
Proportional Representation under
Single-Crossing Preferences Revisited

Andrei Constantinescu
Edith Elkind

University of Oxford

1.
Framework
Multiwinner Voting &
The Chamberlin-Courant Rule

Framework

In an election N voters vote for M candidates.

Framework

In an election N voters vote for M candidates.

Voters express preference by ordering candidates.

Framework

In an election N voters vote for M candidates.

Voters express preference by ordering candidates.

e.g. N = 3, M = 5:

Framework

In an election N voters vote for M candidates.

Voters express preference by ordering candidates.

e.g. N = 3, M = 5:
 V1 : Blue > Yellow > Red > Pink > Green

 V2 : Yellow > Green > Red > Pink > Blue
 V3 : Green > Red > Blue > Pink > Yellow

Framework

In an election N voters vote for M candidates.

Voters express preference by ordering candidates.

e.g. N = 3, M = 5:
 V1 : Blue > Yellow > Red > Pink > Green

 V2 : Yellow > Green > Red > Pink > Blue
 V3 : Green > Red > Blue > Pink > Yellow

Framework

(preference profile)

Multiwinner Voting Rules

Multiwinner Voting Rules

Given a preference profile we need to select a committee
of K candidates to represent the electorate.

Multiwinner Voting Rules

Given a preference profile we need to select a committee
of K candidates to represent the electorate.

e.g. K = 2

Multiwinner Voting Rules

Given a preference profile we need to select a committee
of K candidates to represent the electorate.

e.g. K = 2
 V1 : Blue > Yellow > Red > Pink > Green

 V2 : Yellow > Green > Red > Pink > Blue
 V3 : Green > Red > Blue > Pink > Yellow

Multiwinner Voting Rules

Given a preference profile we need to select a committee
of K candidates to represent the electorate.

e.g. K = 2
 V1 : > Yellow > > Pink >

 V2 : Yellow > > > Pink >
 V3 : > > > Pink > Yellow

Multiwinner Voting Rules

Given a preference profile we need to select a committee
of K candidates to represent the electorate.

e.g. K = 2
 V1 : > Yellow > > Pink >

 V2 : Yellow > > > Pink >
 V3 : > > > Pink > Yellow

Multiwinner Voting Rules

Given a preference profile we need to select a committee
of K candidates to represent the electorate.

e.g. K = 2
 V1 : > Yellow > > Pink >

 V2 : Yellow > > > Pink >
 V3 : > > > Pink > Yellow

Q: How do we pick the K-committee?

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.
Need to pick the K-committee that minimizes the
total/maximum dissatisfaction.

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.
Need to pick the K-committee that minimizes the
total/maximum dissatisfaction.

V1 : Blue > Yellow > Red > Pink > Green

V2 : Yellow > Green > Red > Pink > Blue
V3 : Green > Red > Blue > Pink > Yellow

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.
Need to pick the K-committee that minimizes the
total/maximum dissatisfaction.

V1 : Blue > Yellow > Red > Pink > Green

V2 : Yellow > Green > Red > Pink > Blue
V3 : Green > Red > Blue > Pink > Yellow

The Chamberlin-Courant Rule

0 1 5 8 9

0 3 3 4 8

0 1 1 2 3

Voters specify their dissatisfaction with each candidate.
Need to pick the K-committee that minimizes the
total/maximum dissatisfaction.

V1 : > Yellow > > Pink >

V2 : Yellow > > > Pink >
V3 : > > > Pink > Yellow

The Chamberlin-Courant Rule

1 8

0 4

2 3

Voters specify their dissatisfaction with each candidate.
Need to pick the K-committee that minimizes the
total/maximum dissatisfaction.

V1 : > Yellow > > Pink >

V2 : Yellow > > > Pink >
V3 : > > > Pink > Yellow

The Chamberlin-Courant Rule

1 8

0 4

2 3

Voters specify their dissatisfaction with each candidate.
Need to pick the K-committee that minimizes the
total/maximum dissatisfaction.

V1 : > Yellow > > Pink >

V2 : Yellow > > > Pink >
V3 : > > > Pink > Yellow

Total = 3 (Utilitarian-CC)

The Chamberlin-Courant Rule

1 8

0 4

2 3

Voters specify their dissatisfaction with each candidate.
Need to pick the K-committee that minimizes the
total/maximum dissatisfaction.

V1 : > Yellow > > Pink >

V2 : Yellow > > > Pink >
V3 : > > > Pink > Yellow

Total = 3 (Utilitarian-CC)
Maximum = 2 (Egalitarian-CC) [Betzler, Slinko, Uhlmann'13]

The Chamberlin-Courant Rule

1 8

0 4

2 3

Voters specify their dissatisfaction with each candidate.
Need to pick the K-committee that minimizes the
total/maximum dissatisfaction.

