Proportional Representation under Single-Crossing Preferences Revisited

Andrei Constantinescu Edith Elkind

University of Oxford

Framework

Multiwinner Voting & The Chamberlin-Courant Rule

Framework

Voters express preference by ordering candidates.

Voters express preference by ordering candidates.

Voters express preference by ordering candidates.

e.g. **N = 3**, **M = 5**:

- V1 : Blue > Yellow > Red > Pink > Green
- V2 : Yellow > Green > Red > Pink > Blue

V3 : Green > Red > Blue > Pink > Yellow

Voters express preference by ordering candidates.

e.g. **N = 3**, **M = 5**:

- V1 : Blue > Yellow > Red > Pink > Green
- V2 : Yellow > Green > Red > Pink > Blue

V3 : Green > Red > Blue > Pink > Yellow

(preference profile)

Given a preference profile we need to select a committee of K candidates to represent the electorate.

Given a preference profile we need to select a committee of K candidates to represent the electorate.

e.g. **K = 2**

Given a preference profile we need to select a committee of K candidates to represent the electorate.

e.g. **K = 2**

- V1 : Blue > Yellow > Red > Pink > Green
- V2 : Yellow > Green > Red > Pink > Blue
- V3 : Green > Red > Blue > Pink > Yellow

Given a preference profile we need to select a committee of K candidates to represent the electorate.

e.g. **K = 2**

- V1: > Yellow > > Pink >
- V2 : Yellow > > > Pink >
- V3: > > Pink > Yellow

Given a preference profile we need to select a committee of K candidates to represent the electorate.

Given a preference profile we need to select a committee of K candidates to represent the electorate.

<u>Q</u>: How do we pick the K-committee?

Voters specify their dissatisfaction with each candidate.

Voters specify their *dissatisfaction* with each candidate. Need to pick the K-committee that **minimizes** the total/maximum dissatisfaction.

Voters specify their *dissatisfaction* with each candidate. Need to pick the K-committee that **minimizes** the total/maximum dissatisfaction.

V1 : Blue > Yellow > Red > Pink > Green
V2 : Yellow > Green > Red > Pink > Blue
V3 : Green > Red > Blue > Pink > Yellow

Voters specify their *dissatisfaction* with each candidate. Need to pick the K-committee that **minimizes** the total/maximum dissatisfaction.

0 1 5 8 9 V1: Blue > Yellow > Red > Pink > Green 0 3 3 4 8 V2: Yellow > Green > Red > Pink > Blue 0 1 1 2 3 V3: Green > Red > Blue > Pink > Yellow

Voters specify their *dissatisfaction* with each candidate. Need to pick the K-committee that **minimizes** the total/maximum dissatisfaction.

				1			8		
V1	•		>	Yellow	>	>	Pink	>	
		0					4		
V2	•	Yellow	>		>	>	Pink	>	
							2		3
V3	:		>		>	>	Pink	>	Yellow

Voters specify their *dissatisfaction* with each candidate. Need to pick the K-committee that **minimizes** the total/maximum dissatisfaction.

Voters specify their *dissatisfaction* with each candidate. Need to pick the K-committee that **minimizes** the total/maximum dissatisfaction.

V3 : > >

8
 Pink >
 4
 Pink >
 [2]
 3
 Pink > Yellow

Total = 3 (Utilitarian-CC)

Voters specify their *dissatisfaction* with each candidate. Need to pick the K-committee that **minimizes** the total/maximum dissatisfaction.

V1: V1: V2: V2: V2: V3: V3: V3: V3: V3: V3: V3: V3: V1: V1: V2: V3: V3: V3: V2: V2:V2

Total = **3** (Utilitarian-CC) Maximum = **2** (Egalitarian-CC) [Betzler, Slinko, Uhlmann'13]

Voters specify their *dissatisfaction* with each candidate. Need to pick the K-committee that **minimizes** the total/maximum dissatisfaction.

