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ABSTRACT
Over the last years, game theory has provided great insights into the
behavior of distributed systems by modeling the players as utility-
maximizing agents. In particular, it has been shown that selfishness
causes many systems to perform in a globally suboptimal fashion.
Such systems are said to have a large Price of Anarchy. In this pa-
per, we extend this active field of research by allowing some players
to be malicious or Byzantine rather than selfish. We ask: What is the
impact of Byzantine players on the system’s efficiency compared to
purely selfish environments or compared to the social optimum? In
particular, we introduce the Price of Malice which captures this effi-
ciency degradation. As an example, we analyze the Price of Malice
of a game which models the containment of the spread of viruses. In
this game, each node can choose whether or not to install anti-virus
software. Then, a virus starts from a random node and iteratively
infects all neighboring nodes which are not inoculated. We estab-
lish various results about this game. For instance, we quantify how
much the presence of Byzantine players can deteriorate or—in case
of highly risk-averse selfish players—improve the social welfare of
the distributed system.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Theory, Economics

Keywords
Selfishness, Game Theory, Price of Anarchy, Price of Malice, Byzan-
tine Nash Equilibria, Virus Propagation

1. INTRODUCTION
The introduction of micro economic models in computer science

has led to great insights into the reality of today’s distributed sys-
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tems such as the Internet, which typically connect selfish, utility-
optimizing agents or players. Over the last years, many aspects of
distributed systems have been studied from a game-theoretic point
of view. A particularly exciting question concerns the so-called
Price of Anarchy: How much better would the social welfare be
if the selfish players collaborated instead of seeking to maximize
their own benefit?

However, selfishness is not the only challenge to the performance
of distributed systems. Often, these systems have to cope with mali-
cious Byzantine adversaries who seek—independently of their own
cost—to degrade the utility of the entire system, to attack correct-
ness of certain computations, or to cause endless changes which
render the system instable. Aware of these threats, many researchers
especially in the area of security and distributed computing have de-
vised solutions to defend against such possible attacks.

In this paper, we aim at combining these two fruitful threads of
research. In particular, we consider a system of selfish individuals
whose only goal is to optimize their own benefit, and add malicious
players who attack the system in order to deteriorate its overall per-
formance. We ask: What is the impact of the Byzantine players on
a selfish system’s efficiency?

We believe that this question is of interest and actuality in many
research fields. Examples in computer science include Internet viru-
ses or Denial of Service attacks where some players aim at destruct-
ing systems which otherwise typically consist of utility-maximizing
players. However, such phenomena might also arise in economic or
sociological environments. For instance, one can imagine a set of
companies competing on a market, selfishly seeking to maximize
their individual gains. Among them, there might be one or two
companies run by “terrorists” whose goal is to destabilize the eco-
nomic system.

In order to capture these questions formally, we introduce the
Price of Malice of selfish systems. The Price of Malice is a ratio
that expresses how much the presence of malicious players deteri-
orates the social welfare of a system consisting of selfish players.
More technically, the Price of Malice is the ratio between the social
welfare or performance achieved by a selfish system containing a
number of Byzantine players, and the social welfare achieved by an
entirely selfish society.

It is interesting to compare the Price of Malice with the notion
of the Price of Anarchy. The Price of Anarchy captures the degra-
dation of a socially optimal performance of a system due to selfish
behavior of its users or participants. That is, the Price of Anarchy
relates the social welfare generated by players acting in an egoistic
manner to an optimal solution obtained by perfectly collaborating
participants. The Price of Malice’s reference point, on the other
hand, is not a socially optimal welfare, but the welfare achieved by
an entirely selfish system.
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The Price of Anarchy and the Price of Malice are therefore two
orthogonal measures that describe inherent properties of distrib-
uted, socio-economic systems. Specifically, a system may have a
small Price of Anarchy, but a large Price of Malice, and vice versa.
The fact that a system has a large Price of Anarchy indicates that
it is necessary to design mechanisms (such as taxes or payment
schemes) that forces players to collaborate more effectively. How-
ever, it is much more difficult to improve (or repair) systems having
a large Price of Malice, since Byzantine players do not respond to
any rules or (financial) incentives. Often, the only solution is to
defend the system against malicious intruders, or at least to ensure
that the number of malicious players in the system remains small.

By introducing a model that comprises the notions of Byzantine
Nash equilibria, the Byzantine Price of Anarchy, and the Price of
Malice, we are able to formally analyze what happens in selfish
systems if one or more players’ aim is to hinder the system from
working or to bog down its performance as much as possible.

The Price of Malice crucially depends on the amount of infor-
mation the selfish players have about the presence and behavior of
the Byzantine players, and how they respond to this information.
In other words, the utility function which finally defines the self-
ish players’ reaction depends on how they subjectively perceive and
judge the threat of Byzantine players. Hence, the utility of selfish
players is computed using the perceived expected cost rather than
the unknown actual cost. For example, it can be shown that in case
of risk-averse players, the presence of Byzantine players may actu-
ally improve the social welfare compared to a situation where there
are no Byzantine players at all. That is, there are situations where
selfish players may tend to be more willing to collaborate if they
face higher risks.

To the best of our knowledge, this is the first paper to study a
model which allows for an analytical quantification of this so-called
Fear Factor. Potentially, this in turn gives raise to several research
questions in many areas including distributed systems, economics,
politics or sociology.

Besides studying Byzantine players who aim at minimizing the
performance of a system (Price of Malice), we also raise the ques-
tion of stability. Particularly, we are interested in the question, how
many Byzantine players suffice in order to prevent the system from
stabilizing.

In this paper, we investigate a concrete example where selfish
and Byzantine players interact. In this simple game, we consider a
network of nodes, where each node can choose between paying for
inoculation, or risking to get infected by a virus. After the nodes
have made their choices, a virus starts at some random node and
propagates iteratively to all neighboring nodes which are not inoc-
ulated. For this game, we give tight bounds for the Price of Malice
for different types of selfish nodes (not aware of Byzantine nodes,
aware and risk-averse, etc.).

The remainder of this paper is organized as follows. After re-
viewing related work in Section 2, we introduce the foundations of
our Byzantine game theory in general and the models of the virus
inoculation game in particular in Section 3. In Section 4, the impact
of selfish and Byzantine behavior on the social welfare of the virus
inoculation game is studied. Section 5 considers Byzantine attacks
on the stability of a system, before Section 6 concludes the paper.