V1 : > Yellow > > Pink >

V2 : Yellow > > > Pink >
V3 : > > > Pink > Yellow

Total = 3 (Utilitarian-CC) - in this talk
Maximum = 2 (Egalitarian-CC) [Betzler, Slinko, Uhlmann'13]

The Chamberlin-Courant Rule

1 8

0 4

2 3

Hardness of CC

Hardness of CC

Utilitarian-CC is NP-hard
[Procaccia, Rosenschein, Zohar'08]
[Lu, Boutilier'11]

Egalitarian-CC is NP-hard
[Betzler, Slinko, Uhlmann'13]

A way out!

A way out!
Real elections have more structure,
making CC easier!

A way out!
Real elections have more structure,
making CC easier! We consider
single-crossing preferences.

[Roberts'77, Mirrlees'71]

2.
Structured
Preferences
Single-crossing Preferences &
Intermediate Preferences on Median Graphs

Single-crossing Preferences

Single-crossing Preferences
A profile is single-crossing if we can order the voters so that
preference between any two candidates a, b changes at most
once as we go through the candidates in order:

Single-crossing Preferences
A profile is single-crossing if we can order the voters so that
preference between any two candidates a, b changes at most
once as we go through the candidates in order:

V1 : Blue > Yellow

V2 : Blue > Yellow

V3 : Yellow > Blue

V4 : Yellow > Blue

Single-crossing Preferences
A profile is single-crossing if we can order the voters so that
preference between any two candidates a, b changes at most
once as we go through the candidates in order:

V1 : Blue > Yellow

V2 : Blue > Yellow

V3 : Yellow > Blue

V4 : Yellow > Blue

Single-crossing Preferences
A profile is single-crossing if we can order the voters so that
preference between any two candidates a, b changes at most
once as we go through the candidates in order:

V1 : Blue > Yellow

V2 : Blue > Yellow

V3 : Yellow > Blue

V4 : Yellow > Blue

V1 : Blue > Yellow

V2 : Blue > Yellow

V3 : Yellow > Blue

V4 : Blue > Yellow

Single-crossing Preferences
A profile is single-crossing if we can order the voters so that
preference between any two candidates a, b changes at most
once as we go through the candidates in order:

V1 : Blue > Yellow

V2 : Blue > Yellow

V3 : Yellow > Blue

V4 : Yellow > Blue

V1 : Blue > Yellow

V2 : Blue > Yellow

V3 : Yellow > Blue

V4 : Blue > Yellow

Some Properties of SC

- Majority relation is acyclic, so Condorcet winner exists.*

Some Properties of SC

*For odd n.

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]

Some Properties of SC

*For odd n.

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Some Properties of SC

*For odd n.

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Problem: Not many real elections are SC.

Some Properties of SC

*For odd n.

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Problem: Not many real elections are SC. Extend notion?

Some Properties of SC

*For odd n.

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Problem: Not many real elections are SC. Extend notion?
Difficulty: Preserve Condorcet domain and poly-time
solvability of CC.

Some Properties of SC

*For odd n.

Generalized SC

Generalized SC

[Demange'12] introduces intermediate
preferences indexed by a median graph.

Generalized SC

[Demange'12] introduces intermediate
preferences indexed by a median graph.
[Puppe, Slinko'17] show this is necessary and
sufficient to get a Condorcet domain.

Generalized SC

[Demange'12] introduces intermediate
preferences indexed by a median graph.
[Puppe, Slinko'17] show this is necessary and
sufficient to get a Condorcet domain.

Generalized SC

[Demange'12] introduces intermediate
preferences indexed by a median graph.
[Puppe, Slinko'17] show this is necessary and
sufficient to get a Condorcet domain.

Generalized SC

[Demange'12] introduces intermediate
preferences indexed by a median graph.
[Puppe, Slinko'17] show this is necessary and
sufficient to get a Condorcet domain.

Generalized SC
A preference profile is single-crossing with respect to
a median graph having the voters as vertices iff the
sub-profile induced by any shortest path between any
two vertices is classically single-crossing.

Generalized SC
A preference profile is single-crossing with respect to
a median graph having the voters as vertices iff the
sub-profile induced by any shortest path between any
two vertices is classically single-crossing.

Generalized SC
A preference profile is single-crossing with respect to
a median graph having the voters as vertices iff the
sub-profile induced by any shortest path between any
two vertices is classically single-crossing.

