter, formed
the basis for continuing research [107, 109, 67, 48, 11]. For the receiver-
based inference model presented in Section 2.2, our approach was advanced
in [48], leading to a structure with interference in O(

√
Δ) in two-dimensional

node distributions without restriction to the highway model. Their results
rely on computational geometric tools such as local neighbor graphs, ε-nets,
and quad-tree decomposition. Moreover, there exists a simpler randomized
algorithm computing low-interference topologies for such networks.

The interference issue as a scheduling problem over time—in a sense tak-
ing up the approach from [105]—was later again studied in [110]. In contrast
to the work presented in this chapter, [110] models interference with the
physical Signal-to-Interference-plus-Noise Ratio and defines the concept of
scheduling complexity for the connectivity of wireless networks. [111] extends
this concept to arbitrary given network topologies and demonstrates the exis-
tence of a relation between this scheduling complexity and the receiver-centric
interference model defined in Section 2.2.

The problem of minimizing interference in multi-tiered systems addressed
in Section 2.3 is related to studies of interference issues in cellular networks in
the context of frequency division multiplexing. There, the available network
frequency spectrum is divided into narrow channels assigned to cells in a
way to avoid interference conflicts. In particular two types of conflicts can
occur, adjacent cells using the same channel (co-channel interference) and
insufficient frequency distance between channels used within the same cell
(adjacent channel interference). Maximizing the reuse of channels respecting
these conflicts is generally studied by means of the combinatorial problem of
conflict graph coloring using a minimum number of colors. The settings in
which this problem is considered are numerous and include hexagon graphs,
geometric intersection graphs (such as unit disk graphs), and planar graphs,
but also (non-geometric) general graphs. In addition both static and dynamic
(or on-line) approaches are studied [113]. The fact that channel separation
constraints can depend on the distance of cells in the conflict graph is studied
by means of graph labeling [64]. The problem of frequency assignment is
tackled in a different way in [36] exploiting the observation that in every
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region of an area covered by the communication network it is sufficient that
exactly one gateway with a unique channel can be heard. As mentioned,
all these studied models try to avoid interference conflicts occurring when
using frequency division multiplexing. In contrast, the problem described in
Section 2.3 assumes a different approach in aiming at interference reduction
by having the gateways choose suitable transmission power levels.

The problem of reducing interference is formalized in a combinatorial
optimization problem named Minimum Membership Set Cover. As suggested
by its name, at first sight its formulation resembles closely the long-known
and well-studied Minimum Set Cover (MSC) problem, where the number
of sets chosen to cover the given elements is to be minimized [68]. That
the MMSC and the MSC problems are however of different nature can be
concluded from the following observation: For any MSC instance consisting
of n elements, a greedy algorithm approximates the optimal solution with an
approximation ratio at most H(n) ≤ ln n+1 [68], which has later been shown
to be tight up to lower order terms unless NP ⊂ TIME(nO(log log n)) [37, 98].
For the MMSC problem in contrast, there exist instances where the same
greedy algorithm fails to achieve any nontrivial approximation of the optimal
solution.

In the context of network traffic congestion, [96] considered a problem
similar to our analysis of the MMSC problem in that linear program relax-
ation was employed to minimize a maximum value.



Chapter 3

Gathering Correlated Data

Dependent on the node density of a deployed sensor network, different sensor
nodes partially monitor the same spatial region. Thus, the nodes may ob-
serve the same physical phenomenon leading to correlation in their acquired
data. To account for this circumstance and to save energy, data should be
processed on its way from the information source to the sink. This technique
is commonly referred to as (in-network) data aggregation. Thereby, a sensor
node uses a so-called aggregation function to encode the available data before
forwarding it to the sink. Several coding strategies were proposed in recent
research that can be classified as follows. On the one hand, there exist the
so-called multi-input coding strategies [45, 159, 116] where a node waits un-
til information from several other nodes is available before it performs data
aggregation. On the other hand, there also exist single-input coding strate-
gies [27] where the encoding of a node’s information only depends on the
information of one other node.

In this chapter, we only consider conditional coding where data from
one node can be compressed in the presence of data from other nodes. We
therefore only refer to conditionally encoded data as encoded data and speak
about raw data otherwise.1 In particular, we focus on single-input coding
strategies because they feature several advantages compared to multi-input
coding strategies. The most important one is certainly the ability to apply
single-input coding also in asynchronous networks where no timing assump-
tions can be made. Using multi-input coding on the other hand, certain
timing assumptions have to be made since packets cannot be delayed for an
indefinite time at intermediate nodes while waiting for belated information
[135]—data freshness at the sink should not suffer too much from data aggre-
gation. We distinguish two classes of single-input coding, namely self-coding
and foreign coding. Using self-coding, data is only allowed to be encoded

1Even though, a node may also apply an encoding scheme to its measured data in the
absence of side information.
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Figure 3.1: Simple network example. Raw data has size sr while encoded
data is of size se, with se < sr. On the left hand side self-coding is applied
while foreign coding is used on the right. For this example foreign coding is
more energy efficient than self-coding.

at the producing node and only in the presence of side information from at
least one other node. With foreign coding in contrast, a node is only able to
encode raw data originating at another node as it is routed towards the sink
using its own data.

Figure 3.1 depicts a simple network example consisting of three sensor
nodes (u, v, and w) that want to propagate their raw data of size sr to a
sink t. Communication links only exist between nodes u and w, v and w, as
well as w and t, respectively. Therefore, packets from u and v have to be
relayed at w to reach the sink t. If a node is able to encode data due to side
information the data size reduces to se, with se < sr. The configuration on
the left depicts the usage of self-coding. Since u and v do not have any side
information they both send a packet of sr bits towards t. Because of side
information from u, and v, respectively, node w is able to encode its data
such that the corresponding packet has size se and therefore 2sr + se bits
have to be sent over the link (w, t). On the right hand side of Figure 3.1
the same network is shown if foreign coding is applied. As with self-coding,
nodes u and v send their packets of size sr to w. However, w encodes the
raw data of u and v using its own data before it relays this coded data along
with its own raw data towards the sink t. Thus, only sr + 2se bits are sent
over (w, t). Using se < sr, foreign coding transmits less bits over (w, t) than
self-coding and is thus more energy efficient for this configuration.

In case of self-coding, [27] shows that already for a very restrictive model
where raw data is of size sr and a node can encode its data to use only se

bits, with se < sr, in the presence of any side information, the problem of
finding a minimum-energy data gathering tree is NP-complete. To the best
of our knowledge, we are the first that provide an approximation algorithm
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for this problem with approximation ratio 2(1+
√

2). The algorithm is based
on the shallow light tree (SLT) introduced in [5, 10, 74] that unifies the
properties of the minimum spanning tree (MST) and the shortest path tree
(SPT). Considering foreign coding, we introduce an algorithm resulting in
a minimum-energy data gathering topology under the assumption that the
topology of the network and the correlation structure of the nodes are known.
The algorithm obtains an optimal solution for the data gathering problem
by reducing it to the problem of finding an MST in a directed graph which
is known to be computable in polynomial time.

We assume the same network model as in Section 2.1; the network is
represented as a graph G = (V, E). Furthermore, let t ∈ V denote a partic-
ular node called sink at which data from all nodes in V should be gathered.
We refer to the process of gathering information from all nodes as a round.
Therefore, in each round data from each node in V is sent to t for further
processing. The weight w(e) for an edge e = (vi, vj) ∈ E is defined to be
the cost of transmitting one bit of information from node vi to node vj , or
vice versa. That is, we use an energy metric for the graph G. However, we
do not consider a specific radio model such as the popular first order radio
model presented in [51], since we want our results to be independent from
the applied radio model. Thus, the radio model is abstracted in the edge
weights of the graph G.

3.1 Foreign Coding

In this section we first introduce a model for the data correlation in a network.
Based on this model an algorithm is presented that solves the minimum-
energy data gathering problem. We then propose a distributed version of the
algorithm which works in a slightly more restrictive model.

3.1.1 Correlation Model

Since sensor networks are often used to sense real world phenomena, each
sensor node continuously produces information as it monitors its vicinity.
Thus, we assume that each node vi ∈ V generates one data packet pi of size
si bits per round that describes the measured information sample. Note that
data packets from different nodes need not have equal size.

Distributed sensor data is often correlated and it is therefore often pos-
sible to perform in-network aggregation. Data aggregation can potentially
take place at any intermediate node as a data packet is routed towards the
sink node. However, once a packet is encoded at a node it is not possible
to alter the packet again; hence, recoding is not possible. In other words a
node vi can use its data to encode packets containing correlated data that
are routed through vi on their paths to the sink node t. A packet from node
vi that is encoded at a node vj is denoted by pj

i ; its corresponding size is sj
i .
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The compression rate depends on the data correlation between the involved
nodes vi and vj , denoted by the correlation coefficient ρij = 1 − sj

i/si. En-
coding at a node vi only depends on data collected by vi and not on other
data also routed through vi—recording is not possible. However, it must be
guaranteed that encoding does not result in cyclic dependencies that cannot
be resolved while decoding at the sink t. Such an encoding strategy does not
depend on timing assumptions in the encoding nodes, and therefore it is also
applicable to asynchronous networks.

The minimum-energy data gathering problem for a given graph G =(V, E)
is then defined as follows. Find a routing scheme and a coding scheme to
deliver data packets from all nodes in V to a sink node t ∈ V , such that
the overall energy consumption is minimal. Let f(e) with e ∈ E denote the
number of bits transmitted over edge e. Thus, we aim at minimizing the
following cost function:

C(G) =
∑
e∈E

w(e)f(e). (3.1)

3.1.2 Algorithm

In the following we present the minimum-energy gathering algorithm (MEGA).
The resulting topology of the algorithm is a superposition of two tree con-
structions. A directed minimum spanning tree of a directed graph whose
edges are specified later in this section is used to determine the encoding
nodes for all data packets. Once a packet is encoded it is routed on a short-
est path towards the sink to save energy. Given a graph G = (V, E) and a
sink node t ∈ V , MEGA computes a shortest path tree (SPT) of G rooted
at t (e.g. using Dijkstra’s algorithm [30]). Since the weight of an edge in E
corresponds to the energy spent to transmit one bit of information from one
incident node to the other, the SPT comprises an energy-minimal path from
each node in V to the sink.

In a second step, the algorithm computes for each node vi a corresponding
node vj that encodes the packet pi using its own data. Since cyclic depen-
dencies in the encoding must not occur to guarantee decoding this results
in a so-called coding tree. In order compute this coding tree, we make use
of an algorithm solving the directed minimum spanning tree (DMST) prob-
lem (also known as the minimum weight arborescence problem). Consider a
directed graph G = (V, E) and a weight w(e) associated with each edge e.
The problem is to find a rooted directed spanning tree such that the sum
of w(e) over all edges e in the tree is minimized provided that all nodes are
reachable from the root. Chu and Liu[23], Edmonds [34], and Bock [13] have
independently proposed efficient algorithms for finding the MST given a di-
rected graph. Tarjan [139] shows an efficient implementation for the problem
(see also [19]). Edmonds algorithm is also described in [87]. Furthermore, a
distributed algorithm is given in [61].
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MEGA

Input: Graph G = (V, E) and sink s ∈ V
1: TSP = shortest path tree in G rooted at t
2: G̃ = (V, Ẽ) = complete directed graph

3: for all (vi, vj) ∈ Ẽ do
4: w′(vi, vj) = si (w(vi, vj) + w(vj , t)(1 − ρij))
5: end for
6: T ′ = DMST on G̃T

7: T = (V, ET ) = T ′T

8: for all vi ∈ V do
9: consider vj such that (vi, vj) ∈ ET

10: set vj as encoding relay for pi

11: end for
Output: Minimum-energy data gathering topology for G

In the following we propose the directed graph on which MEGA computes
the DMST with one of the above-mentioned algorithms. First, MEGA builds
a complete directed graph G̃ = (V, Ẽ). The weight w̃(e) for a directed edge

e = (vi, vj) in Ẽ is defined as

w̃(e) = si (σ(vi, vj) + σ(vj , t)(1 − ρij)) , (3.2)

whereas σ(vi, vj) denotes the weight of a shortest path from vi to vj in G,
that is, the sum of the edge weights on that path. The weight of an edge
in G̃ therefore stands for the total energy consumption required to route a
data packet pi to the sink using node vj as an encoding relay. This also
depends on the correlation coefficient of the involved nodes. The DMST
is by definition a minimum-weight directed tree with edges directed off the
root node (e.g. the sink t) but we aim at a directed tree with edges pointing

towards t. Therefore, MEGA does not apply a DMST algorithm to G̃ but
to the transposed graph2 G̃T . Then, the edges in G̃ corresponding to the
ones in the DMST of G̃T form a tree that defines the encoding relays for a
nodes in V . The resulting topology of MEGA comprises for each node vi all
edges on a shortest path from vi to its encoding relay vj found by the above
described DMST construction and all edges on the path from vj to t on the
SPT. If the data is pairwise independent for all nodes, the resulting topology
of MEGA is the SPT—this is the minimum-energy data gathering topology
for uncorrelated data.

On the left hand side of Figure 3.2 an example graph G is depicted. The
information from all nodes in G should be gathered at the sink node t. To

2The transpose of a directed graph G = (V, E) is GT = (V, E′) with (vi, vj) ∈ E′

if and only if (vj , vi) ∈ E. That is, the direction of each edge in G is reversed in the
transposed graph.
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Figure 3.2: The left figure depicts an example graph G. All nodes try to
send their data to the sink node t. Each edge e in the given graph G is
labeled according to the energy required to send one bit of data over e.
The SPT rooted at t is indicated by bold edges. On the right hand side
the resulting minimum-energy data gathering topology obtained by MEGA
is shown. The coding tree (dashed arrows) determines for each node its
corresponding encoding node. Encoded data is sent on the SPT (solid lines)
towards the sink t.

simplify matters it is assumed that all nodes send a packet of equal size
sr. For each edge e in G the edge weight w(e) corresponding to the energy
consumption of sending one bit of data over e is depicted in Figure 3.2. Data
correlation among nodes vi and vj is defined to be inverse proportional to
their Euclidean distance. That is, ρij = 1/(1+d(vi, vj)). Furthermore, a path
loss exponent of 2 is assumed and thus d(vi, vj) =

√
w(e), with e = (vi, vj).

Algorithm MEGA first computes a SPT rooted at t—bold lines on the left of
Figure 3.2. The coding tree established by MEGA is depicted with dashed
arrows on the right hand side of Figure 3.2. The encoding relay of each node
is thereby determined by its outgoing arrow. The algorithm routes packets
along the SPT towards the sink once they are encoded. Thus, data packets
at a node are not always sent to the same neighboring node. For example, at
node u the packet received from node v is first encoded and then forwarded
directly to the sink t, whereas u’s packet is encoded at an intermediate node
to circumvent the costly edge (u, t).

The running time of the algorithm is O
(
n3
)

since solving the all-pair
shortest path problem on G takes O

(
n3
)

time and the running time for the

computation of the DMST on G̃T is O
(
n2
)
.

3.1.3 Analysis

To show that MEGA is optimal, we first establish some properties of an
optimal data gathering topology. In an optimal solution for a graph G, each
packet pi is routed along a distinct path from node vi to the sink t since
multiple paths would unnecessary increase the total energy consumption.
The packet pi is encoded at no more than one node vj on its path towards
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the sink. Note that it is also possible that pi is sent to t without any encoding.
In this case t is considered to be the encoding relay for node vi. Along the
lines of MEGA we can therefore establish a directed graph G̃opt = (V, Ẽopt)
for the optimal solution where each node vi in V apart from t has exactly
one outgoing edge in Ẽopt pointing towards the encoding relay of the packet
pi. It follows that |Ẽopt| = n − 1. To guarantee the successful decoding of
all data at the sink node it is required that the encoding does not lead to
cyclic dependencies. By the construction rules of the directed graph G̃opt,
such cyclic dependencies would be reflected in cycles in G̃opt and therefore
G̃opt must be cycle-free. Consequently, the above elaborated properties of
the directed graph G̃opt, namely

• |Ẽopt| = n − 1,

• every node vi, vi ∈ V \ {t}, has an edge leading out from it,

• and G̃opt does not contain cycles,

characterize a directed tree pointing into node t. Thus, we derive the follow-
ing theorem:

Theorem 3.1. Given a graph G = (V, E) and a sink t ∈ V , algorithm
MEGA computes a minimum-energy data gathering topology for G.

Proof. The path for a packet pi in the optimal solution can be divided into
two parts. First, pi is routed on a path from vi to its encoding node vj and
in a second step the encoded packet pj

i is routed from vj to the sink t. In
an optimal topology both sub-paths are minimum-energy paths—and thus
shortest paths in G—in order to minimize the overall cost function C(G)
defined in Equation (3.1). In Equation (3.1) the total energy consumption is
computed by summing up the load of each edge in E times its corresponding
weight. Another way to compute the total energy consumption is to charge
each node vi the energy the packet pi spends during p′

is way to the sink. For
each node vi and its corresponding encoding relay vj the costs are summing
up to w̃(vi, vj) as defined in Equation (3.2). Consequently, the total energy

consumption is defined to be the sum of all edge weights in G̃opt. MEGA
computes exactly these costs for all possible encoding relays of a node vi and
assigns them to the corresponding edges in G̃. Using a DMST algorithm
on the transposed graph, a directed tree pointing into t is obtained that
minimizes the sum of all edge weights. Since the optimal solution Gopt also
corresponds to a directed spanning tree in G̃opt, MEGA minimizes C(G).

3.1.4 Distributed Computation

So far, the proposed centralized algorithm MEGA requires total knowledge
of the correlation among all nodes and the topology of the network. In this
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Figure 3.3: Configuration of the graph G̃ if the encoding relay vj of node
vi is more than one hop away from vi (top) and a configuration using only
one-hop relays that results in less energy consumption (bottom).

section we consider the well studied Unit Disk Graph (UDG) model [25] where
all nodes have the same limited transmission radii. Additionally, we restrict
the raw-data packets of all nodes to have equal size sr. Data correlation in
sensor networks is often assumed to be regional. In the following, the data
correlation between two nodes vi and vj is therefore modeled to be inverse
proportional to their Euclidean distance d(vi, vj).

Using the distributed algorithm described in [61] to compute the DMST,
MEGA can be implemented in a distributed way. In a setup phase, the sink t
starts building a SPT rooted at t using e.g. Dijkstra’s algorithm. Thus, each
node in V is able to determine the energy consumption to send t one bit of
information. Then, each node vi in the graph G broadcasts a sample packet
pi. Upon receipt of a packet pj from a neighboring node vj , vi encodes pi

using pj to compute the correlation coefficient between the two neighbors.
Additionally, vi can determine the energy cost of a transmission to vj by
using a Received Signal Strength Indicator (RSSI) [125]. Node vi establishes
an directed edge (vi, vj) whose weight is set according to Equation (3.2).

The graph G̃ then only consists of edges between direct neighbors in G. To
guarantee that MEGA still results in an optimal topology we have to show
that in an optimal solution each node and its corresponding encoding relay
are only one hop away from each other. That is, they are neighbors in the
graph G.