2. RELATED WORK
Security and robustness of distributed systems against Byzan-

tine faults have been of prime importance and an active field of
research for many years. Possibly the most well-known problem
in this context has been that of reaching consensus among distrib-
uted parties. Possibility and impossibility results on the Byzantine
consensus problem have been achieved in a variety of models and

settings. Classic work in the synchronous and asynchronous case
includes [4, 12, 21] and [9], respectively. In addition to the con-
sensus problem, the distributed computing community has come up
with results and solutions for a wide variety of other problems with
Byzantine faults. Examples are clock synchronization [23], broad-
cast [10, 22], or quorum systems [13]. All of the above works as-
sume that non-Byzantine players (or processes) are benevolent and
attempt to reach a common goal. Finally, Byzantine behavior is
subject to intensive research in cryptography. For instance, there
is a large body of work in the area of secure multi-party computa-
tion [24].

In his STOC’01 talk [17], Papadimitriou has argued that the Inter-
net has surpassed the von Neumann computer as the most complex
computational artifact of our time. In particular, he pointed out that
the Internet has a socio-economic complexity whose understanding
requires techniques from mathematical economics and game theory
[16]. Since then, game theoretic approaches have become increas-
ingly popular to study selfish behavior on all layers of distributed
systems. Specifically, researchers have been keen to study the in-
herent loss of efficiency in a system caused by the participant’s self-
ishness in networks. Consequently, the Price of Anarchy [11, 20]
and its complexity has been investigated in various system settings,
including the Internet [7], wireless ad-hoc networks [5], or peer-to-
peer systems [14]. Enforcing a truthful behavior or a reasonable
efficiency in systems with a potentially high Price of Anarchy has
been the goal of algorithmic mechanism design [8, 15].

In this paper, we strive for combining these two threads of re-
search. In this respect, our research is related to the notions of fault
tolerant implementation introduced by Eliaz [6] and of BAR fault
tolerance introduced by Aiyer et al. [1]. In [6], implementation
problems are investigated where there are k faulty players in the
population, but neither their number nor their identity is known. A
planner’s objective then is to design an equilibrium where the non-
faulty players act according to his rules. In [1], the authors describe
an asynchronous state machine replication protocol which tolerates
Byzantine, Altruistic, and Rational behavior. Interestingly, they find
that the presence of Byzantine players can simplify the design of
protocols if players are risk averse.

There exists other work on game theoretic systems in which not
every participating agent acts in a rational or selfish way. In Stack-
elberg theory [19], for instance, the model consists of a set of selfish
players, but a certain fraction of the entire population is controlled
by a global leader. The leader’s goal is to devise a strategy that in-
duces an optimal or near optimal so-called Stackelberg equilibrium.

Virus propagation models have also been widely studied in liter-
ature. While traditional epidemiological models characterize infec-
tion in terms of birth rate and death rate of the virus [3], more re-
cently models have been proposed for all kind of graphs, including
Internet-like power-law graphs [18]. In particular, the percolation
and game theoretic virus propagation model of this paper is based
on [2]. The authors of [2] model the containment of the spread
of viruses in general graphs. They characterize equilibria in self-
ish environments and also give an approximation algorithm for the
centralized, non-selfish case.

3. MODEL
We present our model in two steps. First, we discuss the virus

inoculation game derived from [2]. Subsequently, we introduce our
framework of Byzantine game theory including the definition of the
Price of Malice.

3.1 Virus Inoculation Game
Similarly to [2], we model the virus inoculation game as a sce-

nario with n strategic players each of whom corresponds to a node
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in an undirected grid G[r, c] of r rows and c columns.1 Henceforth,
we will refer to the upper left corner of the grid as G[0, 0], i.e.,
indices start with 0.

Each node i has two choices: either do nothing and risk infection
by a virus, or inoculate itself by installing anti-virus software. For
a node, installing the anti-virus software has the obvious advantage
that it becomes immune against infection. On the other hand, the
process of installing the software entails a cost in terms of money
and/or time. Hence, a strategic player may or may not opt for inoc-
ulation depending on which choice maximizes his own utility.

The nodes’ choices can be summarized by a strategy profile−→a ∈
{0, 1}n, where ai = 1 signifies that node i installs the anti-virus
software, and ai = 0 that it does not install it. We call nodes i with
ai = 1 secure, and denote the set of secure nodes by I−→a . After
the nodes have made their choices, the adversary picks some node
uniformly at random as a starting point for infection. Infection then
propagates on the network graph and infects all non-secure nodes
that are in the same non-secure connected component as the starting
point of infection. Technically, we associate an attack graph G−→a =
G \ I−→a with −→a . It is essentially the network graph in which all
secure nodes and their incident edges are removed.

In this paper, we consider the following costs: installing anti-
virus software on a selfish node entails an inoculation cost of 1 at
this node. If a selfish node does not inoculate and becomes infected,
it suffers a loss equal to L. Therefore, the cost of a selfish node i
can be summarized as follows:

costi(
−→a ) = ai + (1− ai) · L · ki

n
, (1)

where ki/n is the probability that node i is infected, conditioned on
the event that it does not install the anti-virus software. Thereby, ki

is the size of the connected component containing i in G−→a . Finally,
the social cost of a strategy profile −→a is the sum of all individual
costs, i.e., Cost(−→a ) =

P
j∈S costj(

−→a ), where S denotes the set
of all selfish players. When the strategy profile −→a is clear from the
context, we sometimes use abbreviations costi and Cost to denote
individual cost and social cost, respectively.

3.2 Byzantine Game Theory
In order to understand the impact of malicious players on the

selfish system, we extend the virus inoculation game with malicious
Byzantine players. Formally, there are n nodes in the network. Of
these n nodes, b are malicious Byzantine nodes that do not strive
for minimizing their own costs. Instead, the goal of these Byzantine
nodes is to deteriorate the overall system performance as much as
possible, i.e., to maximize the resulting social cost of the solution.
The remaining s := n− b nodes are selfish and aim at maximizing
their own utility. Instead, the goal of these Byzantine nodes is to
deteriorate the overall system performance as much as possible, i.e.,
to maximize the resulting social cost of the solution. We denote the
set of Byzantine and selfish players as B and S, respectively. It
holds that b := |B|, s := |S|, and n = s + b.

While selfish nodes behave as discussed in Section 3.1, we as-
sume that the Byzantine nodes pursue the following strategy: they
claim to be inoculated (i.e., they proclaim their strategy to be ai =
1), but actually they are not. In order to emphasize that Byzantine
nodes are only seemingly secure, we denote the set of really inocu-
lated and secure selfish nodes by Iself−→a . The attack graph resulting
from strategy profile −→a is then G−→a = G − Iself−→a . This is the net-
work graph without secure, selfish nodes, but including all Byzan-

1Our results can be generalized to other highly regular, low-
dimensional graphs such as the two-dimensional torus, i.e., a grid
that wraps around at the boundaries.

tine nodes. We can therefore define the individual cost incurred at a
selfish node i ∈ S as follows.