B > R > Y

B > Y > R

B > Y > R Y > B > R

Y > R > B Y > B > R

Generalized SC
A preference profile is single-crossing with respect to
a median graph having the voters as vertices iff the
sub-profile induced by any shortest path between any
two vertices is classically single-crossing.

B > R > Y

B > Y > R

B > Y > R Y > B > R

Y > R > B Y > B > R

Generalized SC
A preference profile is single-crossing with respect to
a median graph having the voters as vertices iff the
sub-profile induced by any shortest path between any
two vertices is classically single-crossing.

B > R > Y

B > Y > R

B > Y > R Y > B > R

Y > R > B Y > B > R

3.
This Paper
Our Contribution

Our Contribution

Our Contribution

1. We improve the current time complexity of O(n2mk) for CC
under classical-SC achieved by [Skowron et al.'15]:

Our Contribution

1. We improve the current time complexity of O(n2mk) for CC
under classical-SC achieved by [Skowron et al.'15]:
- A simple tweak gives O(nmk).

Our Contribution

1. We improve the current time complexity of O(n2mk) for CC
under classical-SC achieved by [Skowron et al.'15]:
- A simple tweak gives O(nmk).
- Using Monge-concavity we further get .

Our Contribution

1. We improve the current time complexity of O(n2mk) for CC
under classical-SC achieved by [Skowron et al.'15]:
- A simple tweak gives O(nmk).
- Using Monge-concavity we further get .
- For Borda disutilities we get O(nm log(nm)).

Our Contribution

1. We improve the current time complexity of O(n2mk) for CC
under classical-SC achieved by [Skowron et al.'15]:
- A simple tweak gives O(nmk).
- Using Monge-concavity we further get .
- For Borda disutilities we get O(nm log(nm)).

2. [Clearwater et al.'15] proposes an algorithm for CC under
tree-SC. Unfortunately, the algorithm is not polynomial as
claimed. We give the first polynomial algorithm.

Our Contribution

1. We improve the current time complexity of O(n2mk) for CC
under classical-SC achieved by [Skowron et al.'15]:
- A simple tweak gives O(nmk).
- Using Monge-concavity we further get .
- For Borda disutilities we get O(nm log(nm)).

2. [Clearwater et al.'15] proposes an algorithm for CC under
tree-SC. Unfortunately, the algorithm is not polynomial as
claimed. We give the first polynomial algorithm.

3. Not in this talk: Conjecture DP algorithm for CC under
grid-SC.

CC Under Classical-SC

CC Under Classical-SC
Key observation: in any K-committee the
candidates representing the voters partition the
voters into continuous subsegments.

CC Under Classical-SC
Key observation: in any K-committee the
candidates representing the voters partition the
voters into continuous subsegments.

e.g. K = 3

CC Under Classical-SC
Key observation: in any K-committee the
candidates representing the voters partition the
voters into continuous subsegments.

e.g. K = 3

Blue > Yellow > Red > Green

Blue > Red > Yellow > Green

Red > Blue > Green > Yellow

Red > Green > Yellow > Blue

Green > Red > Yellow > Blue

CC Under Classical-SC
Key observation: in any K-committee the
candidates representing the voters partition the
voters into continuous subsegments.

e.g. K = 3; say we removed Yellow

Blue > > Red > Green

Blue > Red > > Green

Red > Blue > Green >

Red > Green > > Blue

Green > Red > > Blue

CC Under Classical-SC
Key observation: in any K-committee the
candidates representing the voters partition the
voters into continuous subsegments.

e.g. K = 3; say we removed Yellow

Blue > > Red > Green

Blue > Red > > Green

Red > Blue > Green >

Red > Green > > Blue

Green > Red > > Blue

CC Under Classical-SC
Key observation: in any K-committee the
candidates representing the voters partition the
voters into continuous subsegments.

e.g. K = 3; say we removed Blue

 > Yellow > Red > Green

 > Red > Yellow > Green

Red > > Green > Yellow

Red > Green > Yellow >

Green > Red > Yellow >

CC Under Classical-SC
Key observation: in any K-committee the
candidates representing the voters partition the
voters into continuous subsegments.

e.g. K = 3; say we removed Blue

 > Yellow > Red > Green

 > Red > Yellow > Green

Red > > Green > Yellow

Red > Green > Yellow >

Green > Red > Yellow >

This allows simple interval DP to work
[Skowron et al.'15], with more care it
can be implemented in O(nmk).