Assume for the sake of contradiction that the encoding relay vj for a
node vi in a minimum-energy data gathering topology Gopt is more than one
hop away from vi. Then the packet pi is routed along a path p(vi, vj) =
(vi, u1 . . . ui, uj ,
uk . . . vj) to its encoding relay vj . Since vi and vj are not adjacent in G and
G is a UDG, it follows that d(vi, vj) > d(vi, u1) and consequently ρvi,vj <
ρvi,u1—data correlation is inverse proportional to the Euclidean distance. It

follows that sj
i > su1

i . Thus if (u1, vi) is not in G̃opt, that is vi is not the
encoding relay for u1, we choose u1 to be the encoding node of vi and obtain
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a topology with less energy dissipation which contradicts the assumption. If
(u1, vi) is in G̃opt we are in a configuration as it is depicted in Figure 3.3 at

the top. Node vi has an edge to vj in G̃opt (dashed arrow) and each node on

p(vi, vj) up to uj has an edge to its predecessor on the path. Since G̃opt is
cycle-free, there is at least one node on the path (uk in Figure 3.3) that does
not point to its predecessor. In Figure 3.3 all edges on the path are labeled
according to their load caused by all raw data packets from nodes on the
path. However, by changing the edges in G̃opt subject to the configuration
at the bottom of Figure 3.3—and thus also the encoding relays— and due to
the assumption that all raw-data packets have equal size sr edge (ui, uj) has
a load of at most sr + s

uj
ui since the packet pui is sent to uj and the encoded

packet p
uj
ui possibly back to ui on its way to the sink. The same holds for all

other edges on the path for which the corresponding edge in G̃opt is reversed.
Since s

uj
ui < sr for all direct neighbors in G, it follows that we can decrease

the energy consumption of Gopt by applying the transformation shown in
Figure 3.3 which leads to a contradiction. It is therefore adequate to restrict
the directed graph G̃ to comprise only edges connecting neighboring nodes in
G in order to obtain an optimal topology. This consequently allows for the
distributed computation of the minimum-energy data gathering topology of
G.

3.2 Self-Coding

In this section we first determine a lower bound for the energy consumption
of an optimal data gathering topology using self-coding. Then, an algorithm
is presented that approximates an optimal topology up to a constant factor.

3.2.1 Correlation Model

In this section we consider the problem of constructing efficient data gather-
ing trees in the model of explicit communication introduced in [27]. In this
model, nodes are only able to encode their own raw data in the presence
of other raw data routed through them.3 Thus, the reduction in data size
at a node vi is due to the direct availability of side information locally at
vi. If no side information is available at node vi, the packet size of pi is
sr bits. However, if raw data is routed on their way to the sink t through
vi, the node can encode its data such that the size of pi reduces to se bits
with se < sr. That is, different from the correlation model in Section 3.1
the correlation between data is uniform and therefore ρij = 1 − se/sr for all
vi, vj ∈ V with i 	= j. Consequently, if a node encodes its data using some
other data, the encoded data will have exactly se bits. It is shown in [27] that

3In contrast to the model introduced in Section 3.1 where the inverse restriction is
assumed.
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for this restricted correlation model the problem of finding minimum-energy
data gathering trees is NP-complete, by applying a reduction to set cover.
Moreover, [27] proposes a heuristic based on a combination of a shortest path
tree augmented by travelling salesperson paths.

3.2.2 Lower Bound

Given a graph G = (V, E) and a sink node t ∈ V , we present an approxi-
mation algorithm that guarantees a data gathering tree for which the cost
C(G) defined in Equation (3.1) is only a constant factor higher than the cost
of an optimal topology. We first give a lower bound on the cost, that is, the
energy consumption of the optimal topology.

Lemma 3.2 (Lower Bound). The cost of an optimal topology copt is
bounded from below by copt ≥ max(se · cSSP, sr · cMST), where cSSP is the
sum of the costs of all the shortest paths to the sink t, and cMST is the cost
of the minimum spanning tree of all nodes in V .

Proof. Nodes in the graph can either send their raw data directly to the sink,
or use the raw data of other nodes to encode their data, and then send their
data to the sink. Let B be the set of nodes sending their raw data to the
sink t without encoding. Let the nodes who encode their data using the raw
data of node u ∈ B be the set Su. The set B and the sets Su for all u ∈ B
form a partition over all nodes in V , that is: V = B ∪∑u∈B Su.

After deciding how V will be partitioned, the optimal algorithm will use
the shortest paths (SP) to deliver the encoded data of all nodes in V \ B
to the sink since this minimizes the total energy consumption. Therefore,
nodes in Su need to encode their data using the raw data of node u, u being
a node in set B. On the other hand, the sink t needs to decode the encoded
data of nodes in Su; to do so, t also requires the raw data of u. The optimal
topology to distribute the raw data of u is given by the Steiner tree (ST)
where the nodes in Su, node u, and t are terminal nodes. Summing up, the
cost of the optimal topology is therefore

copt =
∑
u∈B

(
sr · ST(Su, u, t) +

∑
v∈Su

se · SP(v, t)

)
.

We can lower-bound this equation in two ways. By definition SP(vi, vj) =
ST(vi, vj) and any additional terminal node in the Steiner tree increases the
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cost of the tree. Furthermore, since se < sr it follows that

copt =
∑
u∈B

(
sr · ST(Su, u, t) +

∑
v∈Su

se · SP(v, t)

)
≥

∑
u∈B

se · SP(u, t) +
∑
u∈B

∑
v∈Su

se · SP(v, t)

=
∑
u∈V

se · SP(u, t) = se · cSSP .

On the other hand, all nodes in B send and all nodes in V \ B receive at
least one packet containing raw data. Thus, raw data is distributed at least
on a spanning tree. Since the minimum spanning tree (MST) is the cheapest
possible spanning tree, the cost of the optimal algorithm is also bounded
from below by the cost of the MST, used to transmit raw data. The lemma
follows immediately.

3.2.3 Algorithm and Analysis

In the following we present the low energy gathering algorithm (LEGA),
an approximation algorithm that is optimal up to a constant factor. The
algorithm is based on the shallow light tree (SLT), a spanning tree that
approximates both the MST and the SPT for a given node (e.g. the sink).
The SLT was introduced in [5, 10]. Given a graph G = (V, E) and a positive
number γ, the SLT of G has two properties:4

• Its total cost is at most 1 +
√

2γ times the cost of the MST of the
graph G;

• The distance on the SLT between any node in V and the sink is at
most 1 +

√
2/γ times the shortest path from that node to the sink.

The algorithm contains the follows steps: First, the SLT spanning tree
is computed, the sink node t being the root of the SLT. Then, t broadcasts
its packet pt to all its one-hop neighbors in the SLT. When node vi receives
a packet pj consisting of raw data of a neighboring node vj , vi encodes its
locally measured data pi using pj , and transmits the packet pj

i to the sink t
on the path given by the SLT. Then node vi broadcasts its packet pi to all
its one-hop neighbors but vj ; in other words, each node receives the raw data
from its parent in the SLT. The sink t has its own data pt available locally
(or it can use data of one of its first-hop neighbors), and thus can perform
recursive decoding of the gathered data, based on the encoded data that it
receives from all other nodes in V .

4For more details on the construction of the shallow light tree (SLT) we refer to [74].
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Theorem 3.3. LEGA achieves a 2(1 +
√

2)-approximation of the optimal
data gathering topology.

Proof. The total cost of LEGA is given by

cLEGA = sr · cSLT +
∑

vi∈V

se · |pathSLT (vi, t)|.

The first term follows from the fact that each node sends its raw data to
all its children in the SLT. The second term corresponds to the sum of the
shortest paths from all nodes in V to the sink node t in the SLT. Using the
SLT properties and setting γ = 1 we obtain

cLEGA = sr · (1 +
√

2)cMST + se · (1 +
√

2)cSSP

≤ 2(1 +
√

2)copt.

The second equation follows directly from Lemma 3.2.

Since [74] provides an algorithm constructing the SLT of a graph G that
runs in O(m + n log n) time, the running time of LEGA is also O(m + n log n).

3.3 Related Work

During the design of data gathering protocols for sensor networks, researcher
have identified the importance of data aggregation to improve energy effi-
ciency [63, 79]. In [63] Directed Diffusion is proposed, a protocol in which
sensors create gradients of information in their respective neighborhoods.
The sink node requests data by broadcasting interests. If interests fit gradi-
ents, paths of information flow are formed and data is aggregated on the way
to reduce communication costs. The key idea in [51] is to reduce the num-
ber of nodes communicating directly with the sink by forming randomized
clusters. Each cluster-head encodes data arriving from nodes in its cluster,
and sends an aggregated packet to the sink. However, the main drawback of
the protocol in [51] is the requirement that all nodes must be able to directly
communicate with the sink.

In [45] the problem of data gathering is addressed by using concave, non-
decreasing cost functions to model the aggregation function applied at in-
termediate nodes. The authors propose a hierarchical matching algorithm
resulting in a aggregation tree that simultaneously approximates all such
cost functions up to a logarithmic factor. However, in their model only the
number of nodes providing data to an aggregating node decides on its aggre-
gation performance regardless of the correlation among the available data.
That is, the impact of data correlation is not explicitly considered. This too
simplistic assumption that an intermediate node can aggregate multiple in-
coming packets into a single outgoing packet irrespective of their correlation
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is also assumed in other work [70, 94, 95]. In contrast, a distance based cor-
relation model is employed in [116]. The authors propose a static clustering
scheme leading to energy efficient data gathering topologies for a wide range
of spacial correlations.

Based on signal processing techniques, [22] and [27] tackle the problem of
minimum-energy data gathering by applying Slepian-Wolf coding. In their
model the correlation among nodes is known a priori and is used to optimize
the rate allocation of a distributed compression algorithm which obviates
the need to exchange data between sensor nodes to learn their correlation
structure.

The work which is most closely related to the problem we consider in
this chapter is the one involving the concept of self-coding [27]. The authors
prove that already for a restricted model, where nodes are only allowed to
encode their own data in the presence of side information, the problem of
finding minimum-energy data gathering trees is NP-complete, by applying
a reduction to set cover. Moreover, in [27] a heuristic based on a combi-
nation of a shortest path tree augmented by travelling salesperson paths is
proposed. We continue their work by establishing a strict classification of
coding strategies. Furthermore, we provide an approximation algorithm in
case of self-coding and an optimal one for the foreign coding strategy.





Chapter 4

Ultra-Low Power Data Gathering

In Chapter 2 and 3, we attempted to lower the power consumption of a sensor
network by means of confining interference or avoiding the transmission of
redundant information. In this chapter we investigate another strategy to
conserve energy which is orthogonal to the aforementioned approaches. It is
based on the observation that the energy wastage of the radio, even in idle
listening, is three orders of magnitude higher than a node’s power drain in
sleep mode. As a consequence, we try to turn on the radio only if a data
transfer is pending. This requirement is hard to fulfill since multi-hop routing
techniques must be applied to be able to transmit data from all nodes in a
possibly large spatial area to the data sink. Energy-efficient data exchange is
a nontrivial task in single-hop networks but becomes even harder if routing
over multiple hops is required. Sensor nodes are no longer able to schedule
their transmissions strictly according to their own demands since they also
need to activate their radios to relay data messages from other nodes towards
the sink.

We focus on data gathering applications producing continuous, low-rate
data traffic throughout the rest of this chapter. Examples thereof include
precision agriculture [16], glacier displacement measurements [103], natural
habitat monitoring [101], or microclimatic observations [140]. All of these ap-
plications generate periodic data samples at low rates resulting in light traffic
load and thus low bandwidth requirements. We propose Dozer, an ultra-low
power network stack tailored for this category of applications. It incorporates
a MAC layer, topology control, and a routing protocol. We refrained from
integrating existing low-power solutions for any of these subsystems since it
is our strong belief that only a perfectly orchestrated network stack is able to
achieve minimum power consumption and therefore maximize network life-
time. The primary goal of Dozer is to reduce idle listening and overhearing.
In theory, a TDMA-based MAC protocol constructing a global schedule to
determine exact send and receive times for each node would solve the prob-
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lem of overhearing and idle listening. In a real-world setting clock drifts and
a frequently changing external conditions render plain TDMA costly since
maintaining an accurate schedule is a highly complex and energy consuming
task. Dozer takes these facts into account. It builds a data gathering tree
on top of the underlying network topology and provides nodes with precise
wake-up schedules for all communication, relying only on local synchroniza-
tion. Furthermore, it addresses the problem of temporary network partition
and energy efficient tree adaptation in case of local link failures. Despite
these additional considerations Dozer attains low radio duty cycles in both
single-hop and multi-hop networks and thus achieves high energy efficiency.
The protocol was implemented using TinyOS. Its performance was evaluated
using an indoor deployment consisting of 40 TinyNode [47] sensor nodes. Us-
ing a sampling period of two minutes Dozer achieved an average duty cycle
of less than 0.2% on all nodes. Given two off-the-shelf alkaline batteries with
a capacity of 2000 mAh each and ignoring power consumption of application
specific sensor equipment, as well as battery self discharge, Dozer is able to
operate the network for a lifetime of approximately 5 years. As a conse-
quence, system lifetime is determined by the self-discharge rate of modern
batteries.

4.1 System Overview

The Dozer system is intended to meet common demands of environmental
monitoring applications. It enables reliable data transfer, has self-stabilizing
properties—and is thus robust to changes in the environment—, and it is
optimized for long system lifetime. Network latency and flexibility towards
dynamic bandwidth demands are considered to be of less importance.

In order to forward data to the base station Dozer establishes a tree struc-
ture on top of the physical network. This guarantees that information from
any node is conveyed on a loop-free path to the data sink which constitutes
the root of the tree. Each node fills two independent roles in tree mainte-
nance. On the one hand, it acts as a parent for directly connected nodes
one level deeper down the tree. On the other hand, it is a child of exactly
one node one level higher in the tree. Data is transferred to the sink using a
TDMA protocol. However Dozer does not construct one global schedule for
the whole network but splits it up at each node. Consequently, each node
has two independent schedules; one in its role as a parent and one for its
child role. As a parent a node decides when each of its children is allowed to
upload data. Vice versa, in its role as a child it receives an update slot from
its own parent. Thus, Dozer only constructs single-hop schedules and does
not rely on any global synchronization. Each round of a parent’s TDMA
schedule is initiated by the transmission of a beacon message. Simplified,
beacons are the heart beat of the Dozer system. In its child role, a node
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Figure 4.1: Architecture of the Dozer system represented by the light gray
boxes. Arrows indicate the command flow between the different modules.

synchronizes on the received parent beacon. However, it does not adjust its
internal clock but calculates the outset of its upload slot in relation to the
last beacon reception time.

Dozer does not make use of a traditional MAC protocol. In fact, the sys-
tem does not try to prevent nodes from sending at the same time. Collisions
are explicitly accepted. However, using randomization Dozer ensures that
two schedules drift apart quickly in case of a collision. This scheme is advan-
tageous as a message receiver always exactly knows when the corresponding
sender is going to start its transmission. This greatly prolongs network life-
time since nodes are able to maximize their time in energy-efficient sleep
mode. Facing collisions data transmissions in Dozer are always explicitly
acknowledged.

As network conditions change over time so does the network topology.
Consequently, the data gathering tree cannot be stable in the long run. To
reduce increased message delay in case of link failures, each node maintains
a list of additional potential parents. Choosing a candidate from this list a
new connection can be established with little overhead.

4.2 Dozer Implementation

The high-level overview in Section 4.1 outlines that Dozer handles several
interwoven tasks in parallel. More precisely, the system can be subdivided
into four logical components. Figure 4.1 depicts the individual components
and shows how they interact with each other. In the following the function
of each component is discussed in detail.
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4.2.1 Tree Maintenance

The Tree Maintenance module coordinates a node’s integration in the data
gathering tree of Dozer and guarantees constant connectivity. Furthermore
in case of network failures it sets the node in a energy efficient suspend mode.

Connection Setup

It is essential for every node to be part of Dozer’s data gathering tree. Nodes
without connectivity are unable to provide data to the base station and are
thus of no use. Upon waking up, a node tries to join the tree as quickly
as possible in the so-called bootstrap phase. Since it does not yet have any
conception of its neighborhood, it starts listening for beacon messages of
nearby nodes. Beacon messages are periodically sent by already connected
nodes at the beginning of their TDMA schedule to enable the integration
of disconnected nodes. After scanning for the full length of a TDMA round
each received beacon message is analyzed and the corresponding node is
ranked according to a rating function. The function’s current implementation
considers a node’s distance to the sink as well as its load—the number of
direct children—in this computation. Both of these values are part of the
beacon message and are thus readily available. To minimize tree depth,
distance has a higher weight than load in the computation. The node now
tries to connect to the highest rated neighbor and the gathered information
about all other overheard potential parents is stored.1

The actual connection setup is initiated after the transmission of the next
beacon of the selected neighbor (see Figure 4.2). After sending its beacon the
potential parent stays in receive mode for a short amount of time. Within this
contention window it accepts incoming connection requests. The child uses a
simple back-off mechanism to determine when to send its connection request
message. This contention phase is needed since multiple nodes may want
to establish a connection with this parent at the same time. On receiving
a connection request message the parent assigns the new child a slot in its
TDMA schedule and returns this informations by means of a handshake
message. In the current implementation a node only accepts one new child
per beacon interval. This restriction serves as a simple form of load balancing.
A node failing to connect to a specific neighbor may first try to join the tree
at another node with similar rating before retrying on the same parent.

Since listening for the whole length of the contention window after each
beacon transmission is expensive, in Dozer an activation mechanism precedes
the actual connection setup. As depicted in Figure 4.2 the child transmits an
activation frame immediately after receiving the potential parent’s beacon

1Other possible parent selection strategies may also rely on randomization or link
quality measurements. Some of these mechanisms were first suggested in [40] and later
analyzed in [164].
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Figure 4.2: Connection setup – The parent node sends a beacon (B). Upon
beacon reception the child sends a busy tone to activate the contention win-
dow. The child then transmits its connection request (C). A handshake (H)
serves as an acknowledgment. Shaded areas denote the times a node is actu-
ally listening.

message. On the other hand, the parent switches to receive mode and polls
the channel right after sending its beacon. Only if the received radio signal
strength (RSSI) indicates channel activity the contention phase is activated.
If multiple nodes want to connect to the parent in the same round their
activation frames collide. However, this imposes no problem since the parent
does not try to detect a specific pattern and the sensed RSSI still clearly
indicates activity on the medium.

Connection Recovery

Wireless links are fragile to changes in the environment and must be expected
to break at any time. Unstable weather conditions or temporary obstacles
in the area of interest can have a negative impact on the network stability.
Dozer incorporates functionality to confront this problem.

A connection to the current parent breaks if multiple consecutive data
transfers fail: The parent is declared unreachable. To replace it with little
overhead, the orphaned node queries its stored list of potential parent for
a well suited substitute and tries to establish a new connection. In case of
success this procedure costs a reasonably small amount of energy. However,
if no replacement can be found in this list the node falls back to bootstrap
mode (see Section 4.2.1) and has to conduct a costly scan to detect new
potential parents. To guarantee the availability of reasonably up-to-date
information about its stored potential parents, a node periodically listens for
their beacons. This refresh is cheap since future beacon transmission times of
a node can be predetermined accurately based on the point in time of its last
overheard beacon. This calculation is performed by the Scheduler component
described in Section 4.2.2. Additionally, to learn about the existence of
new, potentially well suited parents, a random listen mechanism is applied.
Unrelated to their two schedules nodes periodically overhear the channel for
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beacons of yet unknown nodes. To keep the incurred overhead low, these
scans must only be executed infrequently.