DEFINITION 3.1 (ACTUAL INDIVIDUAL COST). The (actual)
individual cost costi(

−→a ) of a node i ∈ S is defined as

costi(
−→a ) := ai + (1− ai) · L · ki

n
,

where ki is the size of the connected component of node i in the
attack graph G−→a .

Notice that in spite of its being equivalent to the corresponding de-
finition in Section 3.1, we call this cost actual individual cost. This
is to emphasize the fact that selfish players may not know about the
existence of Byzantine players, and therefore, they are unable to
compute their actual individual cost. Even if they are aware of the
malicious players’ existence, they might not know the Byzantine
players’ exact locations or strategies. In other words, with the ad-
dition of Byzantine players, selfish nodes no longer have a perfect
knowledge about the network and its nodes’ choices.

In case of imperfect information, a node might deal with its un-
certainty in different ways. For example, a node might be risk
averse and act in a conservative manner. These observations im-
ply that before the location and strategies of Byzantine players are
revealed (i.e., before the virus infection occurs), a selfish player i
experiences a perceived individual cost dcosti(

−→a ). This perceived
cost can differ from the actual individual cost costi(

−→a ) a node
eventually has to pay.

DEFINITION 3.2 (PERCEIVED INDIVIDUAL COST). Consider
a selfish game with Byzantine players in which selfish players have
imperfect knowledge about the existence, location, or the strategy
of Byzantine players. In this case, the perceived individual costdcosti(

−→a ) of a selfish player i captures the cost expected by player
i given his knowledge about the Byzantine players. This cost de-
pends on the underlying model.

The strategic decisions of selfish players can only be based on
the perceived cost (not on their actual individual costs), as the ac-
tual individual cost can only be computed once the locations and
strategies of Byzantine players are revealed. In this paper, we will
study the following two basic models.

DEFINITION 3.3 (OBLIVIOUS). In the oblivious model, self-
ish players are not aware of the existence of Byzantine players. That
is, selfish players assume that all other players in the system are
selfish as well.

DEFINITION 3.4 (NON-OBLIVIOUS). In the non-oblivious
model, selfish players know about the existence of Byzantine play-
ers. Specifically, we assume that every selfish player knows b, the
number of Byzantine players in the system, but he does not know
about these players’ exact locations or strategies. Moreover, we as-
sume that selfish players are highly risk averse in the sense that they
aim at minimizing their maximal individual cost. Let D be the set
of possible distributions of Byzantine players among all players. A
selfish player i experiences a perceived individual cost ofdcosti(

−→a ) := max
d∈D

{costi(
−→a , d)},

where costi(
−→a , d) denotes the actual costs of i if the Byzantine

players are distributed according to d ∈ D.

In the virus inoculation game, and in an oblivious model, the per-
ceived cost is typically smaller than the actual cost: A node i ∈ S
does not take into consideration the Byzantine nodes which may
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increase the size of i’s attack component. In the non-oblivious risk-
averse model on the other hand, a node actually overestimates its
expected actual cost by considering a worst-case scenario: A self-
ish player assumes that the Byzantine nodes are—from its individ-
ual point of view—distributed in a worst-case fashion among all
players. Therefore, the perceived individual cost may be larger than
the actual cost.

Since our goal is to understand the impact of terrorist behavior
on a system of selfish players, the cost of Byzantine players is not
included in the social cost. If it was, it would in general be easy
for Byzantine players to arbitrarily deteriorate the social welfare of
a system by simply increasing their own costs as much as possible.
Moreover, as Byzantine players are malicious anyway, there is no
particular reason why the overall system should care about these
players’ costs.

Formally, the total social cost Cost(−→a ) of a strategy is defined as
the sum of the (actual) individual costs of all selfish players. Since
each node in the same connected component of G−→a has the same
probability of infection, the li selfish nodes in the i-th attack com-
ponent face a loss of li · (Lki/n) if the component is infected.

DEFINITION 3.5 (SOCIAL COST). The social cost is given by
the sum of the actual individual costs of selfish players

Cost(−→a ) =
X
j∈S

costj(
−→a ) = |Iself−→a || {z }

inoculation cost

+
L

n

lX
i=1

kili| {z }
infection cost

,

where k1, k2, . . . , kl are the sizes of the components in G−→a , and
l1, l2, . . . , ll are the sizes of the same components without counting
the Byzantine nodes. We refer to the cost due to inoculation as the
inoculation cost Costinoc, and to the cost due to the virus infections
as the infection cost Costinf .

As customary in the game theory literature [16], the social cost of
a setting where all nodes perfectly collaborate, i.e., where there are
neither selfish nor Byzantine nodes, is called the social optimum.

DEFINITION 3.6 (OPTIMAL SOCIAL COST). The optimal so-
cial cost CostOPT is the sum of all the players’ actual individual
costs in case of perfect collaboration.

An important concept of game-theoretic analysis is the notion
of the Nash equilibrium. In classic game theory—where there are
no Byzantine nodes—this equilibrium describes a situation where
no selfish node has an incentive to unilaterally change its strategy.
In the following, we extend the definition of a Nash equilibrium
to incorporate Byzantine nodes. The Byzantine Nash equilibrium
(BNE) describes a configuration where no selfish player can reduce
his perceived cost by changing his strategy, given that the strategies
of all other players are fixed.2

DEFINITION 3.7 (BYZANTINE NASH EQUILIBRIUM (BNE)).
Let −→a [i|x] be the strategy vector that is identical to −→a except for
the i-th component ai which is replaced by x. In a Byzantine Nash
equilibrium, no selfish player i ∈ S has an incentive to change his
strategy if the strategies of all other (selfish and Byzantine) players
are fixed, i.e.,

∀i ∈ S : dcosti(
−→a ) ≤ dcosti(

−→a [i|a′i]),
for every possible strategy a′i.

2Notice that we do not define the Byzantine Nash equilibrium with
actual individual costs, because they are not known to the players.

While the Byzantine Nash equilibrium must be defined by the per-
ceived individual costs, the resulting social cost is determined by
the actual costs. After all, it is the actual individual costs that play-
ers will eventually have to pay. In the following, we will refer to the
social cost of the worst Byzantine Nash Equilibrium of a problem
instance I as CostBNE(I, b).

It is well-known that selfish and Byzantine players often interact
in a manner that yields suboptimal solutions. The degree of degra-
dation resulting from selfish and Byzantine players compared to the
social optimum is captured by the Price of Byzantine Anarchy.