V1: V1: V2: V2: V2: V3: V3: V3: V3: V3: V3: V3: V3: V1: V1: V2: V3: V3: V3: V2: V2:V2

Total = **3** (Utilitarian-CC) - **in this talk** Maximum = **2** (Egalitarian-CC) [Betzler, Slinko, Uhlmann'13]

Hardness of CC

Hardness of CC

Utilitarian-CC is NP-hard [Procaccia, Rosenschein, Zohar'08] [Lu, Boutilier'11]

Egalitarian-CC is NP-hard [Betzler, Slinko, Uhlmann'13]

A way out!

A way out!

Real elections have more structure, making CC easier!

A way out!

Real elections have more structure, making CC easier! We consider *single-crossing* preferences.

[Roberts'77, Mirrlees'71]

Structured Preferences

Single-crossing Preferences & Intermediate Preferences on Median Graphs

- V₁: Blue > Yellow
- V_2 : Blue > Yellow
- V₃ : Yellow > Blue
- V₄ : Yellow > Blue

- V₁: Blue > Yellow
- V₂ : Blue > Yellow
- V₃ : Yellow > Blue
- V₄ : Yellow > Blue

Single-crossing Preferences

A profile is *single-crossing* if we can order the voters so that preference between any two candidates a, b changes <u>at most</u> <u>once</u> as we go through the candidates in order:

- Majority relation is acyclic, so Condorcet winner exists.*

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Problem: Not many real elections are SC.

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Problem: Not many real elections are SC. Extend notion?

a		
) (*For odd n.	
~	norodun.	

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Problem: Not many real elections are SC. Extend notion?Difficulty: Preserve Condorcet domain and poly-time solvability of CC.

*For odd n.

[Demange'12] introduces *intermediate preferences indexed by a* **median graph**.

This Paper

Our Contribution

3.

1. We improve the current time complexity of *O*(*n*²*mk*) for CC under classical-SC achieved by [Skowron et al.'15]:

- 1. We improve the current time complexity of *O*(*n*²*mk*) for CC under classical-SC achieved by [Skowron et al.'15]:
 - A simple tweak gives O(nmk).

- 1. We improve the current time complexity of *O*(*n*²*mk*) for CC under classical-SC achieved by [Skowron et al.'15]:
 - A simple tweak gives O(nmk).
 - Using Monge-concavity we further get $nm2^{O(\sqrt{\log k \log \log n})}$.

- 1. We improve the current time complexity of *O*(*n*²*mk*) for CC under classical-SC achieved by [Skowron et al.'15]:
 - A simple tweak gives O(nmk).
 - Using Monge-concavity we further get $nm2^{O(\sqrt{\log k \log \log n})}$.
 - For Borda disutilities we get O(nm log(nm)).

- 1. We improve the current time complexity of *O*(*n*²*mk*) for CC under classical-SC achieved by [Skowron et al.'15]:
 - A simple tweak gives *O(nmk)*.
 - Using Monge-concavity we further get $nm2^{O(\sqrt{\log k \log \log n})}$.
 - For Borda disutilities we get O(nm log(nm)).
- 2. [Clearwater et al.'15] proposes an algorithm for CC under tree-SC. Unfortunately, the algorithm is not polynomial as claimed. We give the first polynomial algorithm.

- 1. We improve the current time complexity of *O*(*n*²*mk*) for CC under classical-SC achieved by [Skowron et al.'15]:
 - A simple tweak gives O(nmk).
 - Using Monge-concavity we further get $nm2^{O(\sqrt{\log k \log \log n})}$.
 - For Borda disutilities we get O(nm log(nm)).
- 2. [Clearwater et al.'15] proposes an algorithm for CC under tree-SC. Unfortunately, the algorithm is not polynomial as claimed. We give the first polynomial algorithm.

Not in this talk: Conjecture DP algorithm for CC under grid-SC.

Key observation: in any K-committee the condidates representing the voters partition the voters into continuous subsegments.