Suspend Mode

If a node is not connected to a parent and also cannot hear any beacons—even
when listening for a full beacon interval—it assumes the network to be down
or out of reach. Constant channel surveillance in this situation would result in
high power consumption; a node’s lifetime would decrease to a couple of days.
To circumvent such energy wastage Dozer features a special suspend mode.
Along the line of low power listening [119] the node periodically samples the
channel for activity and remains in sleep mode for the remainder of the time.
However, unlike low power listening this mode does not ensure reception of
all messages. Energy efficiency and quick reactivation in case of channel
usage can be balanced depending on the demands of the application running
on top of Dozer. Frequent channel polling results in higher power drain but
rapid connection establishment on network availability. On the other hand,
longer intervals between scans lead to improved energy efficiency but possibly
delayed reintegration of suspended nodes.

4.2.2 Scheduler

The energy efficiency of the Dozer system mostly stems from the Scheduler
module. By providing the Tree Maintenance and Data Manager modules
with precise timings it allows efficient radio usage.

Communication between a parent and its children is coordinated by a
TDMA protocol. That is, all transmissions happen at exactly predetermined
moments in time. For the exchange of a message neither sender nor receiver
have to spend energy beyond what is required to transmit or receive the ac-
tual data. In particular nodes do not have to waste energy on overhearing
the channel for pending transmissions. A global TDMA scheme however is
expensive since it demands the existence of a network-wide time synchro-
nization mechanism. To circumvent this burden Dozer only aligns one hop
neighbors in the data gathering tree. As all nodes are simultaneously parent
and child they all have to maintain two schedules; one provided by their par-
ent and one self-determined as a reference for their children. In this setting
it is complex to synchronize the internal clocks of a parent and its children.
Only by means of global time synchronization it would be possible for each
node to service both schedules with only one clock.

While in theory wake-up times can be calculated perfectly at both, par-
ent and children, clock drift has to be considered in real-world applications.
The current generation of sensor nodes is usually equipped with an electronic
oscillator exhibiting a skew of 30-50 parts per million (ppm) at room temper-
ature. Thermal differences between sender and receiver lead to significant,
additional skew.
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The self-determined TDMA schedule of a node, in the following also de-
noted as parent schedule, is of fixed length and divided into equal time slots.
Upon connection of a new child the Tree Maintenance module requests a free
slot from the Scheduler. This slot is henceforth marked as occupied and re-
served for the new child. The assignment outlasts the end of the schedule and
is only released if the corresponding child disconnects. That is, each child
owns the same time slot in every iteration of the schedule. As a consequence,
the total number of slots of the TDMA schedule confines the maximum num-
ber of children a node is able to manage.

After connection establishment between parent and child, the personal
slot number of the child in its parent’s schedule is known at both nodes.
They can thus compute the start of this slot relative to the beginning of the
schedule. For each slot of its schedule the parent checks if it is occupied and
listens for incoming data if necessary. Analogously, at the child the Scheduler
triggers the Data Manager component at the start of its upload slot to permit
a timely transfer of potentially queued data messages.

As mentioned above the protocol does not provide for any direct clock
synchronization. Instead, at the outset of a new round of the schedule the
Tree Maintenance module is triggered to send a beacon message. This beacon
is received by all children and timestamped according to their local clocks.
Since both parent and children share the knowledge about the time of the
beacon transmission this moment in time serves as an anchor point for im-
plicit clock synchronization. No adjustments of system clocks are required
but only this timestamp needs to be stored for further timing calculations.
For the remainder of this round of the TDMA schedule all events are com-
puted in relation to this timestamp. The transmission time of the next
beacon is also determined according to this value. As a positive side effect,
clock drift accumulation over multiple rounds of the schedule is prevented.
Furthermore, the complexity for handling both independent schedules dimin-
ishes since only two values, used as offsets for the internal clock need to be
stored.

Without a global schedule, collisions between the transmissions of neigh-
boring nodes that are not part of the same schedule can no longer be ex-
cluded. Other systems facing the same problem (e.g. [53]) apply secondary
MAC protocols such as CSMA/CA to resolve it. However, since bandwidth
demands in the considered scenario are low, collisions happen infrequently.
Dozer thus refrains from handling them actively. In the long run the costs
for retransmissions are cheaper than the costs it would take to prevent them.
But regarding collisions there exist an additional problem which needs to be
tackled. Collisions may indicate the undesired alignment of two independent
schedules. If this is the case collisions will recur in subsequent rounds of the
schedule, without intervention. To counter this threat, Dozer extends the
length of a TDMA round by a randomly chosen time span—also referred to
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as jitter. The parent draws a new random number for each round of the
schedule which is then added to the round’s length. It can be shown that a
linear relation between the maximum transmission time per slot and a rea-
sonable upper bound for this random offset exists. Dozer uses a bound of
seven times the time needed to flush the local message buffer (c.f. in Sec-
tion 4.2.3). With this value, in case of a collision between two unsynchronized
transmissions, the chance for a second consecutive collision is less than 50%
in expectation. For any realistic scenario this implies that a maximum jitter
of less than one second suffices.

This random prolongation of the TDMA rounds introduces the problem
of how to predict the exact time of the next parent beacon. Thus, the seed
value of the random number generator used for calculating the next random
offset is included in each beacon. With this value each child is able to execute
the same computation as the parent and to predict when the next beacon
message is due. At the parent, the current random number is used as seed
value to generate the next random number. Consequently, even if a child
misses one or more consecutive beacon messages of its parent it is still able
to determine the next beacon arrival time. It therefore recursively draws
random numbers until it has compensated for the number of missed beacons.

4.2.3 Data Administration

At the end of the day, Dozer’s main task is to transport sensor readings from
all nodes to the data sink. While a node’s data upload times are strictly
defined by the Scheduler module data injection by the application is always
possible. Hence, the Data Manager module features a message queue buffer-
ing injected data pending for transmission. Since data upload to the parent
and data reception from the children is unsynchronized, incoming messages
from the children are also appended to this queue.

As soon as the Scheduler module signals the beginning of the parent
upload slot the Data Manager tries to transmit all queued messages. Each
message is explicitly acknowledged and only removed from the queue of the
sender if the receiver confirms its correct reception (see Figure 4.3). With the
acknowledgment the parent not only takes over responsibility for the packet
but also notifies the child about how many more messages it is willing to
accept. As a consequence, at most one unnecessary message transmission is
possible if the parent is unable or unwilling to handle more messages. The link
acknowledgments guarantee that no messages are lost on their path towards
the sink despite possible collisions on the wireless links. If a message transfer
fails to be acknowledged the child immediately stops its data upload for this
round of the schedule since a temporal interruption on the medium may be
encountered. In case of consecutive transmission failures over multiple upload
slots the Data Manager instructs the Tree Maintenance module to switch to
another parent.
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A A A

Figure 4.3: Message reception of a parent with two children. Upload slots
are determined by parent beacon (B). All data messages (D) are explicitly
acknowledged (A).

Due to the limited amount of memory available on current sensor node
platforms the queue size is limited. Different buffering strategies may be em-
ployed depending on the application requirements. Dozer’s default strategy
only allows to keep the newest message from each distinct node in the queue;
outdated entries are overwritten.

4.2.4 Command Management

While data flow in Dozer is strictly unidirectional towards the sink it is often
desirable to be able to send information to one or several nodes in the net-
work. Dozer establishes such a lightweight backward channel by making use
of the beacon messages. Commands injected at the data sink are included in
the sink’s next beacon message. Every node that receives a beacon contain-
ing a command temporarily stores the command and includes it in its next
beacon. By repeating this procedure at each level of the tree the command
is disseminated through the whole network. Besides addressing a command
to all nodes in the network the injection of commands for individual nodes
is also supported. Nodes that are not directly addressed by a command also
relay it to enable propagation to nodes deeper down the tree.

Upon reception of a beacon message from the parent the Tree Manage-
ment component hands the command to the Command Manager module
for further processing. The module checks if this node belongs to the set
of intended recipients of the command. If this is the case the command is
dispatched to the application running on top of the Dozer system. Thus, ap-
plications are able to define their own custom commands and corresponding
command handlers.
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Current Draw Power Consum.

uC sleep, radio off 6.0 uA 0.015 mW

uC active, radio idle 12.17 mA 30.43 mW

uC active, radio RX 12.63 mA 31.58 mW

uC active, radio TX 16.10 mA 40.25 mW

Table 4.1: Measured current consumptions of the TinyNode platform in dif-
ferent states at 2.5 volt.

4.3 Experimental Evaluation

In this section we evaluate Dozer’s performance under different conditions
in real-world testbeds. First, a set of preliminary measurements on a small-
scale network are conducted to estimate the scalability of the system. In a
second step we present results of a deployed indoor network consisting of 40
sensor nodes. Clock drift compensation is implemented by means of worst-
case guard times guaranteeing a prior wake up of the receiver before the
sender starts its transmission.

4.3.1 Hardware and Operation System

For all experiments we used the TinyNode 584 sensor platform [47] produced
by Shockfish SA was used. It features a MSP430 mirocontroller with 10 kB of
RAM and 48 kB of program memory. Furthermore 512 kB of external flash
are available. However, due to the high energy costs for access to the flash
Dozer does not make use of it. The platform includes a Semtech XE1205
radio transceiver. This radio is known for its good transmission ranges and
high data rates of up to 153 kbit/s. For our measurements the nodes were
operated at 868 MHz using 0 dBm transmission power and a bandwidth of
75 kbit/s2. As a power source two customary 1.2 volt rechargeable batteries
were installed with a capacity of 1900 mAh each. The measured current draws
for sleep mode, idle listening, receiving, and sending under these conditions
are shown in Table 4.1. As can be extracted from the table, on the TinyNode
platform idle listening is nearly as expensive as the actual reception of a
message. Thus it benefits greatly from Dozer’s scarce use of unscheduled
random channel overhearing. Furthermore, the cost for transmission and
reception of a message are in the same order of magnitude.

Dozer is implemented on top of the TinyOS-1.x operating system. No
changes were made to the operating system excepts the replacement of a
timer module whose genuine version contains a bug. Under certain conditions

2As described in [47], at the same transmission power, the XE1205 radio attains
higher communication ranges than other state-of-the-art platforms. Hence, we are able
to transmit at lower power while still achieving good ranges.
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Figure 4.4: Radio duty cycle of a node depending on its number of children.
Measurements were performed with beacon intervals of 15 s (square), 30 s
(circle), 1 min (triangle), and 2 min (star), respectively.

timer events are triggered too late. In normal operation common TinyOS-
applications do not encounter this undesired behavior frequently. However,
due to the heavy load on the timer module, this malfunction regularly occurs
in the Dozer system with disastrous consequences. A once deferred schedule
becomes useless since all relative timings are out of sync. Consequently, a
node affected by this problem inevitably looses connectivity and falls back
to bootstrap mode. Thus the replacement of the timer module was mission
critical.

The memory footprint of Dozer is 20 kB in program memory and 1.7 kB
RAM. The message queue of size 20 in the Data Manager module thereby
contributes 39% of the RAM usage.

4.3.2 Small Scale Experiments

Measuring the energy drain of a node is a non-trivial task. On the one
hand, the measuring interval is too long for high-resolution measurements
with an oscilloscope. On the other hand, a voltmeter is too inaccurate to
capture short changes in current draw. Hence, we decided to measure energy
consumption indirectly. For this purpose, all nodes log their radio duty
cycles. This is achieved by summing up the differences between ratio startup
and shutdown times. Since spotting the exact switching times from send to
receive mode and vice versa is difficult, only the total uptime is recorded
ignoring the specific state of the radio. This information is propagated to
the base station using Dozer’s own data gathering mechanism. The collected
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information can be converted to power consumption values using Table 4.1.
As nodes only provide the overall radio uptime, a worst-case approximation
is made. That is, it is assumed that they are always in transmit mode if their
radio is active. As a consequence, all results related to energy consumption
throughout the remainder of this chapter can be considered as an upper
bound for the actual power consumption.

To investigate the relation between a node’s power drain, its number of
children, and the beacon interval time we conducted a series of experiments
on a small network with predefined topology. In each run the node of interest
was directly connected to the sink. Over time, up to three children were
included in the network and forced to connect to the monitored node. This
sequence was repeated with beacon intervals in the range of 15 seconds to
two minutes. The data sample interval was set to four times the length of a
beacon interval. The results of these experiments are depicted in Figure 4.4.

Originally, the goal of this experiment was to come up with lower bounds
for the achievable duty cycles at different positions in the data gathering
tree. However, initial test results exhibited unexpected fluctuations when
run with different sensor nodes. After closer examination, it became clear
that the inherent clock drift is a significant factor influencing the total duty
cycle. Thus the following results do not represent precise lower bounds.
Nevertheless, they provide an accurate approximation of the radio uptimes
in real networks.

Figure 4.4 shows that the duty cycle decreases as the beacon interval
grows larger. This elementary observation is based on the fact that the
number of messages to be transmitted within one beacon interval is constant
independent of its length. Hence, longer intervals lead to prolonged sleeping
periods without significantly increasing the radio uptime. Using a similar
line of argument, the variable additional costs for a newly connected child at
different beacon intervals can be understood.

The reduction of the incurred overhead for the fourth child in the 15
second beacon interval experiment illustrates another phenomenon worth
mentioning. Costs for additional children do not necessarily have to grow
linearly. Simplified, a parent’s costs for a child are twofold. On the one hand,
it has to receive the child’s data messages. These costs cannot be prevented.
On the other hand, the parent has to forward the received messages. Thus,
in its next upload slot it has to power up the radio and to send the pending
messages. Since the radio start-up consumes a similar amount of time, and
thus energy, as the transmission of one data message, its overhead is not
negligible. Consequently, if the parent is able to upload data from two or
more children in one upload slot it saves the additional overhead of turning
on the radio for each of these children individually—costs per child decrease.
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Figure 4.5: Indoor deployment of 40 sensor nodes including a snapshot of
Dozer’s data gathering tree. Node 0 (upper-right corner) acts as data sink.

4.3.3 Office Floor Experiment

To put Dozer’s fitness for real-world deployments to the test, a generic indoor
network was run for several weeks. The topology was no longer predefined
for this setting but automatically constructed by the Dozer system.

Setting and Protocol Parameters

The considered testbed consisted of 40 TinyNode sensor nodes. The nodes
were deployed on one floor of our office building (see Figure 4.5). The di-
mensions of the building are approximately 70 x 37 meters resulting in an
testbed area of more than 2500 square meters. During the whole operation of
the network, the floor was populated with more than 80 people during office
hours. Thus, the nodes were exposed to frequently changing environmen-
tal conditions. Furthermore, during the deployment phase special attention
was payed to construct a network with heterogeneous density. While nodes
were concentrated in the upper-right part of the building to achieve a dense
region, the southern part was only sparsely populated. This allowed the per-
formance evaluation of Dozer in networks featuring different characteristics.
In addition to 38 sensing nodes, a base station (Node 0) was placed in the
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Beacon interval 30 s

Max. jitter 650 ms

Data sampling interval 120 s

Potential parents update interval 15 min

Overhearing 1 s/4 h

Compensated clock drift 100 ppm

Max. stored potential parents 5

Message queue size 20

Table 4.2: Configuration of the Dozer system for the office floor testbed.

upper-right corner of the map. This location was chosen to get a deep data
gathering tree and to enforce multi-hop communication. One further extra
node was positioned in the vicinity of the sink for debugging purposes. This
node acted as a network sniffer which overheard and logged all network traffic
at the base station.

In total Dozer was tested for more than one month on this network. De-
tailed logging information forming the basis of the evaluation in this section
were gathered during one week of operation. Each node thereby sent approx-
imately 5000 data messages to the sink.

As described in Section 4.2 the Dozer system can be tweaked to suite
the requirements of a specific application. Table 4.2 shows the important
parameters and their assigned values for the office floor testbed. Though
the anticipated clock drift in our scenario is less than 50 ppm, Dozer was
configured to allow for 100 ppm. Consequently, more energy than strictly
necessary was consumed. In return, with this setting, the system is expected
to operate properly in outdoor environments facing moderate temperature
changes. All other values were chosen to represent a possible demand of a
real application in the domain of environmental monitoring.

Tree Topology

Figure 4.5 shows a snapshot of the data gathering tree as it was witnessed
during the experiment. Each node features one outgoing arrow pointing to its
parent. It can be seen that the base station (Node 0) has numerous children.
This has two different reasons. On the one hand, the parent rating function
described in Section 4.2.1 promotes connections to the sink since the latter
has zero tree depth. As a consequence, each node receiving a sink beacon
fist tries to connect to the base station before inquiring any other nodes. On
the other hand, the base station was flashed with a slightly modified version
of Dozer. Since the sink usually runs on external power—as it is the case in
our setting—it is less compelled to economize on its energy resources. Thus,
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Figure 4.6: Number of successful (black) and failed (grey) connection at-
tempts per node. Per node packet loss on the second y-axis.

the contention window was extended and the sink was configured to accept
more than one child per connection phase.

Another observed phenomenon is the fact that hardly any connections
passed the central core of the building. We assume that multiple sources of
interference led to this barrier. For one, the corridors are lined with solid
metal lockers perturbing most radio communication. On the other hand, this
zone also comprises the ventilation system, sanitary facilities, and multiple
elevators producing additional interference.

We examine the stability of the data gathering tree by investigating topol-
ogy changes and message loss. Topology changes are indicated by a node
exchanging its parent. Both of these values are depicted in Figure 4.6. As
hoped for, message loss was low, in average 1.2% and at maximum 3.15%.
However, Node 128 is excluded from this analysis. Due to its peripheral po-
sition in the network it was only able to connect to one single other node
(Node 112). In case of a temporary interruption in the connection to its
parent the node went to suspend mode. In addition, the low network density
in its vicinity resulted in a low probability for a quick recovery. Thus, the
node suffered from message loss of approximately 30%.

The measured high message yield at the base station is evidence of the
correct operation of Dozer’s Tree Maintenance module. As emerges from
Figure 4.6, a significant number of topology changes were necessary to cope
with momentary, local channel irregularities.
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Figure 4.7: Average radio duty cycle of each node including RMS errors.

Energy Consumption

As in the small testbed described in Section 4.3.2, the energy consumptions
of the deployed nodes were measured indirectly via their duty cycles. Fig-
ure 4.7 depicts the average radio activity of each node in the network. The
upward error bar shows the root mean square (RMS) error of all measure-
ments exceeding the average duty cycle; the downward error bar is defined
accordingly. The overall average duty cycle of all sensing nodes is 1.67‰

with a standard deviation of 0.0004. Applying the values from Table 4.1
results in an mean energy consumption of 0.082 mW.

Looking at individual nodes, the sink had by far the highest radio uptime
of almost 1%. This is not surprising since it had to process the data of
the whole network. Additionally, the extended contention window directly
affects its duty cycle and explains the considerable difference in comparison
to the sensing nodes.