DEFINITION 3.8 (PRICE OF BYZANTINE ANARCHY). The
Price of Byzantine Anarchy captures how much worse a Byzantine
Nash equilibrium can be compared to a collaborative optimal so-
lution. More formally, in a scenario with b Byzantine players, the
Price of Byzantine Anarchy PoB(b) is the ratio between the worst-
case social cost of a Byzantine Nash equilibrium divided by the
minimal social cost, i.e., for all problem instances I ,

PoB(b) = max
I

CostBNE(I, b)

CostOPT (I)
.

Note that in the absence of Byzantine players—i.e., if the system
consists of selfish players only—, the Price of Byzantine Anarchy
is equivalent to the well-known Price of Anarchy (PoA) studied in
classic game theory. Specifically, it holds that PoA = PoB(0).

With these definitions, we are ready to define the Price of Malice
which describes the degree of sub-optimality resulting from mali-
cious Byzantine players in an otherwise selfish system. A high Price
of Malice indicates that an economic system is particularly vulner-
able to malicious or terrorist attacks. On the other hand, if the Price
of Malice is low, the system consisting of selfish players is stable
enough to tolerate malicious participants. Clearly, the degree of
degradation may depend on the number of Byzantine players in the
game. Hence, the Price of Malice is a function of b.

DEFINITION 3.9 (PRICE OF MALICE). The Price of Malice
captures the ratio between the worst Byzantine Nash Equilibrium
with b malicious players and the Price of Anarchy in a purely self-
ish system. Formally,

PoM(b) =
PoB(b)

PoB(0)
.

As we will discuss in detail in Section 4.4, we may also speak of
the inverse of the Price of Malice as the game’s Fear Factor Ψ(b).
That is, a game’s Fear Factor is given by Ψ(b) := 1/PoM(b).

4. ANALYSIS
In order to derive results for the Price of Malice in various mod-

els, we have to establish structural properties of Nash equilibria and
the social optimum in the virus inoculation game. We begin with
a simple characterization of Nash equilibria if there are no Byzan-
tine nodes. The proof of the following lemma is derived from the
analogous lemma in [2].

LEMMA 4.1. In a pure Nash equilibrium −→a , it holds that (a)
every component in the attack graph G−→a has a size of at most n/L,
and (b) inserting any secure node into G−→a yields a component size
of at least n/L.

PROOF. In the absence of Byzantine players, perceived indi-
vidual costs equal actual individual costs. (a) Consider a node
u ∈ S in a component of size t > n/L. The expected cost is
costu(−→a ) = t/n · L > 1, and hence u could reduce its cost by in-
stalling the virus software. This yields a contradiction to the Nash

38



equilibrium assumption. (b) Consider a secure node u which would
be in a component of size t < n/L if it changed to an unvaccinated
state. The expected infection cost is smaller than the inoculation
cost, i.e., costu(−→a ) = t/n · L < 1, which also contradicts the
equilibrium assumption.

Lemma 4.1 implies that if L ≥ n, all nodes will inoculate in the
Nash equilibrium. Therefore, for the rest of this paper, we assume
that L < n.

4.1 Social Optimum
If the inoculation strategies of the individual nodes are planned

by a benevolent centralized coordinator, the welfare of the system
is maximized. In the following, we derive an asymptotically tight
bound on the cost of this social optimum. Throughout this section,
perceived costs equal actual costs because when studying the social
optimum, we do not consider Byzantine players, i.e., b = 0 and
therefore s = n.

THEOREM 4.2. The optimal social cost if all players in S act
altruistically is CostOPT ∈ Θ(s2/3L1/3). More specifically,

1

3

√
π · s2/3L1/3 ≤ CostOPT ≤ 4s2/3L1/3.

PROOF. We prove the upper and lower bound in turn.
Lower Bound: If all nodes collaborate to achieve the optimal

solution, it holds that li = ki and hence, the social cost is given by

Cost = |I−→a |+ L

n

lX
i=1

k2
i ,

where |I−→a | is the number of inoculated nodes, and the ki’s are the
sizes of the components in the attack graph. This sum is minimized
when all ki are of equal size, say size K. While each secure node
has a cost of 1, every other node has an expected cost of L ·K/n.
Hence, setting γ := |I−→a | and because s = n, the optimal social
cost can be bounded as

CostOPT ≥ γ + (s− γ)

�
LK

s

�
. (2)

A relationship between γ and K follows from a simple geometric
argument: If a component in the attack graph is of size K, the num-
ber of inoculated nodes at the component’s border must be at least

2π
q

K
π

= 2
√

πK (circumference of a disk with volume K). As

the total number of such components is at least s−γ
K

and each inoc-
ulated node can be on the border of at most two components, γ can
be expressed as

γ ≥ s− γ

K
· 2
√

πK · 1

2
= (s− γ)

r
π

K
.

By solving this inequality for γ, it follows that γ ≥ s ·
√

π/K

1+
√

π/K
.

On the other hand, it can be observed that in the optimal solution,
for s > L, no node is inoculated if all its four neighbors are in-
oculated. From this, it can be derived that in an optimal solution,
γ ≤ s

2
. Plugging these two bounds into Inequality (2), the optimal

social cost is at least

CostOPT ≥ s ·
p

π/K

1 +
p

π/K
+

LK

2
.

The first term of the above expression is monotonously decreasing
in K in the range 0, . . . , s, whereas the second one is monotonously

increasing. Therefore, taking the minimum of the two terms for a
specific K yields a lower bound on CostOPT . When setting

K :=
2

3

√
π ·
� s

L

�2/3

,

the second term yields 1
3

√
π · s2/3L1/3. The first term evaluates

to
√

3/2· 4√π

1+
√

3/2· 4√π
· s2/3L1/3 > 1

3

√
π · s2/3L1/3. Consequently, we

obtain the following lower bound on the cost of the social optimum:

CostOPT ≥ 1

3

√
π · s2/3L1/3 ∈ Ω(s2/3L1/3).