Key observation: in any K-committee the condidates representing the voters partition the voters into continuous subsegments.

e.g. **K = 3**

Key observation: in any K-committee the condidates representing the voters partition the voters into continuous subsegments.

e.g. **K = 3**

Blue > Yellow	> Red	> Green
---------------	-------	---------

- Blue > Red > Yellow > Green
- Red > Blue > Green > Yellow
- **Red** > Green > Yellow > Blue
- Green > Red > Yellow > Blue

Key observation: in any K-committee the condidates representing the voters partition the voters into continuous subsegments.

e.g. **K = 3**; say we removed **Yellow**

Blue	>	> Red	> Green
Blue	> Red	>	> Green
Red	> Blue	> Green	>
Red	> Green	>	> Blue
Green	> Red	>	> Blue

Key observation: in any K-committee the condidates representing the voters partition the voters into continuous subsegments.

e.g. **K = 3**; say we removed **Yellow**

Blue	>	> Red	> Green
Blue	> Red	>	> Green
Red	> Blue	> Green	>
Red	> Green	>	> Blue
Green	> Red	>	> Blue

Key observation: in any K-committee the condidates representing the voters partition the voters into continuous subsegments.

e.g. **K = 3**; say we removed **Blue**

	>	Yellow	>	Red	>	Green
	>	Red	>	Yellow	>	Green
Red	>		>	Green	>	Yellow
Red	>	Green	>	Yellow	>	
Green	>	Red	>	Yellow	>	

Key observation: in any K-committee the condidates representing the voters partition the voters into continuous subsegments.

e.g. **K = 3**; say we removed **Blue**

	>	Yellow	>	Red	>	Green
	>	Red	>	Yellow	>	Green
Red	>		>	Green	>	Yellow
Red	>	Green	>	Yellow	>	
Green	>	Red	>	Yellow	>	

This allows simple interval DP to work [Skowron et al.'15], with more care it can be implemented in *O*(*nmk*).

Reduction to minimum K-link path in DAG

Reduction to minimum K-link path in DAG

- Define f(i, j) for $0 \le i < j \le N$ to be the least possible total cost to represent voters $v_{i+1} \dots v_i$ with a single candidate.

- Define f(i, j) for $0 \le i < j \le N$ to be the least possible total cost to represent voters $v_{i+1} \dots v_i$ with a single candidate.
- Define a DAG with vertices 0 . . . N and edges (i, j) for $0 \le i < j \le N$ of cost f(i, j).

- Define f(i, j) for $0 \le i < j \le N$ to be the least possible total cost to represent voters $v_{i+1} \dots v_i$ with a single candidate.
- Define a DAG with vertices 0 . . . N and edges (i, j) for $0 \le i < j \le N$ of cost f(i, j).
- Then, our problem is to find the minimum total weight path starting at 0, ending at N, and consisting of exactly K edges.

- Define f(i, j) for $0 \le i < j \le N$ to be the least possible total cost to represent voters $v_{i+1} \dots v_i$ with a single candidate.
- Define a DAG with vertices 0 ... N and edges (i, j) for $0 \le i < j \le N$ of cost f(i, j).
- Then, our problem is to find the minimum total weight path starting at 0, ending at N, and consisting of exactly K edges.

Blue	>		>	Red	>	Green
Blue	>	Red	>		>	Green
Red	>	Blue	>	Green	>	
Red	>	Green	>		>	Blue
Green	2	Red	>		>	Blue

- Define f(i, j) for $0 \le i < j \le N$ to be the least possible total cost to represent voters $v_{i+1} \dots v_i$ with a single candidate.
- Define a DAG with vertices 0 . . . N and edges (i, j) for $0 \le i < j \le N$ of cost f(i, j).
- Then, our problem is to find the minimum total weight path starting at 0, ending at N, and consisting of exactly K edges.

Blue	>		> R	ed	>	Green	0 \	Cost for Blue to represent v1, v2
Blue	>	Red	>		>	Green	2	·····,·-,·-
Red	>	Blue	> G	reen	>		2	Cost for Red to represent v3, v4
Red	>	Green	>		>	Blue	4 <	
Green	~	Red	>		>	Blue	т 	Cost for Green to represent v5
		0					5 🖌	

Lemma Assume a < b < c < d, then it holds that $f(a, c) + f(b, d) \le f(a, d) + f(b, c)$ (i.e. the costs f are *Monge-concave*).

Lemma Assume a < b < c < d, then it holds that $f(a, c) + f(b, d) \le f(a, d) + f(b, c)$ (i.e. the costs f are *Monge-concave*). **Proof Idea** First, show by contradiction that if there is a counterexample, then there is one with N = 3.