For further investigation of the energy consumption, we take an in-depth
look at the two sensing nodes with highest duty cycles—Node 114 and
Node 124. Node 124 exhibits a radio uptime of 2.8‰. Figure 4.8 shows
a snapshot of 2000 consecutive data messages of this node. As can be seen
for most of the time the node ran at a duty cycle of 0.7‰. Comparing this
value to the results from Section 4.3.2 leads to the conclusion that the node
is a leaf in the data gathering tree. However, three different energy intensive
effects can be observed. First, the most dominant peaks exceeding 20% are
due to scans for a full beacon interval. This means that the node was forced
to establish a new connection but did not find an appropriate potential par-
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Figure 4.8: Radio duty cycle of Node 124 over a period of three days.
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Figure 4.9: Radio duty cycle of Node 114 over a period of three days.
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ent in its cache. Second, the overhearing phase once every four hours results
in a temporary duty cycle of around 1%. Finally, the potential parents up-
dates lead to the fringes of up to 1‰. These insights and the knowledge that
Node 124 was located in a small storage room allows the conclusion that it
had but a small neighborhood. Consequently, in times of normal operation it
was able to run at nearly optimal duty cycle. However, in case of connection
interruptions the interference affected all its possible connections resulting in
a fallback to bootstrap mode. Unlike Node 128, it only suffered from brief
network disconnections. Thus, it quickly managed to reintegrate in the data
gathering tree.

Node 114 features a similar average duty cycle as Node 124, namely 3.2‰.
But its power consumption is caused by other reasons as the different RMS
error values indicate. Figure 4.9 depicts the radio duty cycle of Node 114 over
a period of 2000 successive data messages. Parents updates and overhearing
which are always part of a node’s normal operation can also be spotted in
this chart. However, there is no evidence for a bootstrap phase. In fact,
Node 114 acts as a relay for several children and thus cannot reach minimal
duty cycles as low as Node 124.

4.4 Clock Drift Compensation

In Section 4.3 Dozer dealt with clock imprecisions using worst-case guard
times. For each message reception the radio was turned on in time to guar-
antee a successful transmission at a relative drift of up to 100 ppm. With a
beacon interval and thus synchronization period of 30 seconds these 100 ppm
result in a guard time of 4.5 milliseconds. In comparison to the 4.7 mil-
liseconds required to actually transmit a data message this is a significant
overhead. Since the majority of all transmissions between two nodes do
not require worst-case guard times a more sophisticated drift compensation
mechanism has the potential to preserve a large amount of energy.

An appropriate drift compensation component for Dozer has to feature
several properties. First, it should not demand additional message exchanges.
Considering Dozer’s low message rate requirement to maintain the data gath-
ering tree the cost of extra synchronization messages would not only nullify
their positive effect but even increase total energy consumption. Second, due
to the inherent limitations of current sensor network hardware in terms of
memory and computation power complex calculations and data structures
are out of scope. Bearing these restrictions in mind, we developed a drift
compensation component that solely recycles information produced by the
tree maintenance component.

The approach of having the receiver compensate clock skew is reasonable
when using fixed guard times but suffers from a scalability problem if dynamic
drift compensation is applied. Each node in Dozer’s data gathering tree
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can have a large number of children and would thus be obliged to compute
and maintain an individual drift prediction for each of them. Dozer avoids
this issue by exploiting the tree structure of the network. It burdens the
child with the task of drift compensation for all communication with its
parent—independent of whether it is sender or receiver. Hence, each node in
the network only has to handle the drift compensation for one bidirectional
connection.

With the periodic beacon transmission a message exchange is available
which can be used to synchronize a child with its parent. When a child first
connects to a new parent it is unable to predict their relative drift. Conse-
quently, it uses a worst-case guard time of 200ppm. On receiving the next
beacon the message is immediately time-stamped using the current system
time of the child. From the information contained in the parent beacon the
child is able to compute how much time has passed between the last two
consecutive beacon transmissions according to its parent’s clock. Based on
this value and its own local timestamps the child derives the current rela-
tive drift between the two nodes.3 The child then incorporates its current
drift estimation to compute the next beacon reception time. This process is
repeated on each beacon reception in order to maintain an up-to-date drift
prediction.

However, a drift compensation system has an additional task besides drift
prediction. It does not suffice to know when to expect the next transmis-
sion but we also need to know how much the actual drift may vary from
the computed prediction. This knowledge is essential as it is required to
determine how much in advance and for how long the radio needs to be
turned on to maximize packet reception probability while minimizing energy
consumption; in other words the system has to decide what dynamic guard
times to use. In a completely stable environment this guard time could be
set to zero as messages would always be perfectly on time. In real-world sce-
narios though, drift changes over time. Thus even an ideal drift estimation
system fails if the environmental conditions abruptly change in between two
synchronization cycles and no additional guard times are used.

Dozer tackles this problem by starting out with a large guard time. As
described before a newly connected node uses a worst-case guard time for
the first beacon reception. After receiving the next beacon the difference
between the predicted and the actual reception time, denoted as estimation
error, is used as guard time for further communication. As a consequence,
the employed guard times rapidly converge towards zero. As the system still
has to cope with sudden changes in the environment we limit the minimum
guard time to the maximum expected drift change within one beacon interval.
This value is hardware dependent and was empirically determined for the

3This one-way drift prediction mechanism was shown to provide good relative drift
estimation [59].
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TinyNode platform. The maximal measured estimation error of 3 jiffies4 in
one beacon interval prompted us to set Dozer’s conservative minimum guard
time to 20 jiffies.

In practice it still has to be expected that the system sporadically fails to
receive transmissions. In this case the guard time is immediately set back to
its initial worst-case value. Consequently, a trade-off between the size of the
minimum guard time and the number of failed transmissions has to be made.
For networks operating at more or less stable temperatures such as indoor
deployments, an aggressive minimum guard time results in best performance.
On the other hand, networks which have to deal with frequent temperature
changes such as most outdoor deployments benefit from a more conservative
setting.

4.4.1 Evaluation

The indoor deployment used in Section 4.3.3 serves as a benchmark to assess
the influence of the introduced enhancements and modifications on the power
consumption of individual nodes. The drift compensation system was set up
to allow for up to 200 ppm of relative drift and a maximal drift change of
20 ppm per beacon interval. All other parameters remained the same. We
deactivated Node 128 to be able to compare the results with those of Sec-
tion 4.3.3. Unfortunately, Node 132 failed shortly after the initial deployment
and did not recover.5 As a consequence this node is excluded from all further
calculations.

Using worst-case guard times—compensating up to 100 ppm of relative
drift—Dozer produces an average radio duty cycle of 1.67‰ on sensing nodes.
A repetition of the same experiment with drift compensation results in a
mean duty cycle of 1.28‰ which corresponds to an improvement of more
than 23%. The lion’s share of the gained radio sleep time stems from the
drift compensation component. Looking at the minimum duty cycle of a
leaf node a reduction from 0.7‰ in Section 4.3.3 to 0.57‰ is found. This
observed performance gain can be accredited to the drift compensation com-
ponent as no other modifications influence this specific value. Consequently,
this component accounts for approximately 18% reduced radio uptime. The
remaining 5% result from a change in the potential parents mechanism. As
described in Section 4.2.1 each node maintains a list of neighboring nodes
which may serve as a parent in case of a problem with the current connection.
This list is refreshed regularly in order to maintain up-to-date information
about known neighbors. In this experiments, however, the update procedure
is disabled. The drawback of this step are increased setup costs when a new
parent is required as it is harder to time a rendezvous with neighboring nodes
based on old information. Yet, these costs are more than compensated by

41 jiffy = 1 clock tick = 1/32768 s
5Later investigations unveiled a defective power source to be the root of the problem.
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Figure 4.10: Average radio duty cycles in per mill of all nodes with one
(black) and two (grey) sinks, respectively.

the amount of energy saved by not communicating regularly with all nodes
on the potential parents list. A detailed overview of the average duty cycles
for all deployed sensing nodes is given in Figure 4.10.

In the following we investigate the overhead incurred by clock imprecision
and guard times at a leaf node of the data gathering tree. We assume an
ideal system transmitting the same number of messages as Dozer in the
given configuration but with perfectly synchronized clocks. A leaf needs
to exchange 4.5 messages per minute. A message including its preamble is
44 bytes long, leading to a transmission time of 4.7 ms at 75 kbps. The radio
switching times from sleep to transmit and back add up to 2 ms. These
parameters result in an ideal duty cycle of 0.525‰. Thus, using worst-case
guard times, thereby exhibiting a duty cycle of 0.7‰, results in an overhead
of 33%. In comparison, Dozer with drift compensation exhibiting a duty
cycle of 0.57‰ reduces this overhead to 8.57%. This is an improvement by
a factor of roughly 4.

4.5 Multiple Sinks

Another challenge every multi-hop data gathering system faces is increased
load on nodes close to the sink. Serving as a relay for most data messages
these nodes are forced to handle higher traffic rates than other nodes in the
network. Consequently, their duty cycles increase and their batteries deplete
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Figure 4.11: Indoor setup of 39 nodes. Node 0 (upper-right corner) and
Node 1 (lower-left corner) act as data sinks.

at a faster rate. Furthermore, due to their strategically important position
in the network their failure usually also marks the end of the whole net-
work as the remaining nodes cannot reach the sink any longer. Diminishing
the increased load at nodes close to the sink is accomplished by reducing
the amount of traffic actually reaching the sink. There are two feasible ap-
proaches to achieve this goal. First, in-network processing and aggregation
as introduced in Chapter 3 may be applied to condense the forwarded infor-
mation. Depending on the nature of the sampled data this optimization may
result in a significant improvement. Unfortunately, in many scenarios neither
in-network processing nor aggregation can be applied since the full sampled
information of each node is required. Under these conditions the problem can
only be countered by the sensible deployment of additional sinks to spread
the load on more nodes.

Dozer is designed to handle dynamic addition and removal of sinks. If
more than one sink is available a separate data gathering tree for each of them
is constructed without any additional overhead. All nodes in the network
select a parent with minimal distance to any of these sinks. The different
trees are thereby not labeled and thus nodes do not know to which of them
they belong. As a consequence, nodes—and with them whole sub-trees—
may freely switch from one data gathering tree to another without even
noticing. The advantage of this system lies in its flexibility towards load
and interference. External interference may cut off parts of the network or
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enforce long detours to bypass error-prone areas. In such cases the presence of
additional sinks may help avoiding data loss and generally reduces maximum
tree depths. Hence, not only load at nodes close to the sink is reduced but
also the global average duty cycle is improved.

Based on the network introduced in Section 4.3.3 we ran an additional
experiment with a second sink. The two data sinks were placed on opposite
sides of the building to provide reasonable load balancing. As shown in
Figure 4.11 the second sink (Node 1) had the desired effect in that two
nearly equal sized trees were constructed. Nodes in the central area of the
building regularly switched between parents in both trees since their hop
count towards both sinks was balanced. With the decrease in tree depth the
maximum observed load measurably dropped resulting in a global average
duty cycle of 0.93‰—compared to 1.28‰ with one sink. Figure 4.10 depicts
the average duty cycle for each node in the network with one and two sinks,
respectively. The majority of all nodes benefit from the presence of the second
sink and the reasons for the individual improvements are manifold. For
example, Node 134 and 136 are affiliated to the tree rooted at Node 1 avoiding
a link through the center of the building. In the single-sink experiment both
of them had to rely on this link which apparently suffered from high packet
loss. Other nodes such as Node 107 has to service a lighter subtree and
therefore spends less energy forwarding messages. Following the same line
of argument it can also be explained why some few nodes such as Node 102
suffer from an increased duty cycle in the two sink setup.

4.6 Related Work

Corresponding to the importance of the problem, there have been a plethora
of research efforts addressing data gathering in the last few years. Energy
efficiency of most existing work [86, 101, 140, 131, 20] stems from the applica-
tion of generic energy-efficient MAC protocols [119, 133, 144, 155, 157]. These
protocols turn off the wireless transceiver whenever possible to save power.
Two types of protocols are thereby distinguished: TDMA and contention-
based protocols. Protocols falling in the latter category incorporate duty
cycling to achieve low power operation. [157] and [100] coordinate the nodes’
sleep schedules such that neighboring nodes are awake at the same time. In
the active phases CSMA/CA is used to control channel access. To achieve
high energy efficiency the active periods must be very small compared to
the time nodes are in sleep mode. Since the whole network wakes up at
roughly the same time, nodes suffer from high channel contention which re-
duces network throughput. T-MAC [144] is an improvement of S-MAC [157]
handling varying traffic load with adaptive duty cycling. The protocol does
however not overcome the inherent limitations of this approach. Low-power
listening is another strategy to condition contention based MAC protocols
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to low-power requirements. To avoid idle listening nodes turn off the radio
most of time, only periodically probing the channel for the presence of ac-
tivity. Once network activity is detected the node switches on its radio to
listen for the incoming packet. To ensure the receiver is listening a sender
has to prefix its packet with a long preamble acting as an in-band busy-tone.
A key advantage of asynchronous low-power listening protocols [119, 35] is
that the sender and receiver can be completely decoupled in their own duty
cycles. However, these protocols suffer from the overhearing problem, since
the long preamble also wakes up nodes who are not the intended receiver
of a packet. To overcome this drawback, channel polling times of neighbor-
ing nodes are synchronized in [158], thereby preventing the protocol from
sending long preambles. This move incurs contention during the scheduled
channel probing which is resolved by using CSMA. However, a drawback of
this protocol is that all nodes require to be tightly synchronized to meet
energy efficiency which creates additional costs.

In contrast to the aforementioned protocols, TDMA-based solutions es-
tablish a schedule where each node is assigned one or possible multiple time-
slots. In each slot nodes are then able to communicate without provoking
packet collisions or suffer from overhearing. Pure TDMA protocols are how-
ever hardly feasible in reality since they require global time synchronization
and are susceptible to topological changes of the network. Hence, most pro-
posed protocols use a combination of pure TDMA and the above mentioned
contention-based approach.

In [123] a two phase protocol is proposed. In the first phase a node
collects information about its two-hop neighborhood and participates in a
distributed slot allocation procedure. In addition, a protocol for network-
wide time synchronization is executed during this phase. Once the TDMA
schedule is computed in the first phase the protocol switches to the second
phase and executes the schedule. FPS [54] and its descendant Twinkle [53] are
closely related to the protocol described in this chapter. The coarse grained
scheduling of FPS represents a distributed TDMA approach where each node
schedules its own children. Although this schedule ensures that parents and
their children are contention free, collisions may still occur due to other nodes
in the network or poor time synchronization. This contention is handled
using CSMA. The protocol does not incorporate a tree construction and is
thus dependent on other protocols establishing such a network topology. In
contrast to our solution FPS—and thus also Twinkle—requires global time
synchronization.

Other related work considers real-time scenarios for mission-critical ap-
plications, where the data gathering must be performed within strict latency
constraints [97, 160]. DMAC [97] proposes an adaptation of S-MAC opti-
mized for data gathering. The protocol assumes that a routing tree towards
the data sink exists. The active periods of the nodes are staggered according
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to their level in the tree. CSMA is used to arbitrate between children in order
to prevent collisions. DMAC achieves low data delivery latency at the sink.
However, there is a substantial overhead in case of network instabilities.





Chapter 5

Energy-Efficient Deployment

Support

The search for energy-efficient solutions has led to numerous algorithms and
protocols that strive to reduce the energy consumption of an operational
sensor network. In the previous chapters, we have discussed related work
in the context of medium access control protocols, topology control, and
data aggregation. This impressive body of work resulted in new insights and
several intriguing solutions thereby mainly focusing on the operational phase
of a network. However, in many applications a crucial loss of energy occurs
already before the sensor network reaches its operational state, that is, during
its deployment.

Consider for instance a water (or power, gas, etc.) metering network for
an apartment complex. Each apartment is equipped with a water metering
sensor. At midnight, all sensors wake up for a few seconds, the water con-
sumption of each apartment is sent to a base station in multi-hop fashion,
and all sensors go back to sleep for another 24 hours. In the operational
phase such a sensor network features a gargantuan sleep/awake ratio, al-
lowing even conventional batteries to last several years. To achieve such a
long lifetime the node’s duty cycle must be significantly below 1%. How-
ever, the deployment of the sensor nodes might take days or weeks. With
a naive deployment protocol, say, when nodes stay awake until the entire
system is deployed, the battery of the node deployed first might be drained
before the network even becomes operational. This highlights a problem
that is particularly pronounced in settings in which the node’s duty cycle
during the operational phase is small, but the deployment takes long. Such
time-consuming deployment phases are common for data gathering systems
considered in this thesis.

Generally, once all sensor nodes are fully deployed, the network should
make the transition from the deployment phase to the operational phase
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as quickly as possible. In particular, we might like to externally trigger a
network discovery procedure that allows verifying the operability of the newly
deployed network (e.g. detect faulty sensor nodes). Clearly, simple solutions
to invoke such a system initialization would be to manually switch on all
nodes once the deployment phase is completed, or to set a timer at the time
of the node’s deployment. Unfortunately, in many practical settings, neither
of these hands-on solutions is practicable. First, nodes may be deployed in
remote or hostile environment in which switching on nodes manually after
all nodes are deployed may be impossible. Moreover, in application scenarios
featuring a time-consuming deployment phase, predicting the exact duration
of the deployment process is usually hard, hence ruling out the possibility of
employing a solution based on predefined timers.

So how can the information about the beginning of the operational phase
be distributed among the network nodes? Typically, this information is sup-
posed to be broadcasted by the nodes in a multi-hop way through the entire
network such that, eventually, every sensor node will know that the system
is now ready to start its operational phase. Specifically, one or several nodes
(in typical sensor network applications, this is usually the base station) are
triggered externally. These nodes then try to inform their neighbors, who
in turn inform their neighbors, and so forth. We call this externally trig-
gered event that sets off the information broadcast the launching point. The
trade-off studied in this chapter is about saving energy during deployment,
yet quickly going into operational mode after the launching point.

Ideally, each node should remain in some kind of energy-saving sleep mode
for the entire duration of the deployment phase preceding the launching point.
In sleep mode, nodes do neither send data packets nor listen for incoming
messages [134]. The problem is however that individual nodes do not know
the exact time of the launching point, or the duration of the deployment
phase. As a consequence, a node must periodically leave the sleep mode and
listen for incoming messages to learn about the arrival of the launching point
from neighbors.1

This observation establishes a trade-off between the energy consumption
of nodes during the deployment phase and the rapidity of the transition to
the operational phase. Neither of the two extremes, always asleep and always
awake during the deployment, is satisfying; any decent protocol is in-between.

We believe that studying the trade-off delay vs. energy efficiency is prac-
tically important, even beyond the deployment problem. In particular, there
are sensor networks that concentrate on discovering rare events, e.g. sensor

1Obviously, the problem could be elegantly solved using very low power “trigger”
circuits, which operate continuously on small power budgets, and wake up more power-
hungry circuits only upon receipt of a suitable signal from a neighboring node. Unfor-
tunately, currently available standard hardware such as the Mica2 [52] wireless sensor
nodes do not offer this functionality, and we therefore do not consider this option in this
chapter.
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networks for seismic surveillance in earthquake and rubble zones, or sensor
networks monitoring enemy activity. The pronounced “event” character of
such rare events leads to exactly the deployment problem trade-off. Namely,
since events occur rarely, sensor nodes should be in sleep mode as often as
possible to save energy. These energy savings, however, come at the cost of a
prolonged reaction time once a rare event occurs. Hence, this conflict between
energy-efficiency and the rapidity of information propagation is fundamental
in sensor networks.