Upper Bound: Having established a lower bound on the optimal
social cost, we now explicitly construct a solution that is asymptot-
ically optimal and proves the tightness of the above lower bound.
Given an arbitrary grid G[r, c], we inoculate the nodes as follows.
Let K := (s/L)2/3. We secure all nodes in the columns G[·, i√K]

for i ∈ {1, ..., bc/(
√

K + 1)c} and rows G[i
√

K, ·] for i ∈ {1, ...,

br/(
√

K + 1)c}. Consequently, all attack components are of size
at most

√
K×√K = K as illustrated in Figure 1 (left). Hence, the

total infection cost is at most L · (s− |I−→a |)K
s

< LK = s2/3L1/3.
It remains to bound the inoculation cost. In an ideal setting where

the components perfectly fit into G[r, c] without leftovers, it holds
that for each component of size K in the attack graph, there are
exactly 2

√
K + 1 inoculated nodes. Let X denote the number of

components. It holds that X · (K + 2
√

K + 1) = s and therefore,
when plugging in the definition of K, X = s/[( s

L
)2/3+2( s

L
)1/3+

1]. The number of inoculated nodes γ is at most

γ ≤ X · (2
√

K + 1) ≤ s(2
√

K + 1)�
s
L

�2/3
+ 2

�
s
L

�1/3
+ 1

< s1/3L2/3 ·
�

2
� s

L

�1/3

+ 1

�
= 2s2/3L1/3 + s1/3L2/3

≤ 3s2/3L1/3.

Combining the infection and inoculation costs, we can bound the
optimal social cost by

CostOPT < s2/3L1/3 + 3s2/3L1/3 = 4s2/3L1/3.

4.2 Price of Anarchy
The Price of Anarchy compares the social cost of the worst Nash

equilibrium (without Byzantine nodes) to the minimal social cost.
In the upcoming section, we will first compute CostNE , which is
the maximal cost of any Nash equilibrium. Together with the bound
for the social optimum in Section 4.1, the Price of Anarchy will
follow.

LEMMA 4.3. The social cost of the worst Nash equilibrium is
CostNE = Θ(s).

PROOF. First, we show that CostNE = Ω(s). Consider a grid
G[s/L, L] consisting of an even number of L rows of size s/L.
Assume that columns G[·, 2i] for i ∈ {0, 1, ..., L/2 − 1} consist
of insecure nodes only, while all nodes in the remaining rows are
secure. Since all attack components have size s/L, according to
Lemma 4.1, this situation constitutes a Nash equilibrium. Observe
that every second row is inoculated, engendering an inoculation cost
of s/2. Moreover, with probability 1/2, the virus starts at an inse-
cure node, yielding infection cost s/L · L. The social cost is there-
fore CostNE = s/2 + 1/2 · s/L · L = s.
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Figure 1: Left: Upper bound for social optimum. White nodes are insecure, black nodes are secure. Middle: Byzantine Nash
equilibrium for G[n/L, L] for the oblivious model. Insecure Byzantine nodes are denoted by white triangles. They are located in a
way that may yield an attack component of size (b+1)n/L+b. Right: Example with large social cost for the non-oblivious, risk-averse
model.

It remains to show that O(s) is an upper bound for any Nash
equilibrium. Since at most each of the s = n nodes can be inocu-
lated, the inoculation cost cannot exceed s. By Lemma 4.1, we also
know that the infected component’s size is at most s/L, entailing a
total infection cost of at most s as well. Hence, CostNE ≤ 2s, and
the claim holds.

By Theorem 4.2 and Lemma 4.3, we get the following result.

THEOREM 4.4. For the Price of Anarchy (PoA), it holds that

1

4
·
� s

L

�1/3

≤ PoA ≤ 6√
π
·
� s

L

�1/3

PROOF. As for the upper bound, it holds that

PoA =
CostNE

CostOPT
≤ 2s

1
3

√
π · s2/3L1/3

≤ 6s1/3

√
π · L1/3

and as for the lower bound, we have PoA ≥ s

4·s2/3L1/3 .

4.3 Oblivious Model
We begin our study of the Price of Malice with the oblivious

model in which players are clueless about the existence of Byzan-
tine players in the system (cf Section 3). As a consequence, it
follows that—since nodes underestimate the attack components’
sizes—the nodes’ perceived individual costs are smaller than the
actual individual costs. It turns out that in the presence of Byzantine
nodes, the social costs increase in the number of Byzantine nodes.

LEMMA 4.5. In the oblivious model, the social cost is at least
CostBNE ∈ Ω(s + nb2

L
) for b < L

2
− 1, and CostBNE ∈ Ω(sL)

otherwise.

PROOF. Consider again a grid G[n/L, L] with n/L rows and
L columns, where every second column consists of secure nodes
only. For simplicity, let L be even. Suppose that in the first b secure
columns there is one Byzantine node each, see Figure 1 (middle).
In case b ≥ L

2
− 1, every secure column that separates two inse-

cure columns contains one Byzantine node. The remaining Byzan-
tine nodes can be placed at arbitrary places in the secure columns.
Because selfish nodes are not aware of the existence of Byzantine
nodes in the network, the perceived cost is dcosti = 1 for inoculated
nodes, and dcosti = n/L

n
·L = 1 for the other selfish nodes. Hence,

the situation constitutes a Byzantine Nash equilibrium.

For computing the social costs of this Byzantine Nash equilib-
rium, we distinguish two cases, depending on whether the number
of Byzantine nodes is smaller than L

2
− 1 or not. For the first case,

assume that b ≥ L
2
−1. Because there is at least one Byzantine node

in every secure column that separates two insecure columns has
least one Byzantine node, all selfish and Byzantine players form one
large attack component. Consequently, each insecure selfish node
i ∈ S is infected with probability 1 and therefore CostBNE ≥ s·L.

For the second case, assume that b < L
2
− 1. Each of the first

secure columns contains exactly one Byzantine node. Since L is
even, there are s/2−b secure nodes, and hence the inoculation cost
is s/2−b. With probability ((b+1)n/L+b)/n, the infection starts
at an insecure or a Byzantine node of an attack component of size
(b + 1) · n/L, yielding a cost of (b + 1) · n/L · L = n(b + 1).
Moreover, with probability (s/2 − (b + 1)n/L)/n, an insecure
column of size n/L is hit. Thus, for b < L

2
−1, we get the following

lower bound on the social cost:

CostBNE =
� s

2
− b
�

+
(b+1)n

L
+ b

n
· n(b + 1) +

+
s
2
− (b + 1) n

L

n
· n

L
· L

= s +
nb2

L
+

nb

L
+ b2 ∈ Ω

�
s +

nb2

L

�
.

LEMMA 4.6. In the oblivious model, the social cost is at most
CostBNE ∈ O

�
min{sL, s + b2n

L
}
�

.

PROOF. Since at most every selfish node can be inoculated, it is
clear that Costinoc = O(s). It remains to study the infection cost.
The infection cost of a node in some component i is L times the
probability of this component being hit by the virus, i.e., L · ki/n.
Hence, the total infection cost is given by

Costinf =
X

i

li · ki

n
· L =

L

n

X
i

li · ki,

where ki is the size of the attack components (including Byzantine
nodes), and li is the number of selfish nodes in this component.
In order to upper bound Costinf , let SByz denote the set of com-
ponents in the attack graph which contain at least one Byzantine
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node, and let SByz be the remaining components. We can rewrite
the equation above as

Costinf =
L

n
·
24 X

i∈SByz

li · ki +
X

i∈S
Byz

li · ki

35 ,

that is, we consider the infection cost of components with at least
one Byzantine node separately from the remaining “Byzantine-free”
components. In the following, let

CostByz
inf :=

L

n

X
i∈SByz

liki CostByz
inf :=

L

n

X
i∈S

Byz

liki.