- **Lemma** Assume a < b < c < d, then it holds that $f(a, c) + f(b, d) \le f(a, d) + f(b, c)$ (i.e. the costs f are *Monge-concave*).
- **Proof Idea** First, show by contradiction that if there is a counterexample, then there is one with **N** = **3**.
- As a result, we get *Monge-concave* instances of the minimum K-link path problem for DAGs. Relevant work:

- **Lemma** Assume a < b < c < d, then it holds that $f(a, c) + f(b, d) \le f(a, d) + f(b, c)$ (i.e. the costs f are *Monge-concave*).
- **Proof Idea** First, show by contradiction that if there is a counterexample, then there is one with **N** = **3**.
- As a result, we get *Monge-concave* instances of the minimum K-link path problem for DAGs. Relevant work:
- [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] Give *O(n log (nU))* algorithm, where U bounds dissatisfactions.

Lemma Assume a < b < c < d, then it holds that $f(a, c) + f(b, d) \le f(a, d) + f(b, c)$ (i.e. the costs f are *Monge-concave*).

Proof Idea First, show by contradiction that if there is a counterexample, then there is one with **N** = **3**.

As a result, we get *Monge-concave* instances of the minimum K-link path problem for DAGs. Relevant work:

- [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give

O(n log (nU)) algorithm, where U bounds dissatisfactions.

- [Schieber'95] - Gives $n2^{O(\sqrt{\log k \log \log n})}$ for $k = \Omega(\log n)$.

Lemma Assume a < b < c < d, then it holds that $f(a, c) + f(b, d) \le f(a, d) + f(b, c)$ (i.e. the costs f are *Monge-concave*).

Proof Idea First, show by contradiction that if there is a counterexample, then there is one with **N** = **3**.

As a result, we get *Monge-concave* instances of the minimum K-link path problem for DAGs. Relevant work:

- [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give

O(n log (nU)) algorithm, where U bounds dissatisfactions.

- [Schieber'95] - Gives $n2^{O(\sqrt{\log k \log \log n})}$ for $k = \Omega(\log n)$.

Need extra factor of *m* due to time to compute f(i, j)!

Lemma Assume a < b < c < d, then it holds that $f(a, c) + f(b, d) \le f(a, d) + f(b, c)$ (i.e. the costs f are *Monge-concave*).

Proof Idea First, show by contradiction that if there is a counterexample, then there is one with **N** = **3**.

As a result, we get *Monge-concave* instances of the minimum K-link path problem for DAGs. Relevant work:

- [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give

O(n log (nU)) algorithm, where U bounds dissatisfactions.

- [Schieber'95] - Gives $n2^{O(\sqrt{\log k \log \log n})}$ for $k = \Omega(\log n)$.

Need extra factor of *m* due to time to compute f(i, j)!

Remark For egalitarian, binary search the answer and then run algorithm on instance with 0-1 dissatisfactions. This gives *O(nm log n log (nm))*.

Similar **Connectivity Observation**: In any K-committee the candidates representing the voters partition the voters into <u>connected subtrees</u>.

Similar **Connectivity Observation**: In any K-committee the candidates representing the voters partition the voters into <u>connected subtrees</u>.

Similar **Connectivity Observation**: In any K-committee the candidates representing the voters partition the voters into <u>connected subtrees</u>.

Assume candidates are numbered 1, 2, ..., M. Root the tree and assume that the root has the order 1 > 2 > ... > M.

Assume candidates are numbered 1, 2, ..., M. Root the tree and assume that the root has the order 1 > 2 > ... > M.

Assume candidates are numbered 1, 2, ..., M. Root the tree and assume that the root has the order 1 > 2 > ... > M.

Monotonicity Lemma

In any K-committee, while walking down the tree the representing candidate is non-decreasing.

Assume candidates are numbered 1, 2, ..., M. Root the tree and assume that the root has the order 1 > 2 > ... > M.

Monotonicity Lemma (ins. [Clearwater et al.'15])

In any K-committee, while walking down the tree the representing candidate is non-decreasing.

- Assume tree is **binary** to simplify presentation - general case is more tricky.

- Assume tree is **binary** to simplify presentation general case is more tricky.
- Say tree is rooted in v_1 .