In this chapter, we take a step towards understanding and analyzing the
trade-off between energy-efficiency and propagation delay, particularly dur-
ing the deployment phase. We model the problem in a way that allows
to compare different protocols and algorithms and evaluate their respec-
tive strengths and weaknesses, independent of application-specific parameters
such as node distribution or deployment pattern. Specifically, we analyze the
behavior of three different algorithms. The first algorithm [104] has originally
been proposed for the purpose of neighbor discovery, but can be applied for
the deployment problem as well. In addition, we present two novel algorithms
that significantly outperform the algorithm by [104], for both worst-case and
average-case scenarios. It is interesting to note that one of our algorithms is
“semi-structured,” in the sense that already deployed nodes structure them-
selves in a feeble way that allows to incorporate newly deployed nodes with
a small energy overhead only. This semi-structured approach is in contrast
to, say, tree-based dissemination algorithms in which during the deployment
process, a lot of effort—and hence, energy—is required to recognize and
integrate new nodes. We believe that constructing semi-structures is an in-
teresting concept by itself, with potentially many applications beyond the
scope of this thesis.

5.1 Unstructured Radio Networks

Our model of computation is based on the unstructured radio network model
as introduced in [81]. This model aims to capture the harsh characteristics of
newly deployed ad hoc and sensor networks. It encompasses various critical
aspects such as asynchronous wake-up, absence of a MAC layer, and scarce
knowledge about the network graph. More specifically, the model makes the
following assumptions.

• During the deployment phase, sensor nodes wake up asynchronously
at any time. Moreover, they do not have access to a global clock
and hence, upon waking up, they do not know whether or how many
other nodes in their neighborhood have already been deployed. Once
the launching point is reached, we assume that all nodes have been
deployed and therefore, no new nodes join the network. In other words,
after the launching point we consider a static network.
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• We also assume that nodes have no built-in knowledge about other
node’s distribution or wake-up pattern. Specifically, nodes are com-
pletely clueless about the number of nodes in their neighborhood. The
only knowledge a-priori given to the nodes is an upper bound n for
the total number of nodes deployed in the network. It has been shown
in [69] that without any such estimate of n, every algorithm requires
at least Ω(n/ log n) time until one single message can be transmitted
without collision. In practice, the number of nodes in a network may
not be known exactly, but it can be roughly estimated in advance.

• If a node receives multiple messages at the same time, these messages
become garbled and cannot be received properly. Moreover, nodes do
not feature a reliable collision detection mechanism. That is, nodes
are not capable of distinguishing the situation in which two or more
neighbors are sending and the situation in which no neighbor is send-
ing. Furthermore, a sending node does not know how many (if any at
all) of its neighbors have correctly received its transmission. The un-
reliable collision detection model is the strongest possible model when
analyzing wireless networks. Clearly, algorithms designed for a model
as restricted as this can also be employed by systems that are equipped
with more sophisticated hardware.

• We model the multi-hop network as a unit disk graph (UDG). In a
UDG G = (V, E), with n = |V |, two nodes are connected by an edge
if their Euclidean distance is at most 1. The network being multi-hop
leads to well-known aspects such as the hidden-terminal problem.

• Finally, we assume that both the node’s location and wake-up pattern
is completely arbitrary, potentially even worst-case. Particularly, we
do not assume any kind of uniform node distribution or Markovian
wake-up pattern.

The various aspects of this model suggest that we deal with a particularly
harsh model of computation; a model that captures many of the realistic
characteristics of newly deployed sensor networks. We assume time to be
divided into time-slots, the length of which are roughly the same at each
node. In each time-slot a node can be in exactly one of the three following
modes: transmit T , listen L, or sleep S. In sleep mode S, a nodes deactivates
its radio subsystem to save energy. That is, a node does not overhear the
shared medium in sleep mode and thus misses all messages sent by neigh-
boring nodes. At the communication distances typical in sensor networks,
listening for information on the radio channel is of a cost similar to trans-
mission of data [122]. Therefore, the energy consumption e(v) of a node v
corresponds to the number of time-slots it spends in either transmit or listen
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mode. Consequently, reducing merely the node’s sending time is not suffi-
cient when designing energy efficient algorithms for sensor networks. Instead,
the listening time must also be minimized.

5.2 The Deployment Problem

Before the sensor network can start performing its intended task, nodes must
be deployed, a process that may take several days or even weeks. We divide
the non-operational phase of a sensor network into two parts, the deployment
phase and notification phase as shown in Figure 5.1. In the deployment
phase, sensor nodes are physically positioned at their intended locations.
Once this is done for all sensor nodes, the notification phase is triggered,
in which the aim is to inform all nodes about the system being up and
running. The transition to this second phase is induced by an externally
triggered event that is received by at least one node in the network. We
call this moment when the first node becomes notified the launching point
LP. During the notification phase, we call a node notified if it has already
received the notification message, and unaware otherwise. At the launching
point, at least 1 node is notified whereas at most n − 1 nodes are unaware.

During the deployment phase, an algorithm may build an initial structure
which can help speed up the notification process later on. On the other hand,
the building and maintenance (incorporating newly awakening nodes into a
tree, for example) of such a structure requires the nodes to stay awake longer
and thus spend more energy. To enable a fair comparison between different
algorithmic approaches, our problem definition has to be general enough to
account for these various possibilities.

The total energy consumption of a node v in a deployment algorithm A
can be divided into two parts, the initialization energy and the maintenance
energy. The initialization energy einit(v) is the total amount of energy used
by v to initially join a desired structure (e.g., decide whether it is a clus-
terhead or become a part of a tree). A node’s initialization energy accrues
only once, regardless of the length of the deployment phase. In contrast, the
maintenance energy em(v) denotes the total amount of energy used by v once
it has been properly initialized. Specifically, the maintenance energy em(v)
includes the node’s periodic listen phases which are necessary to learn about
the launching point. If em(v) is small, the node will require a long time
before learning about the LP, thus slowing down the notification phase.
Depending on the nature of the algorithm, em(v) may comprise additional
aspects. Consider for instance an algorithm that is based on maintaining a
tree-structure which allows for rapid event dissemination during the notifica-
tion phase. In this case, already initialized nodes periodically send messages
to inform neighbors that may have woken up in the meantime, thus enabling
their integration into the tree.
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Figure 5.1: The deployment phase is of length TD, the notification phase is
of length TN .

More formally, let TD and TN be the length of the deployment phase and
notification phase, respectively. Further, tw(v) denotes the wake-up point of
node v. The time v is active before the launching point is �(v) = t(LP) −
tw(v). Since we consider asynchronous wake-up with an imaginary adversary
determining each node’s wake-up point (and hence �(v)), we consider the
average maintenance energy am(v) = em(v)/�(v). This value describes the
maintenance energy used by a node v for a single time-slot between its wake-
up and the LP . Note that am(v) is independent of a node’s tw(v), �(v),
or the time of the launching point, because am(v) considers only periodical
maintenance costs, i.e., no initialization costs.

We still have to come up with a measure for the algorithm’s energy effi-
ciency that takes into account both the maintenance and the initialization
costs, but remains independent of the specific wake-up pattern. For that, we
define the energy efficiency of an algorithm A with regard to a deployment
phase of length TD, denoted by E(A, TD), as the average energy consumption
of algorithm A per node and per time-slot. That is, an algorithm in which
all nodes listen in every time-slot has energy efficiency equal to 1, whereas
the algorithm that lets all nodes sleep all the time has energy efficiency 0.
With this definition, the measure of an algorithm’s energy efficiency does
not depend on the particular wake-up pattern of a given problem instance.
Instead, it captures the characteristic of the algorithm itself, thus enabling a
stringent and concise comparison between different approaches.

Formally, the two main quality measures of a deployment algorithm A
are defined as follows.

Definition 5.1. Let A be a deployment algorithm and let TD be the length of
the deployment phase before the launching point. Also, let f(n) be a minimal
function such that with probability at least 1 − 1/n, it holds that TN ≤ f(n).
The algorithm’s energy and time efficiency, E(A, TD) and T (A, TD), are
defined as

E(A, TD) :=
1

n · TD

∑
v∈V

(einit(v) + TD · am(v)),

T (A, TD) := f(n).
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Note that the definition of E(A, TD) corresponds to the intuitive notion
of energy efficiency given above. Particularly, the terms TD · am(v) and
einit(v) describe a node v’s maintenance and initialization energy during a
deployment phase of length TD, respectively. Adding up these values over
all nodes and dividing by 1

n·TD
, the number of nodes and time-slots leads to

the energy efficiency E(A, TD). As for the second measure, an algorithm has
time efficiency f(n) (for instance n2) if with high probability, all nodes are
notified f(n) time-slots after the launching point.

Definition 5.1 allows us to compare deployment algorithms A1 and A2

in two ways. First, we can fix the notification time f(n) and compare both
algorithm’s energy requirements. That is, we demand two algorithms to finish
the notification period within the same amount of time. We then compare
which algorithm requires more energy during the deployment phase to ensure
that all nodes are notified within f(n), i.e., TN ≤ f(n). Alternatively, we
can fix the energy consumption E(A1, TD) and E(A2, TD), respectively, of
both algorithms and then compare the resulting length of the notification
phase. Clearly, both comparison methodologies are two sides of the same
coin; they both describe the inherent trade-off between energy efficiency and
the rapidity of information dissemination.

5.3 Deployment Algorithms

In this section, we analyze three different algorithms under our model and
derive their respective strengths and weaknesses. We begin our exposition by
analyzing the so-called birthday algorithm proposed in [104] which can be em-
ployed as a algorithm for the deployment of sensor networks. In subsequent
Sections 5.3.2 and 5.3.3, we propose two novel algorithms that significantly
outperform [104].

For the analysis of the algorithms we assume time to be divided into
synchronized time-slots. However, notice that none of the algorithms relies
on this assumption. This simplification of the analysis is justified due to
the standard trick introduced in [128] for the study of slotted versus unslot-
ted ALOHA. In [128], it is shown that the realistic unslotted case and the
idealized slotted case differ only by a factor of two. The basic intuition is
that a single packet can only cause interference in two consecutive time-slots.
By the same token, analyzing the algorithms in an ”ideal” setting with syn-
chronized time-slots, we obtain results which are only a factor two better in
comparison to results in the more realistic unslotted setting.

Throughout this chapter, we will denote by Nv the set of neighbors of
node v, i.e., Nv = {u ∈ V | {u, v} ∈ E}. Finally, we will make use of
the following two facts. The first can be found in standard mathematical
textbooks and the second was proven in [69].
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Fact 5.1. For all n,t, with n ≥ 1 and |t| ≤ n,

et

(
1 − t2

n

)
≤
(

1 +
t

n

)n

≤ et.

Fact 5.2. Given a set of probabilities p1 · · · pn with ∀i : pi ∈ [0, 1
2
], the

following inequalities hold:(
1

4

)∑n
k=1 pk

≤
n∏

k=1

(1 − pk) ≤
(

1

e

)∑n
k=1 pk

.

5.3.1 Birthday Algorithm

The birthday algorithm Abirth proposed in [104] is conceptually simple. Be-
fore being notified, a node v listens in each time-slot with probability pL

and sleeps with probability 1 − pL. Once v has learned about the launching
point in the notification phase, it sends with probability pT , which is set to
1/n, and listens with probability pL. The choice of the sending probability is
motivated by the goal to avoid interference in the case when several notified
nodes try to send a message to a common neighbor. Clearly, the broad idea
of the algorithm is to let nodes sleep as long as possible. That is, we want to
choose pL as small as possible while still guaranteeing a speedy notification
phase.

Abirth has been designed and analyzed for neighborhood discovery, i.e.,
not for the deployment problem as considered in this chapter. In this section,
we will analyze the birthday algorithm’s performance in the context of the
problem of sensor network deployment. Specifically, we analyze the trade-off
exhibited by Abirth in accordance to the definitions given in Section 5.2.

Let f(n) be the time in which we require the notification procedure
to finish with high probability, that is, let f(n) be a function such that
TN (Abirth) ≤ f(n) with high probability. Given this constraint, we want
to optimize the algorithm’s energy efficiency. The achievable trade-off is
expressed in the following theorem.

Theorem 5.1. Let f(n) be a function such that the birthday algorithm
Abirth has time efficiency T (Abirth, TD) ≤ f(n). For arbitrary TD, Abirth’s
energy efficiency is

E(Abirth, TD) ∈ Θ

(
n2

f(n)

)
.
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Proof. The birthday algorithm does not require any initialization and there-
fore, einit(v) = 0, for all v ∈ V . The average maintenance energy for each
node corresponds directly to the listening probability, i.e., am(v) = pL.
Hence, the algorithm’s energy efficiency is

E(Abirth, TD) =
1

n · TD

∑
v∈V

(TD · pL) = pL.

Consider the network graph Gb = (Vb, Eb) consisting of nodes v1, . . . , vn

positioned in a line, i.e., vi is a neighbor of vj iff j = i + 1 and 1 < j ≤ n.
Recall that the nodes themselves have no knowledge about the topology of
the network. Finally, let v0 be the node that is externally triggered at the
launching point.

By the construction of Gb, the information about the arrival of the launch-
ing point has to traverse the entire network in a hop-by-hop fashion. We call
a time-slot t successful, if there is a notified node vi that sends in t and
its unaware neighboring node vi+1 listens at the same time. Informally, the
notification information is passed on by one hop in each successful time-slot.

The probability Psuc that a time-slot t is successful is Psuc = pL · pT . To
pass the notification through the entire chain, a minimum of n− 1 successful
time-slots are required. In total, the algorithm is allowed to use f(n) time-
slots and the broadcast has to succeed with probability at least 1−1/n. Given
these constraints, we want to minimize pL thus optimizing E(Abirth, TD). In
expectation, the number of successful rounds is pLpT f(n). Since we want at
least n − 1 successes, it follows that

pLf(n)

n
= n − 1 ⇒ pL ∈ Ω

(
n2

f(n)

)
.

Finally, we show that for a large enough constant c, pL = cn2/f(n) is
enough to obtain the high probability argument. Let X be the number of
successful rounds. The expected value of X is μ = pLf(n)/n. We bound the
probability of having less than n−1 successful rounds using Chernoff Bounds
as

P [X <n − 1] = P

[
X <

(
1 −
(

1 − n(n − 1)

pLf(n)

))
pLf(n)

n

]
< e

− pLf(n)
2n

(
1− n(n−1)

pLf(n)

)2
= e−

cn
2 (1− 1

c )2 ,

which is smaller than 1/n for a suitably large constant c. Notice that setting
pL to a value strictly smaller, i.e., pL ∈ o(n2/f(n)) renders the exponent
positive thus not yielding the desired result.

Keep in mind that for the birthday algorithm, the notification phase TN

must be at least of length Ω(n2) to guarantee a feasible solution. In the
following two sections, we will propose algorithms featuring strictly better
trade-offs.
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Algorithm Auni

upon wake-up do:
1: listen with probability pL, otherwise sleep

upon notification do:
2: for i := �log n� + 1 to 1 by −1 do
3: pT := 1/2i

4: for c(�log n�+1)
pL

time-slots do
5: send message with probability pT

6: end for
7: end for

5.3.2 Uniform Algorithm

In a way, the second algorithm Auni shares the philosophy of the birthday
algorithm, having in common that there are no initialization costs and all
nodes perform the same procedure uniformly. Specifically, algorithm Auni

has one input parameter, the listening probability pL; c is a constant to be
defined later.

The main improvement is a simple idea originally stemming from the
literature on broadcast in radio networks [8]. When trying to inform an
unaware node, notified nodes will exponentially increase their sending prob-
ability, thus reducing the average waiting time. Notice that the number of
time-slots per sending probability is inversely proportional to the unaware
node’s listening probability pL. In comparison with the birthday algorithm
Abirth analyzed in Section 5.3.1, Auni exhibits a strictly better performance
trade-off as stated in Theorem 5.2.

Theorem 5.2. Let f(n) be a function such that the uniform algorithm Auni

has time efficiency T (Auni, TD) ≤ f(n). For arbitrary TD, Auni’s energy
efficiency is at most

E(Auni, TD) ∈ O

(
n log2n

f(n)

)
.

Proof. Like Abirth, Auni does not require any initialization and all nodes
are treated uniformly. Therefore, by the same argument as in Section 5.3.1,
E(Auni, TD) = pL.

We define the listening probability pL to be pL := cn(�log n�+ 1)2/f(n).
We seek to show that for a constant c ≥ 12, the probability of the notification
message advancing at least one hop in time O(f(n)/n) is at least 1 − n−2.
Since the diameter of the network is at most n, the theorem follows from
(1 − n−2)n ≥ e−1/n ≥ 1 − n−1.
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Let Zv,t denote the event of node v hearing a notification message in
time-slot t. Consider an unaware node v ∈ V and let t0 be the first time-slot
in which at least one node in v’s neighborhood Nv is notified. Starting from
this round, the sum of sending probabilities

∑
w∈Nv

pT (w) increases. Let t∗

be the last time-slot in which the sum of sending probabilities is smaller than
1/2. Notice that it takes at most t∗−t0 ≤ (�log n�+1) · c(�log n�+1)

pL
time-slots

until t∗ is reached.

Now, consider the time interval I = [t∗ + 1, . . . , t∗ + c(�log n�+1)
pL

]. During
this interval, notified nodes can at most double their pT and new nodes will
send with the initial sending probability pT = 1

2n
. At the end of this interval,

the sum of sending probabilities is therefore at most

∑
w∈Nv

pT (w) ≤ 2 · 1

2
+
∑

w∈Nw

1

2n
≤ 3

2
. (5.1)

Therefore, in each time-slot t ∈ I, the sum of sending probabilities is at least
1/2 and at most 3/2. The probability P [Zv,t] that v receives the notification
message from one of its neighbors is

P [Zv,t] = pL

∑
w∈Nv

⎛⎜⎜⎝pT (w) ·
∏

q∈Nv
q �=w

(1 − pT (q))

⎞⎟⎟⎠
≥ pL

∑
w∈Nv

pT (w) ·
∏

q∈Nv

(1 − pT (q))

≥
Fact 5.2

pL

∑
w∈Nv

pT (w) ·
(

1

4

)∑
q∈Nv

pT (q)

≥ 3pL

2
·
(

1

4

)3/2

>
pL

6
.

For large enough functions f(n) and pL = cn(�log n� + 1)2/f(n), the prob-

ability that none of the c(�log n�+1)
pL

time-slots t ∈ I is successful is at most

P [∩t∈IZv,t] ≤
(
1 − pL

6

) c(�log n�+1)
pL

=

(
1 − cn(�log n� + 1)2

6f(n)

) f(n)(�log n�+1)

n(�log n�+1)2

≤
Fact 5.1

e−
c
6
(�log n�+1) < n−2.



98 CHAPTER 5. ENERGY-EFFICIENT DEPLOYMENT SUPPORT

Therefore, with probability exceeding 1 − n−2, the notification message is
passed on at least by one hop in time

t∗ − t0 ≤ (�log n� + 1) · cf(n)(�log n� + 1)

cn(�log n� + 1)2
=

f(n)

n
.

Consequently, by the argument given at the beginning of the proof, the no-
tification message reaches all n nodes within time f(n) with probability at
least 1 − 1

n
.

The trade-off obtained by Auni is strictly better than the one obtained by
the birthday algorithm Abirth. Moreover, in the case pL = 1, the algorithm
allows a feasible solution for functions f(n) ∈ Ω(n log2 n) as opposed to
f(n) ∈ Ω(n2) for the birthday algorithm.

5.3.3 Cluster Algorithm

Finally, our last algorithm is based on a different paradigm than the two
previous ones. Instead of treating all nodes identically (uniformly), it forms
a semi-structure that renders the notification of nodes during the notification
phase quicker. On the other hand, installing and maintaining this structure
requires additional energy during the deployment phase. Contrary to the first
two algorithms, the cluster algorithm Aclu has non-zero initialization costs
einit(v) and unequal energy requirements between different nodes. Therefore,
Aclu uses the full potential of Definition 5.1.