We have to prove that neither CostByz
inf nor CostByz

inf exceeds O(s+
b2n
L

).
As we have shown in the proof of Lemma 4.3 in Section 4.2,

the total infection cost of a network consisting only of selfish nodes
cannot exceed s. Because in our case nodes are oblivious about the
existence of Byzantine nodes, attack components without Byzan-
tine nodes behave like in an entirely selfish environment. Therefore,
CostByz

inf ∈ O(s).
It remains to compute the infection cost of those attack compo-

nents which include at least one Byzantine node. Let bi be the num-
ber of Byzantine nodes in the i-th component in SByz , and note thatP

i bi = b. By Lemma 4.1, we know that in the absence of Byzan-
tine nodes, the size of an attack component is at most ki ≤ n/L.
Therefore, one Byzantine node can increase a component by at most
n/L nodes plus itself. From this it follows that the size of an attack
component i is bounded by

ki ≤ (bi + 1) · n

L
+ bi, and li ≤ (bi + 1) · n

L
.

Using this relationship between bi and the size of the attack com-
ponent, we can bound CostByz

inf as

CostByz
inf =

L

n

X
i∈SByz

li · ki

≤ L

n

X
i∈SByz

h
(bi + 1) · n

L
·
�
(bi + 1) · n

L
+ bi

�i
=

X
i∈SByz

h
(bi + 1)2

n

L
+ bi(bi + 1)

i
<

X
i∈SByz

h
(bi + 1)2

�n

L
+ 1
�i

=
�n

L
+ 1
�
·
X

i∈SByz

(bi + 1)2.

Given the constraint that bi ≥ 1 for every bi, and because
P

i bi =
b, the above convex function assumes its maximum for a single pos-
itive bi = b. Consequently,

CostByz
inf ≤

�n

L
+ 1
�
·
X

i∈SByz

(bi + 1)2

≤
�n

L
+ 1
�
· (b + 1)2 ∈ O

�
b2n

L

�
.

On the other hand, it clearly holds that at most every selfish node
can be infected and hence, CostByz

inf + CostByz
inf ≤ sL. The proof

is concluded by adding the upper bounds for Costinoc, CostByz
inf ,

and CostByz
inf .

Combining Lemmas 4.5 and 4.6 leads to the following theorem
that captures the social cost in the virus inoculation game in the
presence of b Byzantine players among selfish, oblivious nodes.

THEOREM 4.7. The social cost in a Byzantine Nash equilib-
rium with b Byzantine nodes in the oblivious model is CostBNE ∈
Θ(s + b2n

L
), for b < L

2
− 1, and CostBNE ∈ Θ(sL), otherwise.

PROOF. In both cases, the lower bound follows from Lemma 4.5.
As for the upper bound, note that for b < L

2
− 1 and due to

L ≤ n = s + b, it holds that b < s+b
2

and therefore, b < s.
Then, the term s + b2n

L
asymptotically cannot exceed the term sL

and therefore, the claim follows. As for the second case, note that
for b ≥ L

2
− 1, the term sL is asymptotically smaller or equal to

s + b2n
L

.

Finally, we can derive tight bounds on the The Price of Byzantine
Anarchy and the Price of Malice by bringing together the results of
Theorems 4.2, 4.4, and 4.7.

THEOREM 4.8. In the virus inoculation game with b Byzantine
nodes among selfish, oblivious nodes, the Price of Byzantine Anar-
chy and the Price of Malice are

PoB(b) ∈ Θ

�� s

L

�1/3
�

1 +
b2

L
+

b3

sL

��
and

PoM(b) ∈ Θ

�
1 +

b2

L
+

b3

sL

�
for b < L

2
− 1. Otherwise, it holds that

PoB(b) ∈ Θ
�
s1/3L2/3

�
and PoM(b) ∈ Θ(L) .

PROOF. Consider the case b < L
2
− 1. For the Price of Byzan-

tine Anarchy, we have PoB(b) = CostBNE
CostOP T

=
Θ(s+

b2(b+s)
L

)

Θ(s2/3L1/3)
∈

Θ
��

s
L

�1/3 ·
�
1 + b2

L
+ b3

sL

��
. From this, the Price of Malice is

computed as follows PoM(b) = PoB(b)
PoA

∈ Θ
�
1 + b2

L
+ b3

sL

�
.

The case b ≥ L
2
− 1 follows along the same lines by plugging in

the corresponding expressions of Theorem 4.7.

Our results on the Price of Malice in the oblivious case support
the intuition that in the absence of knowledge about the existence
of Byzantine players, the quality of the global solution (i.e., the
resulting social cost) deteriorates as the number of malicious play-
ers increases. In the next section, we will show that the situation
may change as soon as selfish players are aware of the existence of
Byzantine players.

4.4 Non-oblivious Model
Having studied the oblivious model, we now turn our attention

to the non-oblivious case in which selfish players are aware of the
existence of Byzantine players. If selfish nodes knew about the ex-
act locations of Byzantine nodes, they would be able to compute
their optimal choice exactly. If selfish nodes only know the num-
ber of Byzantine nodes in the system, however, the optimal strategy
of a player becomes more complex, and the impact on the social
cost more interesting. Specifically, it turns out that in this non-
oblivious case, the “Fear Factor” may actually encourage players to
act less selfishly and cooperate. Put differently, there may be set-
tings in which the existence of Byzantine players helps to improve
the global social cost, rendering the Price of Malice less than 1.

Observe that in the non-oblivious case, every selfish node inocu-
lates if b ≥ n

L
, implying a social cost of s. If b < n

L
, the resulting

social costs are bounded by the following lemma.

41



LEMMA 4.9. For b < n
2L

, the social cost in a Byzantine Nash
equilibrium in case of non-oblivious, risk-averse players with b
Byzantine nodes is at least

CostBNE ≥ s

2
+

bL

4
.

For all values of b, it holds that CostBNE ≥ s
2

.

PROOF. We start with the more interesting case b < n
2L

. Con-
sider a grid with L columns each containing n/L nodes. All nodes
in columns 2i + 1 for i = 0, 1, . . . , L

2
− 1 and all nodes in rows

j · n/L−b
b+1

for j = 1, 2, . . . , b are inoculated. That is, as illustrated
in Figure 1 (right), each component of insecure selfish nodes is of
size n/L−b

b+1
.