- Assume tree is **binary** to simplify presentation general case is more tricky.
- Say tree is rooted in v_1 .

- Assume tree is **binary** to simplify presentation general case is more tricky.
- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .

- Assume tree is **binary** to simplify presentation general case is more tricky.
- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .

- Assume tree is **binary** to simplify presentation - general case is more tricky.

V₁

T₃

 V_5

V₃

 V_4

- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .
- Define dp[v_i][c][k] to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; V_2

- Assume tree is **binary** to simplify presentation general case is more tricky.
- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .

- Define $dp[v_i][c][k]$ to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; and $dp'[v_i][c][k]$ to be the same, but **enforcing** v_i is represented by candidate c.

- Assume tree is **binary** to simplify presentation general case is more tricky.
- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .
- Define $dp[v_i][c][k]$ to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; and $dp'[v_i][c][k]$ to be the same, but **enforcing** v_i is represented by candidate c.

- Assume tree is **binary** to simplify presentation - general case is more tricky.

V₁

T₃

V₅

V₃

V_4

- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .
- Define dp[v_i][c][k] to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; and dp'[v_i][c][k] to be the same, but **enforcing** v_i is represented by candidate c. V_2

Interesting case: A node v with two children l and r.

 $dp[v][c][k] = min \{ dp'[v][c][k], dp[v][c + 1][k] \}$

- Assume tree is **binary** to simplify presentation - general case is more tricky.

V₁

T₃

 V_5

 V_3

V_4

- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .
- Define dp[v_i][c][k] to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; and dp'[v_i][c][k] to be the same, but **enforcing** v_i is represented by candidate c. V_2

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)

- Assume tree is **binary** to simplify presentation - general case is more tricky.

V₁

T₃

 V_5

 V_3

V_4

- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .
- Define dp[v_i][c][k] to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; and dp'[v_i][c][k] to be the same, but **enforcing** v_i is represented by candidate c. V_2

- Assume tree is **binary** to simplify presentation - general case is more tricky.

V₁

 T_3

 V_5

V_3

V_4

- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .
- Define dp[v_i][c][k] to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; and dp'[v_i][c][k] to be the same, but **enforcing** v_i is represented by candidate c. V_2

- Assume tree is **binary** to simplify presentation - general case is more tricky.

 V_1

T₃

V₅

V₃

V₄

- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .
- Define dp[v_i][c][k] to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; and dp'[v_i][c][k] to be the same, but **enforcing** v_i is represented by candidate c. V_2

- Assume tree is **binary** to simplify presentation - general case is more tricky.

V₁

 T_3

 V_5

 V_3

V_4

- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .
- Define dp[v_i][c][k] to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; and dp'[v_i][c][k] to be the same, but **enforcing** v_i is represented by candidate c. V_2

- Assume tree is **binary** to simplify presentation general case is more tricky.
- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .
- Define dp[v_i][c][k] to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; and dp'[v_i][c][k] to be the same, but **enforcing** v_i is represented by candidate c. V_2

Interesting case: A node v with two children l and r.

- O(nmk) states, but O(nmk²) time!

 T_3

 V_5

 V_3

V₄

V₁

- Assume tree is **binary** to simplify presentation general case is more tricky.
- Say tree is rooted in v_1 . Define T_i to be the downwards subtree of v_i .
- Define dp[v_i][c][k] to be the least possible dissatisfaction of voters in T_i if we are allowed to use at most k candidates from the set c, c + 1, ..., m; and dp'[v_i][c][k] to be the same, but **enforcing** v_i is represented by candidate c. V_2

Interesting case: A node v with two children l and r.

O(nmk) states, but
O(nmk²) time!
With care can be implemented in
O(nmk).

 T_3

 V_5

 V_3

V_4

V₁

1. How to solve CC for grid-SC?

1. How to solve CC for grid-SC?

2. Does some form of concavity hold for trees?

- 1. How to solve CC for grid-SC?
- 2. Does some form of concavity hold for trees?
- 3. Is CC for median graphs NP-hard?

Hope you enjoyed!

Imagine with every voter/candidate we associate a real number:

Imagine with every voter/candidate we associate a real number:

Imagine with every voter/candidate we associate a real number:

Voters vote based on how far off a candidate's number is from their own.