The design of Aclu aims to mend the main energy dissipation of the
two previous algorithms, namely the lack of synchronization. If neighboring
nodes had synchronized wake-up points, the notification phase would take
significantly less time. Consequently, when demanding the same notification
efficiency TN , the nodes could sleep longer, thus saving energy during the
deployment phase. The problem is that synchronization between neighboring
nodes incurs additional set-up and maintenance costs and the question is
whether these additional costs will equiponderate the gains stemming from
the above-mentioned notification speed-up.

Our approach is based on grouping neighboring nodes into synchronized
clusters. Within such a cluster, nodes wake-up at the same time. In partic-
ular, the algorithm constructs a clustering based on a maximal independent
set of the underlying network graph G = (V, E). An independent set S of G
is a subset of V such that ∀u, v ∈ S, (u, v) /∈ E. S is a maximal independent
set (MIS) if any node v not in S has a neighbor in S. In our particular case,
we do not consider a MIS on the original graph G, but we consider a MIS of
the graph G′ in which two nodes are adjacent if their mutual distance is at
most 1/2. This corresponds to each node setting its transmission range to
1/2.
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Algorithm Aclu: Code for non-leader u

upon wake-up do:
1: perform MIS algorithm of length O(W +log2 n) → decide on leader s(u),

receive wake-up point r3

2: loop
3: sleep until next wake-up point r3

4: for η log n time-slots listen for notification message Mn

5: r3 := r3 + I
6: end loop

upon notification do:
7: loop
8: upon receiving Ma(r2), wait until r2

}
S1

9: for i := �log n�+1 to 1 by −1 do
10: for (γ+η)(�log n�+1) time-slots do
11: send message with probability

pT = 1/2i

12: upon receiving Mr, quit for-loops
13: end for
14: end for

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
S2

15: end loop

Constructing a MIS efficiently in an unstructured radio network is a non-
trivial task. Our clustering algorithm for the deployment problem uses a MIS
algorithm proposed in [108]. It is important to note, however, that any other
MIS algorithm in the unstructured radio network model can be used instead
without affecting the asymptotic energy efficiency of algorithm Aclu. We
now introduce an adaptation of this algorithm to a level of detail necessary
to understand our results.

Each node starts executing the algorithm upon waking up. Nodes that
are located in a region which is already covered by an existing MIS node
(leader) will learn about their being covered during an initial waiting period
of length W . If this is not the case, v will decide whether it joins the MIS or
not during the second phase of length O(log2n) time-slots. Hence, in total,
every node needs to be awake for W + O(log2n) time-slots before deciding
whether it becomes a leader or not. Subsequently, for the entire duration of
the deployment phase, leaders have to transmit with a sending probability of
Θ(log n/W ) to inform newly awakening nodes of their being covered. This
prevents nodes that wake up later from invalidating the MIS condition. Non-
leader nodes do not have any duties and can sleep arbitrarily long. Let s(v)
denote the leader of node v and for u ∈ S let S(u) refer to the set of nodes
having u as their leader, i.e., S(u) = {v|u = s(v)} for all u ∈ S.
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Algorithm Aclu: Code for leader v

upon wake-up do:
1: perform MIS algorithm of length O(W + log2n) → become leader with

cluster S(v)
2: choose rendezvous point r1

3: r2 := r1 + η�log n�, r3 := r2 + (γ + η)�log2n�
4: loop
5: sleep or send with probability

log n/W until next wake-up point r1

6: for η log n time-slots send Ma(r2)
with probability pMIS ∈ Θ(1)

}
S1

7: for (γ + η)(�log n� + 1)2 − η(�log n�)
time-slots listen for Mn

8: if Mn received then
9: send Mr for η log n time-slots with

probability pMIS

10: end if

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
S2

11: sleep until r3

12: if notified then
13: for η log n time-slots send Mn

with probability pMIS

14: become non-leader
15: end if

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
S3

16: r1 := r1 + I
17: r2 := r1 + η�log n�
18: r3 := r2 + (γ + η)�log2n�
19: end loop

We incorporate a slightly stronger version of the result in [108] into our
algorithm Aclu. Particularly, we require that the MIS S be connected if we
consider all two-hop paths in G. Note that this condition is automatically
fulfilled if the network density is reasonably high (for instance, if there is at
least one node in every disk of radius 1/4 in the convex hull of the nodes). In
Aclu, each leader v ∈ S coordinates the nodes in S(v) and is responsible for
their synchronized waking up. Specifically, a leader v decides on the timing
of the rendezvous windows for its cluster; a time window during which the
nodes w ∈ S(v) are simultaneously awake. Every node w ∈ S(v) learns the
timing of these rendezvous windows from its leader v. The idea is that once
a leader is notified, it can notify all nodes in its cluster at almost the same
time.
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Figure 5.2: Rendezvous interval I and rendezvous window.

Each rendezvous takes place in three steps as shown in Figure 5.2. In the
proclamation step S1, leader v announces the rendezvous interval to neigh-
boring nodes which do not belong to S(v). The reason is that once a node
is notified, it remains listening on the channel. Such a node must be able
to notify neighboring leaders, even if it is in a different cluster itself (oth-
erwise, the notification message would not broadcast through the network).
In other words, the proclamation step is intended for announcing the noti-
fication across cluster boundaries. The conveyance of these messages in the
opposite direction is the aim of the second step, the leader-notification step
S2. In this step, notified nodes try to inform a neighboring unaware leader.

Finally, the rendezvous is concluded by the notification step S3. A notified
leader v attempts to notify all unaware nodes in S(v) during this step. Note
that this is the only time-interval during which an unaware non-leader node
must be awake. Summarizing, the actions during the rendezvous window are
designed as to guarantee that a notification message in the neighborhood of
a leader v is, first, passed to v, and second, passed from v to all nodes in
S(v). After the rendezvous window, a notified leader becomes a non-leader
node to help informing other leaders located in its neighborhood. Finally,
notice that all transmissions during a rendezvous are performed using the
full transmission range. In the following, we give a more precise description
of algorithm Aclu as performed by leaders and non-leaders, in which γ and
η are suitably large constants.

Consider a rendezvous window of leader v. In the proclamation step S1, v
sends an announcement message Ma(r2) containing the starting time of the
second step of the rendezvous with a constant probability pMIS ∈ Θ(1). Let
u be a notified node with (u, v) ∈ E and u /∈ S(v). Notified nodes remain
listening in order to eavesdrop an announcement message of neighboring
leaders. If node u receives such a message Ma(r2) from v, it tries to notify
v during the subsequent leader-notification step. In the analysis, we will
show that with high probability every notified node in v’s neighborhood will
receive Ma(r2) from v.

In the leader-notification step S2 all notified neighbors of v try to send a
notification message Mn to v. Notice that if there are no notified neighbors
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of v, nothing happens during the leader-notification step. The procedure of
informing a leader follows along the lines of the uniform algorithm presented
in Section 5.3.2. Starting with probability 1

2n
, notified nodes exponentially

increase their sending probability to speed up the notification. To prevent
too much “noise” (i.e., too many nodes sending with high probability at the
same time), v starts sending a reception message Mr with probability pMIS

as soon as it has received Mn. In the analysis, we show that the O(log2 n)
time-slots are sufficient to perform these tasks with high enough probability.

Finally, unaware nodes in S(v) are only awake in the notification step S3

starting from r3. They are listening during these time-slots, waiting for a
possible notification message Mn from a potentially notified v.

Analysis In the following, we will sometimes omit calculating the exact
values of the various constants involved for the sake of clarity and due to
lack of space. Instead, we focus our attention on portraying the main ideas
and concepts of our algorithm and proofs. Exact constants can be derived
by a more rigorous analysis in a straightforward way.

We begin with a simple geometric lemma, saying that the number of
leaders (and corresponding clusters) in any disk of radius 1 is bounded by a
constant.

Lemma 5.3. Let v be an arbitrary node. Let Q := {s(u) | u ∈ Nv} be the
set of all leaders that lead at least one node in v’s neighborhood. It holds that
|Q| ≤ ϕ for a constant ϕ.

Proof. The proof follows from a simple area argument. There cannot be
more than a constant number of disks of radius 1/4 packed into a disk of
radius 1 such that no two disks overlap.

In the following, let pv(t) be the sending probability of node v in time-slot
t. Further, Φv(t) denotes the sum of the sending probabilities of neighbors
of v that are not leaders, formally

Φv(t) :=
∑

u∈Nv\S

pu(t).

In the next lemma, we show that given an upper bound on Φv(t), η log n
time-slots are sufficient to let a leader inform all its neighbors. Because of
cyclic dependencies, it is convenient to formulate this upper bound on Φv(t)
as an invariant.

Invariant 5.1. Let t be an arbitrary time-slot. For all leaders v ∈ S, it holds
that Φv(t) ≤ χ, for a constant χ ≤ 3ϕ

2
.
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Lemma 5.4. Let v be a leader and consider a time interval J of length
η log n during which v sends with probability pMIS. Under the condition that
Invariant 5.1 holds, all nodes w ∈ S(v) receive the message during J with
probability 1 − n−3.

Proof. Let N2
v denote the set of nodes which are in distance at most 2 of v.

We call a time-slot successful if v sends, but no other node in N2
v sends. In

a successful time-slot, all nodes in Nv receive the message from v without
collision. The probability Psuc(t) that a single time-slot t is successful is at
least

Psuc(t) ≥ pMIS ·
∏

w∈N2
v

w �=v

(1 − pw(t))

≥
Lm 5.3

pMIS · (1 − pMIS)ϕ−1
∏

w∈N2
v\S

(1 − pw(t))

≥
Fact 5.2

pMIS · (1 − pMIS)ϕ−1

(
1

4

)∑
w∈N2

v\S
pw(t)

≥ pMIS · (1 − pMIS)ϕ−1

(
1

4

)χϕ

∈ Θ(1).

where the last inequality follows from Lemma 5.3 and Invariant 5.1 which
holds by assumption. Finally, the probability Pno that none of the η log n
time-slots is successful is bounded by

Pno ≤
(

1 − pMIS(1 − pMIS)ϕ−1

(
1

4

)χϕ)η log n

≤ 1

2n3

for a suitably large constant η.

Unfortunately, Lemma 5.4 holds only conditionally; based on the assump-
tion that Invariant 5.1 holds. In the following, we prove this invariant by
placing an upper bound on Φv(t) that holds throughout the execution of the
algorithm with high probability.

Lemma 5.5. With probability 1 − n−2, it holds for all t and for all leaders
v ∈ S that Φv(t) ≤ χ, where χ ≤ 3ϕ

2
is a constant, i.e., Invariant 5.1 holds.

Proof. At the beginning of the notification phase, Invariant 5.1 clearly holds.
For the sake of contradiction, assume that leader v is the first to violate the
invariant. Further, notice that Φv can only increase if some of its neighboring
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non-leader nodes are in the leader-notification step S2. The idea is that as
soon as v receives the notification message, it starts sending a reception
message Mr. We will show that the nodes in Nv receive this message and
stop sending. This prevents Φv from increasing too much.

We define time-slots t∗v for a leader v, such that, Φv(t∗v) < 1/2 and
Φv(t∗v + 1) ≥ 1/2. By the same argument as in the proof of Theorem 5.2
(cf. Inequality (5.1)), we can bound Φv(t∗v +(γ+η)(�log n�+1)) ≤ 3/2. That
is, for all time-slots t in the interval J = [t∗v +1, . . . , t∗v +(γ +η)(�log n�+1)],
it holds that 1/2 < Φv(t) ≤ 3/2. The probability Psuc(t) that v receives a
message without collision in an arbitrary time slot t ∈ J is at least

Psuc(t) ≥
∏

w∈S∩Nv

(1 − pw(t))

·
∑

w∈Nv\S

⎛⎜⎜⎝pw(t) ·
∏

q∈Nv\S
q �=w

(1 − pq(t))

⎞⎟⎟⎠
≥ (1 − pMIS)ϕ · Φw(t)

(
1

4

)Φw(t)

≥ (1 − pMIS)ϕ · 3

2

(
1

4

)3/2

>
(1 − pMIS)ϕ

6
.

We continue the proof by showing that with high probability, the first
γ(�log n� + 1) time-slots of J suffice such that v receives Mn. Specifically,
the probability Pno that none of these time-slots is successful is

Pno ≤
(

1 − (1 − pMIS)ϕ

6

)γ(�log n�+1)

, (5.2)

which again can be made Pno ≤ n−3/2 for large enough constants γ. Once,
node v receives Mn, it will try to acknowledge by sending Mr. Notice that
there are at least η(�log n� + 1) time-slots in J left during which 1/2 <
Φv(t) ≤ 3/2. By the assumption that v is the first leader to violate Invariant
5.1, we know that until the end of J , Invariant 5.1 and consequently Lemma
5.4 hold. That is, with probability at least 1 − n−3, the message Mr will
be received by all nodes in Nv within the η(�log n� + 1) time-slots. Hence,
the probability that v is the first node to violate Invariant 5.1 is bounded by
2 · n−3/2 for suitably large constants γ and η. Because there are at most n
leaders in the network and every leader needs to be notified only once, the
Lemma holds with probability 1 − n−2.

The following Corollary is implicit in the proof of Lemma 5.5 (cf, Inequal-
ity (5.2)).
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Corollary 5.6. Consider a leader v and the leader-notification step S2 of a
notification window. If there exists a notified node in Nv \S, v will be notified
at the end of S2.

Thanks to Lemma 5.5, we can now apply Lemma 5.4 throughout the
algorithm with high probability.

Theorem 5.7. With probability at least 1 − 1/n, the algorithm works as
demanded, that is, each leader v successfully announces to all its neighbors
about the proclamation step S1 for the entire duration of the notification
phase. Furthermore, as soon as there exists a notified non-leader in Nv, v
will be notified in the following leader-notification step S2. And finally, a
notified leader v will inform all its neighbors u ∈ Nv in the notification-step
S3 following v’s notification.

Proof. The steps S2 and S3 follow directly from Lemma 5.4, Corollary 5.6,
and the fact that there are at most n leaders, each of which is notified at most
once. By Lemma 5.4, every attempt of sending a Ma message is successful
with probability 1 − n−3. Each of the n nodes needs to send at most n
messages Ma during the notification phase. The proof is concluded because
the set of leaders is connected if we consider all two-hop paths in G.

Of particular interest is the energy efficiency and its comparison to the
two previous algorithms. Let m ≤ n be the number of leader nodes in the
network and let ξ denote the energy efficiency E(Aclu, TD). Clearly, the
ratio m/n depends on the density of the network. The following theorem
quantifies the achieved trade-off.

Theorem 5.8. Let f(n) be a function such that algorithm Aclu has time
efficiency T (Aclu, TD) ≤ f(n). Let m be the number of leaders chosen by
Aclu. For a given TD, Aclu’s energy efficiency ξ = E(Aclu, TD) is bounded
by

ξ ∈ O

(
f(n)

n log n
+ log2n

TD
+

n log n

f(n)
+

m log2n

f(n)

)
.

Proof. The choice of I’s length determines the trade-off between energy-
efficiency and the speed of notification. We have to choose I such that with
high probability, the notification broadcast is finished within time f(n). We
do so by setting I to a value guaranteeing that the notification proceeds at
least one hop in time f(n)/n with high probability. That is, we set I to
�f(n)/n�.
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Upon waking up, each node v has initialization costs einit(v) ∈ O(W +
log2n). For the maintenance costs during the deployment phase, we dis-
tinguish between leaders and non-leader nodes. Non-leaders are awake for
the duration of η log n during each rendezvous interval of length I. Thus,
for non-leaders, a(v) = η�log n�/I. Leaders must be awake longer in each
rendezvous interval, namely 2η log n+(γ + η)(�log n�+1)2 ∈ O(log2n) time-
slots. Additionally, leaders need to send with probability log n/W in each
time-slot.

Therefore, for appropriate constants α, δ > γ + η, and η the energy
efficiency E(Aclu, TD) of Aclu is at most

ξ =
1

nTD

[∑
v∈S

α
(
W + log2n

)
+ TD

∑
v∈S

(
log n

W
+

δ log2n

I

)

+
∑

v∈V \S

(
α(W + log2n) +

TDη log n

I

)⎤⎦ .

Setting I = �f(n)/n� and W = I/ log n, we obtain

ξ =
α(W + log2n)

TD
+

m

n

(
log n

W
+

δ log2n

I

)
+

n − m

n
· η log n

I

≤
α
(

f(n)
n log n

+ log2n
)

TD
+

m

n
· (δ + 1)n log2n

f(n)

+
n − m

n
· ηn log n

f(n)

∈ O

(
f(n)

n log n
+ log2n

TD
+

m log2n

f(n)
+

n log n

f(n)

)
.

Observe that the first asymptotic term of Theorem 5.8 contains TD in the
denominator. This highlights the notion that the amount of energy spent
on initializing a structure weighs more or less heavily, depending on the
respective length of the deployment phase. Specifically, this term can be
neglected if the deployment phase is long. As for the two remaining terms,
they express the energy efficiency of leaders and non-leaders, respectively.
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Algorithm A Energy Efficiency E(A, TD)

Abirth [104] Θ(1)

Auni Θ( log2 n
n

)

Aclu Θ( log n
n

+ m log2 n
n2 )

Table 5.1: A comparison of the energy efficiency of the three algorithms for
a fixed T (A, TD) = f(n) ∈ Θ(n2) and large enough TD.

5.3.4 Discussion

In this section, we discuss the results obtained in Theorems 5.1, 5.2, and 5.8.
These theorems yield a concise comparison between the three algorithms
analyzed in this chapter.

For the comparison, we demand all three algorithms to finish their no-
tification phase within a fixed amount of time f(n) ∈ Θ(n2), f(n) being
the same for all algorithms. This allows us to compare the energy efficiency
E(A, TD) each algorithm is required to invest to ensure that the notifica-
tion is finished within time f(n). As mentioned in Section 5.2, we obtain the
same results when asking the question the other way around, i.e., when fixing
the algorithm’s energy efficiency and comparing the resulting time efficiency
T (A, TD) = f(n). Table 5.1 shows the results derived from Theorems 5.1,
5.2, and 5.8 under the assumption that the length of the deployment phase
TD is long enough compared to f(n)2.

First, we emphasize that both Aclu and Auni significantly outperform
Abirth, regardless of the network density or, generally, the ratio between
leaders vs. non-leaders. It is interesting to study the relative strengths of
Aclu and Auni. Asymptotically, the trade-off achieved by Aclu is strictly
better than Auni if m ∈ o(n), that is, if less than a constant fraction of the
nodes are leaders. If, for instance, m ∈ O(n/ log n), the resulting asymptotic
energy-efficiency is E(Aclu, TD) ∈ O(n log n/f(n)), which is better than Auni

by a O(log n) factor. In case the number of leaders is a constant fraction
of n, the asymptotic energy efficiency is O(n log2n/f(n)), which equals the
trade-off achieved by Auni. Hence, depending on the network density and the
resulting number of leaders, the asymptotic energy efficiency of Aclu is either
better or equal than that of Auni. Intuitively, high network densities render
the number of leaders m small relative to n and hence, Aclu is more efficient
than Auni. That is, the higher the network density, the more worthwhile it
becomes to invest initial energy on obtaining a cluster-based semi-structure.