First, we show that this configuration constitutes a Byzantine
Nash equilibrium in the risk-averse, non-oblivious case with b Byzan-
tine nodes. Consider an insecure node in some column i. If all b
secure nodes in this column are Byzantine, the size of the resulting
attack component is (n/L−b)/(b+1) ·(b+1)+b = n/L. Hence,
i’s perceived infection cost isdcosti = L · (n/L− b)/(b + 1) · (b + 1) + b

n
= 1,

which equals the cost of inoculation. Next, consider an inocu-
lated selfish node i and distinguish two cases. In the first case,
i separates two components consisting of insecure selfish players
and a change of i’s strategy would merge two components of size
(n/L − b)/(b + 1) into a single connected component of insecure
selfish nodes. Every Byzantine node can connect another compo-
nent of size (n/L−b)/(b+1) (and itself) to the component contain-
ing i. Therefore, the size of the resulting attack component can be
as large as

�
2 ·

n
L
−b

b+1
+ 1
�

+
�
b ·

n
L
−b

b+1
+ b
�

= b+2
b+1

�
n
L
− b
�

+

b + 1 > n
L

+ 1
b+1

. The perceived cost of i without inoculation is
thereforedcosti > L ·

n
L

+ 1
b+1

n
= 1 +

L

n(b + 1)
> 1.

In the second case, we consider a “crossing” node i that is located
in the crossing of a secure row and column. Consider the column to
the right (or to the left) of i. If all inoculated nodes in this column
are Byzantine, the entire column plus node i becomes one large
attack component. Hence, the perceived cost of i isdcosti > L ·

n
L

+ 1

n
> 1.

In other words, no selfish node has an incentive to change its
strategy and the situation in Figure 1 (right) constitutes a Byzantine
Nash equilibrium. In the sequel, we lower bound the social cost
of this equilibrium under the assumption that all b Byzantine nodes
are in column 1. Note that our construction guarantees that this is
always possible if b < n

2L
.

We start with the sum of the infection costs Cost0inf of insecure
nodes in column 0. The number of insecure, selfish nodes in this
component is n

L
− b. Hence, the expected sum of infection costs is

Cost0inf =
�n

L
− b
�
·

n
L
− b + b

n
· L =

n

L
− b.

Let µ be the number of insecure nodes in columns 3, 5, etc. The sum
of the infection costs Costr

inf of the remaining attack components
(each being of size n/L−b

b+1
) is

Costr
inf = µ ·

n
L
− b

n(b + 1)
· L > µ ·

�
1

b + 1
− L

n

�
.

Because the number of insecure nodes in these small attack compo-
nents is µ = L−1

2
· � n

L
− b
�
, it follows that

Costr
inf >

L− 1

2
·
�n

L
− b
�
·
�

1

b + 1
− L

n

�
>

1

2(b + 1)

�
n− n

L
− bL + b

�
− L

2
.

Finally, we also need to calculate the total inoculation cost of this
topology. Clearly, all s/2 nodes in even columns are secure. (Recall
that column and row indices start with 0.) Furthermore, b nodes in
each odd column (except for the first column) are also inoculated.
Hence, the total inoculation Costinoc cost becomes

Costinoc =
s

2
+

bL

2
− b =

s

2
+ b

�
L

2
− 1

�
.

Combining the various costs, the social cost of the Byzantine Nash
equilibrium is

CostBNE(b) ≥ s

2
+ b

�
L

2
− 1

�
+

n

L
− b

+
1

2(b + 1)

�
n− n

L
− bL + b

�
− L

2

≥ s

2
+

bL

4

for b ≤ n
2L

and b ≥ 3.
Finally, note that if b ≥ n

2L
, at least half of the selfish nodes

inoculate and hence, CostBNE(b) ≥ s/2.

With this lower bound on the social cost of a Byzantine Nash
equilibrium, we can now derive the Price of Byzantine Anarchy as
well as the Price of Malice for the non-oblivious, risk-averse model.

THEOREM 4.10. In the non-oblivious, risk-averse model with b
Byzantine nodes, the Price of Byzantine Anarchy is at least

PoB(b) ≥ 1

8

 � s

L

�1/3

+
b

2

�
L

s

�2/3
!

for b < n
2L

. For all b, it holds that PoB(b) ≥ 1
8
( s

L
)1/3.

PROOF. Lemma 4.9 gives us a lower bound on the social cost
of a Byzantine Nash equilibrium in the non-oblivious, risk-averse
model with b malicious nodes. On the other hand, we have seen
in Lemma 4.2, that the optimal social cost is at most 4s2/3L1/3.
Hence,

PoB(b) ≥
s
2

+ bL
4

4s2/3L1/3
=

1

8

�
s1/3

L1/3
+

bL2/3

2s2/3

�
.

The second lower bound follows analogously.

THEOREM 4.11. In the non-oblivious, risk-averse model with b
Byzantine nodes, the Price of Malice is

PoM(b) ≥
√

π

48

�
1 +

bL

2s

�
for b < n

2L
. For all b, it holds that PoM(b) ≥

√
π

48
.

PROOF. In order to derive the Price of Malice, we can apply
our bound from Theorem 4.10 and the upper bound on the Price of
Anarchy established in Theorem 4.4. Specifically,

PoM(b) =
PoB(b)

PoA
≥

1
8

��
s
L

�1/3
+ b

2

�
L
s

�2/3
�

6s1/3
√

π·L1/3

.
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The theorem then follows from arithmetic simplifications. Again,
the second lower bound follows in an analogous way.

Discussion: From a technical point of view, this result shows
that the Price of Malice can potentially be less than 1 in the non-
oblivious model of the virus inoculation game. Intuitively, it is clear
that in the presence of Byzantine players, nodes may be more will-
ing to pay for inoculation. However, we find it interesting that the
selfish players’ awareness of the existence of malicious Byzantine
players may lead to an improvement of the overall system behav-
ior, i.e., the social welfare. Specifically, the existence (or even the
threat!) of malicious Byzantine players can render it worthwhile for
nodes to cooperate better.

This highlights the possible existence of a Fear Factor, which de-
scribes the gain of the overall social efficiency in a selfish system if
selfish players are afraid of malicious, Byzantine individuals among
them. This Fear Factor is determined by the ratio between the so-
cial cost of the worst Byzantine Nash equilibrium with b malicious
players and the worst Nash equilibrium in a purely selfish system.
Technically, we can define the Fear Factor Ψ as the inverse of the
Price of Malice, i.e.,

Ψ(b) :=
1

PoM(b)
.

In other words, the Fear Factor Ψ quantifies how much the threat of
a common enemy can unite selfish individuals, and to what degree
the global social performance is improved.

In the virus inoculation game, the Fear Factor may be both neg-
ative and positive. What is interesting to note, however, is that this
Fear Factor Ψ cannot be arbitrarily large, regardless of the number
of Byzantine players b in the system. Instead, the Price of Malice
can never drop below the constant

√
π

48
and hence, the Fear Factor is

upper-bounded by Ψ ≤ 48√
π

. That is, the social welfare or efficiency
gained due to the Fear Factor cannot exceed a factor of Ψ ≤ 48√

π
.

The existence of a Fear Factor has been documented in vari-
ous economic and social models. By combining a game theoretic
framework with the classic notion of Byzantine players from dis-
tributed computing and cryptography, our model in this paper al-
lows for an analytical quantification of a system’s Fear Factor Ψ
from a computational point of view.

5. STABILITY CONSIDERATIONS
In the previous section, we have studied the degradation of the so-

cial welfare in a selfish system caused by Byzantine players. How-
ever, besides trying to reduce the optimality of certain outcomes of
games, Byzantine players might also attack the stability of a sys-
tem. In this section, we therefore continue our studies by capturing
the amount of instability that can be caused by Byzantine players
in an otherwise selfish system. Particularly, we are interested in the
question, how many Byzantine players suffice in order to keep the
system from stabilizing.

In the following, we generalize the model of Section 4 to arbi-
trary network graphs. We assume that the Byzantine players aim at
destabilizing the system by repeatedly announcing to have changed
from insecure to secure state and back in a worst-case fashion.
Thereby, we consider an oblivious model where selfish nodes are
not aware of the stability attack. We use the following definitions.

DEFINITION 5.1 (b-STABLE / b-INSTABLE). We call a game
b-stable if b Byzantine players cannot prevent the system from reach-
ing a Nash equilibrium. Similarly, a game is called b-instable if b
Byzantine players are sufficient such that no Nash equilibrium will
ever be reached in case of oblivious selfish players.

For the virus inoculation game, the following stability properties
can be shown.

THEOREM 5.1. (i) Generally, the virus inoculation game is not
1-stable. (ii) For certain restricted classes of network graphs, the
virus inoculation game is 1-stable. (iii) The virus inoculation game
is always 2-instable.

PROOF. Claim (i): This claim already holds in simple graphs.
Assume that n/L is an integer and that L > 1, and consider a
one-dimensional chain of nodes {0, 1, ..., n − 1}. Let the nodes
i · n/L be secure, for i ∈ {0, 1, ..., L − 1}. By Lemma 4.1, this
situation constitutes a Nash equilibrium. Now assume that node
n/L is Byzantine, and that it changes to the insecure state. Then,
all other nodes j ∈ {1, 2, 3, ..., n/L − 1, n/L + 1, ..., 2n/L− 1}
have an incentive to inoculate. However, once such a node j has
become secure, node n/L can return to the secure state, yielding
components of size smaller than n/L. Consequently, j is bound to
become insecure again. These changes can be repeated forever.

Claim (ii): Interestingly, there are robust graphs where no sin-
gle node can destabilize the system. To see this, consider a com-
plete graph where each node is connected to all other nodes. From
Lemma 4.1, it follows that in this network, all Nash equilibria have
just one single attack component. Let C denote the set of nodes
of this component, and let C := V \ C be the set of the remain-
ing (secure) nodes. Also by Lemma 4.1, it holds that in any Nash
equilibrium, the size of C is either n/L or n/L− 1. Moreover, ob-
serve that independently of which node is Byzantine and of how the
Byzantine node acts, a situation will eventually be reached with the
two components as described above. However, the system having
converged to such a state, there exist only four possibilities: either
the Byzantine node belongs to the node set C or to the node set C,
and either |C| = n/L or |C| = n/L − 1. It is run of the mill to
verify that in all cases, a Byzantine node can enforce at most one
additional change.

Claim (iii): We use the fact that in the virus inoculation game,
a pure Nash equilibrium always exists, and that in the absence of
Byzantine nodes, selfish nodes stabilize quickly [2]. Assume that
the Byzantine nodes first act like selfish nodes until such a clas-
sic Nash equilibrium is reached. Now consider an arbitrary secure
node u1 ∈ V , and assume it is Byzantine. If u1 becomes insecure,
according to Lemma 4.1, an attack component C emerges which
consists of n/L or more nodes. If |C| > n/L, at least one node
v in C has an incentive to change to a secure state. Let C′ be the
component of v when u1 is secure, but not v. Assume that after v
has changed, u1 becomes secure again. There are two possibilities.
If |C′| < n/L, v will return to insecure state, and the changes can
be repeated forever with only one Byzantine node. If |C′| = n/L,
a second Byzantine (previously insecure) node u2 in C′ can force v
to become insecure again.

Finally, if |C| = n/L, nodes are indifferent between becoming
secure or not. Of course, however, another Byzantine node on the
edge of C can cause endless changes also in this case.

6. CONCLUSION
What happens when terrorists meet egoists? In this paper, we ad-

vocate the study of distributed, potentially economic or social sys-
tems consisting of interacting players who can be selfish or Byzan-
tine. Using these models, we have derived bounds on the Price of
Malice in oblivious and non-oblivious systems. Moreover, we have
quantified and upper bounded the Fear Factor, which is the gain in
system efficiency arising from the increased willingness of selfish
individuals to cooperate caused by malicious players.
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We believe that our paper opens several directions for future re-
search. For example: What is the Price of Malice in a virus inoc-
ulation game on other graphs, e.g., on a small-world graph? What
is the Price of Malice of other games? It seems that while in cer-
tain selfish routing games where a single node can attract a lot of
traffic by announcing short distances to all other nodes which re-
sults in a large Price of Malice, in congestions games the impact of
Byzantine players may be much smaller. Another direction for fu-
ture work is to study the impact of knowledge on the resulting Fear
Factor in non-oblivious models. Specifically, one could assume that
players are not only aware of the existence of Byzantine players,
but also of their approximate whereabouts or their statistical distri-
bution. Intuitively, such additional knowledge should decrease the
selfish players’ incentive for collaboration and thus lower the Fear
Factor.

In a larger context, we believe that modeling and studying the no-
tions of Price of Malice and Fear Factor may lead to new insights
in areas beyond those typically found in computer science and net-
working. Specifically, our framework may be a tool for analyti-
cally capturing socio-economic artefacts arising in entirely different
fields, including for example political economics or sociology.
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