2Note that f(n) ∈ Θ(n2) is the smallest value for f(n) so that Abirth is capable
of finishing its notification phase within f(n) in arbitrary networks. Similar results as
shown in Table 5.1 can be obtained for higher values of f(n) in a straightforward way.
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Figure 5.3: Percentage of notified nodes for a given c of algorithm Auni. Auni

is thereby simulated with pL = 1 (solid), 0.5 (dashed), 0.1 (dotted), and 0.01
(dash-dotted) at network densities 5 (a) and 20 (b).

5.4 Simulations

In this section we evaluate the performance of the three algorithms proposed
in Section 5.3 on average-case Euclidean graphs, that is on graphs with ran-
domly placed nodes. In particular networks were constructed by placing
nodes randomly and uniformly on a square field of size 10 by 10 units and
subsequently computing for each node set the Unit Disk Graph—defined such
that an edge exists if and only if its Euclidean length is at most one unit.
The resulting Unit Disk Graphs were then employed as input networks for
the algorithms under consideration.

The two newly introduced algorithms Auni and Aclu make use of several
parameters. In Section 5.3, an exact value for the parameter c of Auni is
given whereas minute bounds for the parameters of Aclu are omitted for the
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sake of clarity. However, it is important to notice that Section 5.3 considers
a worst-case scenario while we assume average-case networks in this section.
Hence, we can presumably set the parameters for the two algorithms to lower
values than determined in the previous section.

Figure 5.3 shows the mean percentage of notified nodes if algorithm Auni

is executed on networks with density 5, and density 20 respectively, against
the parameter c ranging from 0 to 5 and various input parameters pL. The
network density is thereby defined as the number of nodes per unit square
throughout the rest of this section. Figure 5.3 leads to the important observa-
tion that we can lower the parameter c with decreasing listening probability
pL on condition that all nodes are notified after the termination of Auni.
Furthermore, as apparent in Figure 5.3(a) and 5.3(b), the parameter c is
quite independent of the network density and can thus be chosen exclusively
dependent on the input parameter pL of Auni. As a consequence, we define
the parameter c as follows. If the listening probability pL of algorithm Auni

is above 0.75 we set c = 3. If pL is between 0.5 and 0.75 c is set to 2 and
c = 1 if pL is less than 0.5.

Contrary to Auni, algorithm Aclu has more than one parameter, namely
γ, η, and pMIS , which leads to multi-dimensional optimization. By starting
with relatively high values for these parameters and reducing them individ-
ually until full notification could not be guaranteed with high probability
we determined the following values for γ, η, and pMIS : γ = 5, η = 5, and
pMIS = 0.2.

Using the above determined parameters, the respective performance of
the three algorithms of Section 5.3 was evaluated by simulating their corre-
sponding notification phase for different node densities and given a partic-
ular energy efficiency. The node nearest to the top-left corner was notified
by an externally triggered event at the outset of the simulation, i.e., at the
launching point. Notice that algorithm Abirth, as described in [104], does
not terminate after a fixed number of time-slots once a node is notified. We
therefore executed Abirth without termination criterion and stopped the sim-
ulation series once all node were notified. On the other hand we assumed
the deployment phase to be much longer than the notification phase. As a
consequence we did not consider the initialization energy of a node since the
maintenance energy becomes the dominant factor of energy consumption.

We found that the two newly proposed algorithms Auni and Aclu outper-
form algorithm Abirth not only in the worst-case consideration as described in
Section 5.3 but also in average case networks (cf. Figure 5.4). Figure 5.4(a)
depicts the performance of the algorithms on networks with density 5. Al-
gorithm Auni is able to notify all nodes more than twice as fast than Abirth

with high probability. Aclu lies roughly in the middle of the other two. If
we consider a network density of 15, Aclu and Auni need approximately the
same number of time-slots to notify all nodes (cf. Figure 5.4(b)). That is,
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Figure 5.4: Mean values of the number of time-slots required to notify a
network given a particular energy efficiency. The algorithms Abirth (solid),
Auni (dotted), and Aclu (dashed) are simulated at network densities 5 (a),
15 (b), and 30 (c).
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Figure 5.5: The number of time-slots required to notify all nodes for algo-
rithm Abirth (solid), Auni (dotted), and Aclu (dashed) for different network
densities. The energy efficiency of the algorithms is thereby 0.1 (a) and 0.01
(b).

in comparison to the simulations at network density 5, Aclu is now able to
notify the nodes faster with the same energy efficiency. This is due to the
fact that with increasing density the ratio between leaders and non-leaders
in Aclu decreases and non-leaders spend less energy during the deployment
phase than nodes in algorithm Auni. This is exactly the same behavior that
we analytically derived in Theorem 5.8. Considering network density 30,
Figure 5.4(c) shows that the tide has turned in favor of Aclu, which now
outperforms the other two algorithms.

This results confirm the assumption that algorithm Auni is well suited
for low network densities while Aclu is dedicated for dense networks. To
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investigate the critical network density where Aclu starts to outperform Auni

more closely we simulated the algorithms for a fixed energy efficiency against
increasing network densities ranging from 5 to 30 (cf. Figure 5.5). What
strikes from Figure 5.5 is that the performance of algorithms Abirth and
Auni is more or less independent from the given network density. This is also
shown in Figure 5.4 where the curves for both algorithms, Abirth and Auni,
look approximately the same in all three plots. In contrast, the behavior
of Aclu is quite different. Since the network density has a direct impact on
the ratio of leader to non-leader nodes, its performance is highly dependent
on the network density. Figure 5.5(a) depicts the performance of the three
algorithms under the constraint of attaining an energy efficiency of 0.1. If the
network density exceeds 19, algorithm Aclu needs less time-slots than Auni

to notify the entire network and should thus be preferred. If we require the
algorithms to attain energy efficiency 0.01, Aclu outperforms Auni already
at density 15 (see Figure 5.5(b)).

These simulations complement the worst-case results derived in the pre-
vious section, showing that our algorithms Auni and Aclu are also efficient
in average-case scenarios. Moreover the simulations, in particular Figure 5.5,
give a clear indication as to when the concept of clustering or the usage of
semi-structures is worthwhile in the deployment process.

5.5 Related Work

To the best of our knowledge, the only previous work to explicitly address
the problem of saving energy during the deployment of wireless ad hoc and
sensor networks has been [104]. McGlynn and Borbash [104] propose an
energy-saving method for performing adjacent neighbor discovery after the
deployment of a network. Their algorithm is inspired by the well known
birthday paradox. Using a similar idea to access the shared medium, a node
randomly schedules its periodic wake-up to listen for incoming messages.
The rest of the time the node powers down its radio subsystem to reduce
energy consumption. In Section 5.3.1, we have given a succinct analysis
of the birthday algorithm’s performance in the context of the deployment
problem. In [106], the authors present a probabilistic broadcast algorithm
for wireless sensor networks. However, their approach relies on a previously
established, functioning MAC layer and sleep scheduling mechanism. The
paper therefore cannot be directly compared to our work.

In the literature on wireless sensor networks, various other problems in
the context of deployment have been studied. Most notably, several papers
have investigated problems related to the placement of nodes such that cer-
tain coverage requirements be fulfilled. The deployment of mobile nodes for
coverage of a sensing field has been considered in [56, 147, 165]. In [9], the
problem of covering and exploring an unknown dynamic environment using
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a mobile robot is addressed. An algorithm for this problem is presented that
makes use of a deployed network of radio beacons which assists the robot
in coverage. Other work in this area associated with the term deployment
includes the placement of a given number of sensor nodes to reduce communi-
cation cost [72] or an optimal sensor placement for a given target distribution
[117].

The model of computation used throughout this chapter was introduced
in the domain of the initialization of wireless radio networks, and in particular
ad hoc and sensor networks. Early works on radio networks can for example
be found in [8, 69]. Most recently, fast algorithms for computing initial
structures from scratch, based on which more sophisticated algorithm can
subsequently be applied have been given in [81] and [108].

5.6 Concluding Remarks

The trade-off between energy-efficiency and the rapidity of event dissemi-
nation lies at the heart of wireless sensor network design. In this chapter,
we have analyzed this key trade-off in the important non-operational phase
by formalizing the problem of sensor network deployment, thus allowing a
stringent analysis and comparison of different protocols.

Specifically, we have presented two algorithms, the first being entirely un-
structured, the second using the idea of clustering. These algorithms can be
regarded as archetypal representatives of an unstructured and semi-structured
approach to the deployment problem, respectively. Interestingly, currently
used standard MAC protocols such as B-MAC [119] or S-MAC [157] can be
classified into these two approaches. Specifically, while the B-MAC approach
is unstructured, S-MAC sets up some weak notion of clustering during the
deployment, i.e., it uses a semi-structure.

Having a formal model that allows comparing these two schemes yields
results that bear relevance to theoreticians and practitioners alike, because
they give concise and sound answers to the question which deployment al-
gorithm should be employed in a certain application scenario. Furthermore,
notice that our results also shed new light on the intriguing question whether
and in which cases clustering (as opposed to unstructured solutions that do
not require any maintenance costs) is really worthwhile. This is of particular
interest in view of the multiplicity of clustering algorithms proposed in the
recent literature, e.g. [21, 29, 81, 82, 150].





Chapter 6

Differential Application Updates

In the previous chapter, we have studied different algorithms allowing sensor
nodes to save energy during the deployment of a network. In this chapter, we
address another issue arising during the lifetime of a sensor network which
is orthogonal to the actual task of the network: The ability to reprogram
the sensor network [50, 148]. Software updates are necessary for a variety of
reasons. Iterative code updates on a real-world testbed during application
development is critical to fix software bugs or for parameter tuning. Once
a network is deployed the application may need to be reconfigured or even
replaced in order to adapt to changing demands.

Once deployed, sensor nodes are expected to operate for an extended pe-
riod of time. Direct intervention at individual nodes to install new software
is at best cumbersome but may even be impossible if they are deployed in
remote or hostile environments. Thus, network reprogramming must be re-
alized by exploiting the network’s own ability to disseminate information via
wireless communication. Program code injected at a base station is required
to be delivered to all nodes in its entirety. Intermediate nodes thereby act as
relays to spread the software within the network. Given the comparatively
small bandwidth of the wireless channel and the considerable amount of data
to be distributed, classical flooding is prone to result in serious redundancy,
contention, and collisions [143]. These problems prolong the update comple-
tion time, i.e. the time until all nodes in the network fully received the new
software. Even worse, sensor nodes waste parts of their tight energy budgets
on superfluous communication. Current code distribution protocols for sen-
sor networks try to mitigate the broadcast storm problem by incorporating
transmission suppression mechanisms or clever sender selection [137, 60, 85].

The radio subsystem is one of the major cost drivers in terms of en-
ergy consumption on current hardware platforms. Therefore, communica-
tion should be limited to a minimum during reprogramming in order not to
reduce the lifetime of the network too much. Orthogonal to the above men-
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tioned efforts the amount of data that is actually disseminated throughout
the network should be minimized. Data compression seems to be an adequate
answer to this problem. As knowledge about the application currently exe-
cuted in the sensor network is present1 differential compression, also known
as delta compression, can be applied. Delta algorithms compress data by en-
coding one file in terms of another; in our case encoding the new application
in terms of the one currently running on the nodes. Consequently, only the
resulting delta file has to be transferred to the nodes which are then able to
reconstruct the new application by means of their current version and the
received delta. There exists a rich literature proposing a plethora of different
algorithms for delta compression, e.g. [62, 142, 99, 141, 118, 1]. These algo-
rithms excel at very large files. However, neither time nor space complexity
is crucial considering the small code size of today’s sensor network applica-
tions. It is much more important to account for the asymmetry of disposable
computational power at the encoder and the decoder. While almost unlim-
ited resources are available to generate the delta file on the host machine,
special care has to be taken to meet the stringent hardware requirements
when decoding on the nodes.

In this chapter we present an efficient code update mechanism for sensor
networks based on differential compression. The delta algorithm is pursu-
ing a greedy strategy resulting in minimal delta file sizes. The algorithm
operates on binary data without any prior knowledge of the program code
structure. This guarantees a generic solution independent of the applied
hardware platform. We refrain from compressing the delta any further as
this would exceed the resources available at the decoder. Furthermore, in
contrast to other existing work we directly read from program memory to
rebuild new code images instead of accessing flash memory which is slow and
costly. The delta file is also structured to allow sequential access to persis-
tent storage. All this leads to a lean decoder that allows fast and efficient
program reconstruction at the sensor nodes.

Our work is tightly integrated into Deluge [60], the standard code dis-
semination protocol for the TinyOS platform. Deluge has proven to reliably
propagate large objects in multi-hop sensor networks. Furthermore, it offers
the possibility to store multiple program images and switch between them
without continuous download. We support code updates for all program im-
ages even if they are not currently executed. Performance evaluations show
that update size reductions in the range of 30% for major upgrades to 99%
for small changes are achieved. This translates to a reprogramming speedup
by a factor of about 1.4 and 100, respectively.

1This assumption is based on the fact that sensor networks are normally operated by
a central authority.
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Figure 6.1: Components involved in the process of wireless reprogramming.

6.1 Overview

Updating code in wireless sensor network is a non-trivial task and requires
the interaction of multiple system components. In general, application re-
programming can be broken down into three steps: image encoding, image
distribution, and image decoding. Figure 6.1 shows a schematic view of all
involved components and how they are interrelated in our code update mech-
anism. On the left-hand side, all services are consolidated that run on the
host machine or the base station, respectively. On the right, the required
components on a sensor node are depicted. The dissemination protocol is
responsible for reliably distributing the encoded update in the entire sensor
network. We make use of Deluge as it is widely accepted as the standard
dissemination protocol and it has shown its robustness in various real-world
deployments. We give a brief overview of Deluge’s data management as it
has direct implications on all other system components.2

Deluge enables a sensor node to store multiple application images. It
divides the external flash memory (EEPROM) into slots, each of them large
enough to hold one image. In conjunction with a bootloader Deluge is then
able switch between these images. To manage the program image upload,
Deluge divides images into pages of fixed size.3 Deluge then transmits im-
ages at page granularity. That is, all packets of the last page in use were
distributed no matter how many of them actually contain data of the new
application image. The residual space of the last page is thereby filled with
zero bytes. This overhead of up to one kilobyte might be of minor concern
if the application image is transmitted in its entirety. However, it becomes
unacceptable in the context of small changes leading to delta files of only a
few bytes. Deluge was therefore adapted to just transmit packets contain-
ing vital information about the new image. The remaining bytes of the last
page are then padded with zeros on the sensor node itself to enable a 16-bit

2The interested reader is referred to [60] for a detailed description of Deluge.
3In the current version of Deluge one page sums up to 1104 bytes. In turn, this results

in 48 data packets per page.
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cyclic redundancy check on the pages. By requiring a node to dedicate it-
self to receiving a single page at a time, it is able to keep track of missing
packets using a fixed-size bit vector. Packets also include CRC checksums.
Redundant data integrity checks at both packet and page level is critical as
erroneous data is otherwise propagated throughout the whole network due
to the epidemic nature of Deluge.

The protocol also incorporates an administration service that allows the
base station to retrieve information about all stored images including which
one is currently running. On the host machine, Deluge offers an update man-
agement service to inject new images into the network. To allow differential
updates a version control system is required at the host machine in order to
know all application images currently residing on the sensor nodes. In the
current version a file-system based image repository is used to archive the
latest program versions stored in each slot on the sensor nodes. If a new
target image is supposed to be injected to a given slot, the update manager
first queries the nodes to retrieve metadata about all loaded images. Based
on this information a crosscheck in the version control system is performed
to ensure that the latest image version for the requested slot is present in the
repository. Once the validity of the source image in the repository is verified
it is used as input for the delta encoder along with the target image. The
encoder processes both images and generates the corresponding delta file.
The delta is then disseminated using Deluge as if it was a normal application
image. However, it is not stored in the designated slot of the target image
but in an additional EEPROM slot reserved for delta files. Upon complete
delta reception, a node starts the decoding process using additional informa-
tion from external flash memory and program memory. The target image is
thereby directly reconstructed in its intended EEPROM slot. In the mean-
time, the delta is further disseminated within the network. We now give a
detailed description of the encoding algorithm employed on the host machine
as well as of the decoder that resides on the sensor nodes.

6.2 Update Mechanism

All delta algorithms introduced in Section 6.4 use some kind of heuristic to
speed up the generation of copy commands and consequently to reduce the
overall execution time of the encoder. In [126] a greedy algorithm is presented
that optimally solves the string-to-string correction problem which lies at the
heart of differential updating. While its time complexity is undesirable for
very large input files it poses no problem in the context of sensor networks
where program size is limited to a few hundred kilobytes.4 Hence, the design

4The maximal application memory footprint of state-of-the-art sensor network hard-
ware is limited to 48kB for nodes equipped with MSP430 microcontrollers or 128kB for
ATmega128 platforms, respectively.
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Instruction Code Arguments Cost [bytes]

shift xxxxx100 none 1

run xxxxx101 byte to be repeated 2

copy xxxxx110 start address 3

add xxxxx111 data to be added 1+#bytes

Table 6.1: Instruction codes, arguments, and overall costs in bytes if the
instructions reconstruct less than 32 bytes. The length of the instruction is
encoded in the first five bits of the instruction code.

of our delta encoder is based on the findings in [126]. Before we give a detailed
description of the encoder itself we specify the employed instruction set and
how instructions are arranged in the delta file.

6.2.1 Delta Instructions and Delta File Organization

We adopt the set of delta instructions specified in VCDIFF [75] which is a
portable data format for encoding differential data. It is proposed to decou-
ple encoder and decoder implementations to enable interoperability between
different protocol implementations. It distinguishes three types of instruc-
tions: add, copy and run. The first two instructions are straightforward; add
appends a number of given bytes to the target image and copy points to a
section in the source image to be copied to the target image. The run instruc-
tion is used to encode consecutive occurrences of the same byte efficiently.
It has two arguments, the value of the byte and the number of times it is
repeated. Making use of the fact that the target image is decoded into the
same slot in external memory where the source image resides, we introduce
a fourth instruction. The shift instruction is used to encode sections of the
image that have not changed at all from one version to the next. It is used to
prevent unnecessary EEPROM writes. The only effect of a shift instruction
is the adjustment of the pointer to the target image at the decoder.

These instructions are designed to minimize the overhead of the delta
file. Each instruction code has a size of one to three bytes dependent on the
number of bytes in the target image the corresponding instruction encodes.
Table 6.1 comprises the arguments and costs of all four instruction types if
they reconstruct less than 32 bytes of the target image. The actual length
is directly encoded in the first 5 bits of the instruction code in this case.
The cost of an instruction increases by one if the encoded fragment spans
up to 255 bytes, or by two if it is larger than that, as the instruction length
occupies one or two additional bytes, respectively.

We refrained from using the same delta file organization as proposed in
VCDIFF. It splits the file in three sections, one for data to be added, one for
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the actual instructions, and one for the addresses of the copy instructions.
This enables better secondary compression of the delta file. As we try to keep
the decoder complexity to a minimum to meet the nodes’ hardware limita-
tions no such compression is applied. We could still use the VCDIFF format
without secondary compression. However, the fact that an instruction has to
gather its arguments from different places within the delta file results in unfa-
vorable EEPROM access patterns. Random access to external memory—as it
would be the case if the VCDIFF format was employed—results in increased
overhead during the decoding process. This is caused by the discrepancy
between the small average delta instructions and the rather coarse-grained
EEPROM organization. On average, the delta instruction length is below
four bytes for all experiments described in Section 6.3. In contrast, external
memory access is granted at a page granularity with page sizes of 256 bytes
for flash chips of modern sensor network hardware. As EEPROM writes are
expensive (see Table 6.2) current flash storage incorporates a limited amount
of cached memory pages to mitigate the impact of costly write operations.5

However, it is important to notice that even though a read itself is cheap, it
may force a dirty cache page to be written back to EEPROM which renders
a read operation as expensive as a write.

To allow for the above mentioned EEPROM characteristics the delta file
is organized by appending instructions in the order of their generation. That
is, each instruction code is directly followed by its corresponding arguments.
Furthermore, all instructions are ordered from left to right according to the
sections they are encoding in the target file. This permits a continuous
memory access during the execution of the delta instructions.

6.2.2 Delta Encoder

The severe hardware constraints of wireless sensor networks let our delta
encoder differ in various points from common delta compression algorithms
to optimize the decoding process. Besides the objective to minimize the delta
file size one also has to consider the energy spent on reconstructing the new
image at the nodes. In particular, special care has to be taken to optimize
external flash memory access.

The only instruction that requires additional information from the sources
image to reconstruct its section of the target image is copy. To avoid alternat-
ing read and write requests between source image and delta file potentially
causing the above discussed EEPROM cache thrashing problem we derive
the data required by copy instructions directly from program memory. This
decision has several implications. Most important, copies must be generated
based on the currently executed image even if it is not identical to the im-
age we would like to update. That is, the decoder is actually using a third

5The Atmel AT45DB041B flash chip on the TinyNode platform has a cache size of
two pages.
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Operation Current Draw Time Rel. Power Drain

Receive a packet 14 mA 5 ms 1

Send a packet 33 mA 5 ms 2.36

Read EEPROM page 4 mA 0.3 ms 0.017

Write EEPROM page 15 mA 20 ms 4.29

Table 6.2: Relative energy consumption of different operations in comparison
to a packet reception for the TinyNode platform.

input file, namely the currently executed image, to reconstruct the target
image. Second, decoding is sped up since reading from program memory is
fast in comparison to accessing external flash memory. Third, we are able
to directly overwrite the source image in external memory without wasting
an additional slot during the reconstruction process. This renders shift

instructions possible. As a drawback, it is no longer allowed to use an al-
ready decoded section of the target image as origin for later copies. This
potentially results in larger delta files. However, the aforementioned positive
effects compensate this restriction.

In a first phase, the encoder analyzes both source and target image. The
algorithm runs simultaneous over both input files and generates shift in-
structions for each byte sequence that remains unchanged. Then, the target
image is inspected and run instructions are produced for consecutive bytes
with identical values. In a third pass, for each byte in the target image a
search for the longest common subsequence in the source image is performed.
A copy is then generated for each byte with a matching sequence of size at
least three as copy instructions of length three or larger start to pay off
compared to an add.

In a second phase a sweep line algorithm is employed to determine the
optimal instruction set for the target image minimizing the size of the result-
ing delta. All instructions produced in the first phase reconstruct a certain
section of the target image determined by their start and end address. The
algorithm processes the image from left to right and greedily picks the left-
most instruction based on its start addresses. Then, the next instruction
is recursively chosen according to the following rules. First, the instruction
must either overlap with or be adjacent to the current instruction. Second,
we choose the instruction among those fulfilling the previous requirement
whose endpoint is farthest to the right. The instruction costs are used for tie
breaking. To avoid redundancy in the delta file the new instruction is pruned
to start right after the end of the current one if they overlap. If no instruc-
tion satisfies these demands an add is generated. These add instructions span
the sections not covered by any of the other three instruction types. Once
the algorithm reaches the end of the target image the delta file is generated
according to the rules stated in the previous section.
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6.2.3 Delta Decoder

The delta decoder is mapped as a simple state machine executing delta in-
struction in rotation. Prior to the actual decoding metadata is read from
the head of the delta file. This information is appended by the encoder and
contains the delta file length and additional metadata for the target image
required by Deluge. The length is used to determine completion of the de-
coding. The metadata comprises version and slot information of the target
image. This information is used to verify the applicability of the delta to the
image in the given slot. In case of failure the decoding process is aborted
and the image is updated traditionally without the help of differential repro-
gramming. If the delta is valid, the instructions are consecutively executed
to rebuild the target image.

Once the decoder has fully reconstructed the image it signals Deluge to
pause the advertisement process for the newly built image. This has the effect
that the delta is disseminated faster within the network than the actual image
enabling all nodes to reprogram themselves by means of the delta.

6.3 Experimental Evaluation

In this section we analyze the performance of our differential update mech-
anism on real sensor network hardware. As in section Section 4.3, we run
the experiments on TinyNode sensor nodes operating TinyOS. To prove the
fitness of the proposed approach in a wide range of application scenarios five
different test cases are consulted ranging from small code updates to complete
application exchanges. Except one, all applications are part of the standard
TinyOS distribution. Before evaluating the performance of our reprogram-
ming approach the different test settings are discussed in the following.

• Case 1: This case mimics micro updates like they occur during pa-
rameter tuning. We increase the rate at which the LED of the Blink

application is toggled. This change of a constant has only local impact
and should therefore result in a small delta.

• Case 2: The Blink application is modified to facilitate concurrent pro-
gram executions. The application logic is therefore encapsulated in an
independent task (see BlinkTask). This leads to additional calls to the
TinyOS scheduler and a deferred function invocation.

• Case 3: The CntToLeds application, which shows a binary countdown
on the LED’s, is extended to simultaneously broadcast the displayed
value over the radio (CntToLedsAndRfm). This is a typical example of
a software upgrade that integrates additional functionality.

• Case 4: In this setting Blink is replaced with the Oscilloscope ap-
plication. The latter incorporates multi-hop routing to convey sensor
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Case Target Size Delta Size Size Reduction Encoding Time

1 28684 322 98.88% 8453 ms

2 27833 5543 80.08% 5812 ms

3 28109 7383 73.73% 6797 ms

4 34733 17618 49.28% 7563 ms

5 21508 14904 30.70% 4781 ms

Table 6.3: Target and delta sizes in bytes for the different settings. Addi-
tionally, times required to encode the images are given.

readings towards a base station. Both application share a common
set of system components. This scenario highlights the ability of our
protocol to cope with major software changes.

• Case 5: Here we switch from Blink to Dozer [17], an energy-efficient
data gathering system. Among other features, Dozer employs a cus-
tomized network stack such that the commonalities between the two
applications are minimal. Dozer is the only application in this evalua-
tion that has no built-in Deluge support.

Using the original Deluge, Blink produces a memory footprint of 24.8 kB in
program memory and 824 bytes RAM. In comparison, the enhanced Deluge
version including the delta decoder sums up to 27.6 kB ROM and 958 bytes
of RAM. Consequently, our modifications increase the memory footprint of
an application by 2.8 kB in program memory and 134 bytes of RAM.

The performance of our delta encoder for all five cases is shown in Ta-
ble 6.3. For Case 1, the encoder achieves a size reduction by a factor of 100.
Actually, the mere delta is only 32 bytes long. The other 290 bytes con-
sist of metadata overhead introduced by Deluge such as 256 bytes of CRC
checksums. As mentioned in the case descriptions, the increasing delta sizes
indicate that the similarity between source and target image decreases from
Case 1 to 5. The delta file produced due to major software changes is still
only about half the size of the original image. Furthermore, even if we re-
place an application with one that has hardly anything in common with the
former, such as in Case 5, the encoder achieves a size reduction of about
30%. Thus, our application update mechanism reduces the power consump-
tion of the code dissemination by the same percentage as it compresses the
input data since the energy spent for the image distribution is directly pro-
portional to the transmitted amount of data. Table 6.3 also contains the
execution times of the encoder for the five different scenarios. Note that the
encoding was computed on a customary personal computer. The encoding
process for the considered settings takes up to nine seconds. Compared to



124 CHAPTER 6. DIFFERENTIAL APPLICATION UPDATES

the code distribution speedup achieved by smaller delta files this execution
time is negligible.

Table 6.4 shows the number of occurrences of all four instruction types
in all five settings. Furthermore, it contains the average number of bytes
covered by one instruction. One can see that the modifications in Case 1 are
purely local as only 14 bytes have to be overwritten and the rest of the image
stays untouched. For the other four scenarios, copy and add instructions
constitute the dominating part of the delta files. It is interesting to see that
the average size of a copy is larger if the source and target images have a
higher similarity. The opposite is true for the add instruction. In the case of
minor application updates many code blocks are only shifted to a different
position within the code image but not changed at all. This fact is exploited
by the copy instructions enabling a relocation of these sections with constant
overhead. However, if the new application is completely unrelated to the
one to be replaced as in Case 5, the image exhibits less opportunities for
copies. Consequently, more add instructions are necessary to rebuild the
target image.

To evaluate the decoder we measure the reconstruction time of the target
image on a sensor node. Table 6.5 shows the decoding time for all cases
dependent on the available buffer size at the decoder. If no input buffer is
available, each delta instruction is read separately from external memory be-
fore it is processed. If an input buffer is allocated, the decoder consecutively
loads data blocks of the delta file from EEPROM into this buffer. Before a
new block of data is fetched, all instructions currently located in the buffer
are executed. Similar to the input buffer handling, the decoder writes the
result of a decode instruction directly to external memory if no output buffer
is present. In contrast, if an output buffer is available, it is filled with the
outcomes of the processed delta instructions and only wrote back to EEP-
ROM if it is full. We limit the maximum buffer size to 256 bytes thereby
matching the EEPROM page size of the TinyNode platform.

In the first scenario, the decoding process takes approximately 1.2 seconds
no matter which buffer strategy is applied. This can be explained by the
fact that only 10 delta instructions are involved (see Table 6.4) whereas
five of them are shift instructions which do not lead to EEPROM writes.
In contrast, the decoder takes about 15 seconds to update from Blink to
the Oscilloscope application if neither input nor output buffers are used.
However, decoding time decreases to 8.68 or 5.63 seconds if an input buffer of
256 bytes or both, input and output buffers of size 256 bytes are employed,
respectively. That is, decoding with maximum input and output buffers
reduces the execution time by a factor of 2.7 in Case 4.

Due to the promising results with large buffer sizes, we also study the
impact of varying buffer sizes on the decoding speed. The reconstruction
time for all scenarios was evaluated for buffer sizes of 16, 32, 64, 128, and
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256 bytes. Table 6.5 shows that the execution times increase with decreasing
buffer sizes. However, the increases are moderate: Reducing the buffers from
256 to 16 bytes and thus saving 480 bytes of RAM results in an at most 40%
longer decoding time. Furthermore, the execution times with buffers of 16
bytes are roughly the same as if an input buffer of 256 bytes only is employed.

6.4 Related Work

The earliest reprogramming systems in the domain of wireless sensor net-
works, e.g. XNP [28], did not spread the code within the network but required
the nodes to be in transmission range of the base station in order to get the
update. This drawback was eliminated by the appearance of MOAP [137]
which provides a multi-hop code dissemination protocol. It uses a publish-
subscribe based mechanism to prevent saturation of the wireless channel and
a sliding window protocol to keep track of missing information.

Deluge [60] and MNP [85] share many ideas as they propagate program
code in an epidemic fashion while regulating excess traffic. Both divide a
code image into equally sized pages, pipelining the transfer of pages and thus
making use of spatial multiplexing. A bit vector is used to detect packet
loss within a page. Data is transmitted using an advertise-request-data
handshake. Deluge uses techniques such as a sender suppression mechanism
borrowed from SRM [38] to be scalable even in high-density networks. In
contrast, MNP aims at choosing senders that cover the maximum number
of nodes requesting data. There have been various proposals based on the
above-mentioned protocols, e.g. [132, 115], that try to speed up program dis-
semination. However, all these approaches share the fact that the application
image is transmitted in its entirety. This potentially induces a large amount
of overhead in terms of sent messages but also in terms of incurred latency.

There have been efforts to update applications using software patches
outside the sensor network community in the context of differential compres-
sion, an encoding technique that arose from the string-to-string correlation
problem [146]. Delta compression is concerned with compressing one data
set, referred to as the target image, in terms of another one, called the source
image, by computing a delta. The main idea is to represent the target image
as a combination of copies from the source image and the part of the target
image that is already compressed. Sections that cannot be reconstructed by
copying are simply added to the delta file. Examples of such delta encoders
include vdelta [62], xdelta [99], and zdelta [141]. They incorporate sophisti-
cated heuristics to narrow down the solution space at the prize of decreased
memory and time complexity as it is important to perform well on very large
input files. However, these heuristics result in suboptimal compression. The
zdelta algorithm further encodes the delta file using Huffman coding. This
raises the decoder complexity to a level which does not match the constraints
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of current sensor network hardware. In [76], the xdelta algorithm is used to
demonstrate the efficiency of incremental linking in the domain of sensor
networks. However, the authors do not give a fully functional network re-
programming implementation but use the freely available xdelta encoder to
evaluate the fitness of their solution. There exists other work in the domain
of compilers and linkers trying to generate and layout the code such that the
new image is as similar as possible to a previous image. Update-conscious
compilation is addressed in [91] where careful register and data allocation
strategies lead to significantly smaller difference files. In [145] incremental
linkers are presented that optimize the object code layout to minimize image
differences. All these approaches are orthogonal to our work and can be in-
tegrated to further increase the overall system performance. We refrain from
including one of them since they are processor specific and thus do not allow
a generic solution.

Similar to the above mentioned delta algorithms, bsdiff [118] also encodes
the target image by means of copy and insert operations. The algorithm does
not search for perfect matches to copy from but rather generates approxi-
mate matches where more than a given percentage of bytes are identical. The
differences inside a match are then corrected using small insert instructions.
The idea is that these matches roughly correspond to sections of unmod-
ified source code and the small discrepancies are caused by address shifts
and different register allocation. Delta files produced by bsdiff can be larger
than the target image but are highly compressible. Therefore, a secondary
compression algorithm is used (in the current version bzip2 ) which makes
the algorithm hardly applicable for sensor networks. The authors of [127]
propose an approach similar to bsdiff. Their algorithm also produces non-
perfect matches which are corrected using repair and patch operations. The
patch operations work at the instruction level6 to recognize opcodes hav-
ing addresses as arguments which must be moved by an offset given by the
patch operation. The algorithm shows promising results but depends on the
instruction set of a specific processor.

In [142] rsync is presented that efficiently synchronizes binary files in a
network with low-bandwidth communication links. It addresses the problem
by using two-stage fingerprint comparison of fixed blocks based on hashing.
An adaptation to rsync in the realm of sensor networks is shown in [65]. As
both the source image and the target image reside on the same machine,
various improvements can be introduced. The protocol is integrated into
XNP. Besides the fact that XNP does only allow single-hop updates, the
protocol does not overcome the limitations of rsync and performs well only
if the differences in the input files are small.

FlexCup [102] exploits the component-based programming abstraction
of TinyOS to shift from a monolithic to a modular execution environment.

6Their work is based on the MSP430 instruction set.
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Instead of building a single application image, FlexCup produces separate
object files which are then linked to an executable on the sensor node itself.
Thus, code changes are handled at the granularity of TinyOS components.
This solution does no longer allow global optimizations. Furthermore, since
the linking process requires all the memory available at the sensor node,
FlexCup is not able to run in parallel to the actual application. In [31],
dynamic runtime linking for the Contiki operating system [32] is presented.

Besides TinyOS, there exist other operating systems for sensor networks
which are inherently designed to provide a modular environment [32, 49].
They provide support for dynamic loading of applications and system ser-
vices as a core functionality of the system. However, this flexibility implies
additional levels of indirection for function calls which add considerable run-
time overhead. The update process for changed components is limited to
these components as they are relocatable and address independent.

Virtual machine architectures for sensor networks [88, 89, 7] push the
level of indirection one step further. They conceal the underlying hardware
to offer high-level operations to applications through an instruction inter-
preter. Updates are no longer native code but normally considerable smaller
application scripts. This renders reprogramming highly efficient. However,
the execution overhead of a virtual machine is considerable and outweighs
this advantage for long-running applications [88, 31].

The authors of [39] investigate network reprogramming with the assis-
tance of a mobile robot. The robot thereby first profiles a sensor node to
determine the current software version. In a second step the robot compiles
a new image which is then transmitted to the node.

A temporary alternative to supply in-network programmability inside the
sensor network itself is to provide a parallel maintenance network [33]. This
is particularly useful during the development process as one does not have
to rely on the network being operational to update it. Furthermore, new
protocols can be tested and evaluated without the reprogramming service
distorting results.



Chapter 7

Conclusion

Wireless sensor networks are about to shift from the laboratory to the envi-
ronment. It has become apparent in these deployments that data gathering
is the prevalent application for sensor networks. Even if a sensor network is
not intended to provide continuous information about the monitored envi-
ronment, an operator still wants to be kept informed about the network state
to guarantee the required quality of service. As the lifetime of wireless sensor
networks is generally determined by their ability to economize on the avail-
able energy resources, it is of prime importance to develop energy-efficient
data gathering techniques.

In this dissertation, we studied different strategies to decrease energy
consumption of wireless sensor networks in general and data gathering ap-
plications in particular. While some problem fields were considered from
a theoretical point of view, others were addressed by giving practical im-
plementations on real sensor network hardware. With the often discussed
gap between theory and practice in mind it may seem unorthodox to in-
corporate techniques, methods, and solutions from both sides in one thesis.
Looking back however, it was the right decision as it led to a fruitful inter-
action between these two disciplines. On the one hand, we gained valuable
insight into the limitations of sensor nodes and the “real” problems in prac-
tical networks by delving into system software and hardware specifications
of currently available sensor network platforms. These findings often led to
intriguing theoretical questions. The deployment problem studied in Chap-
ter 5 for example arose from difficulties we faced during a testbed installation
for the Dozer system described in Chapter 4. On the other hand, theoretical
analysis often supported the practical protocol design process.

This deep involvement with the peculiarities of practical sensor networks
gave also rise to a better understanding of which network model abstractions
are allowed without impairing the significance of theoretical results. In this
respect, it becomes apparent that the interference models of Chapter 2 are
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too simplistic. However, these initial considerations opened up a new field
full of fascinating questions forming the basis for ongoing research. Recent
work even starts to replace these oversimplified interference models by the
realistic signal-to-interference-plus-noise model. The harsh physical condi-
tions of real wireless sensor network is closely captured by the unstructured
radio network model in Chapter 5. Yet, it still allows stringent mathemati-
cal analysis of the proposed algorithms. The assumption that sensor nodes
do not feature a reliable collision detection mechanism makes sense from a
worst-case perspective. Nevertheless, in practical networks nodes are often
able to detect most occurring collisions. This opens the algorithmically inter-
esting question of how much does collision detection help in general. Are we
able to devise a strictly better algorithm for the deployment problem than
those proposed in Chapter 5?

From a practical point of view, this dissertation demonstrates that in real-
world deployments, multi-hop communication and lifetimes of several years
are not mutually exclusive and that the vision of a reliable long-term data
gathering networks is within reach. The Dozer network stack facilitates the
collection of information acquired by individual sensor nodes consuming only
a small amount of energy. So far, data is continuously trickling towards the
information sink. However, some applications, e.g. surveillance, control, or
emergency response systems, require more reactivity. Critical events must be
handled almost instantly resulting in a trade-off between network latency and
energy efficiency. Future work will have to show if Dozer can be extended to
reconcile the conflicting demands of low latency, high message yield, and low
power consumption or if custom-tailored systems optimized for individual
application demands are unavoidable.
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