CC Under Classical-SC
Reduction to minimum K-link path in DAG

CC Under Classical-SC
Reduction to minimum K-link path in DAG
- Define f(i, j) for 0 ≤ i < j ≤ N to be the least possible total cost to
represent voters vi + 1 … vj with a single candidate.

CC Under Classical-SC
Reduction to minimum K-link path in DAG
- Define f(i, j) for 0 ≤ i < j ≤ N to be the least possible total cost to
represent voters vi + 1 … vj with a single candidate.
- Define a DAG with vertices 0 … N and edges (i, j) for 0 ≤ i < j ≤ N of
cost f(i, j).

CC Under Classical-SC
Reduction to minimum K-link path in DAG
- Define f(i, j) for 0 ≤ i < j ≤ N to be the least possible total cost to
represent voters vi + 1 … vj with a single candidate.
- Define a DAG with vertices 0 … N and edges (i, j) for 0 ≤ i < j ≤ N of
cost f(i, j).
- Then, our problem is to find the minimum total weight path
starting at 0, ending at N, and consisting of exactly K edges.

CC Under Classical-SC
Reduction to minimum K-link path in DAG
- Define f(i, j) for 0 ≤ i < j ≤ N to be the least possible total cost to
represent voters vi + 1 … vj with a single candidate.
- Define a DAG with vertices 0 … N and edges (i, j) for 0 ≤ i < j ≤ N of
cost f(i, j).
- Then, our problem is to find the minimum total weight path
starting at 0, ending at N, and consisting of exactly K edges.

Blue > > Red > Green

Blue > Red > > Green

Red > Blue > Green >

Red > Green > > Blue

Green > Red > > Blue

CC Under Classical-SC
Reduction to minimum K-link path in DAG
- Define f(i, j) for 0 ≤ i < j ≤ N to be the least possible total cost to
represent voters vi + 1 … vj with a single candidate.
- Define a DAG with vertices 0 … N and edges (i, j) for 0 ≤ i < j ≤ N of
cost f(i, j).
- Then, our problem is to find the minimum total weight path
starting at 0, ending at N, and consisting of exactly K edges.

Blue > > Red > Green

Blue > Red > > Green

Red > Blue > Green >

Red > Green > > Blue

Green > Red > > Blue

0

2

4

5

Cost for Blue to represent v1, v2

Cost for Red to represent v3, v4

Cost for Green to represent v5

CC Under Classical-SC
Lemma Assume a < b < c < d, then it holds that f(a, c) + f(b, d) ≤
f(a, d) + f(b, c) (i.e. the costs f are Monge-concave).

CC Under Classical-SC
Lemma Assume a < b < c < d, then it holds that f(a, c) + f(b, d) ≤
f(a, d) + f(b, c) (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a
counterexample, then there is one with N = 3.

CC Under Classical-SC
Lemma Assume a < b < c < d, then it holds that f(a, c) + f(b, d) ≤
f(a, d) + f(b, c) (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a
counterexample, then there is one with N = 3.
As a result, we get Monge-concave instances of the minimum
K-link path problem for DAGs. Relevant work:

CC Under Classical-SC
Lemma Assume a < b < c < d, then it holds that f(a, c) + f(b, d) ≤
f(a, d) + f(b, c) (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a
counterexample, then there is one with N = 3.
As a result, we get Monge-concave instances of the minimum
K-link path problem for DAGs. Relevant work:
 - [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give
O(n log (nU)) algorithm, where U bounds dissatisfactions.

CC Under Classical-SC
Lemma Assume a < b < c < d, then it holds that f(a, c) + f(b, d) ≤
f(a, d) + f(b, c) (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a
counterexample, then there is one with N = 3.
As a result, we get Monge-concave instances of the minimum
K-link path problem for DAGs. Relevant work:
 - [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give
O(n log (nU)) algorithm, where U bounds dissatisfactions.
 - [Schieber'95] - Gives for .

CC Under Classical-SC
Lemma Assume a < b < c < d, then it holds that f(a, c) + f(b, d) ≤
f(a, d) + f(b, c) (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a
counterexample, then there is one with N = 3.
As a result, we get Monge-concave instances of the minimum
K-link path problem for DAGs. Relevant work:
 - [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give
O(n log (nU)) algorithm, where U bounds dissatisfactions.
 - [Schieber'95] - Gives for .

Need extra factor of m due to time to compute f(i, j)!

CC Under Classical-SC
Lemma Assume a < b < c < d, then it holds that f(a, c) + f(b, d) ≤
f(a, d) + f(b, c) (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a
counterexample, then there is one with N = 3.
As a result, we get Monge-concave instances of the minimum
K-link path problem for DAGs. Relevant work:
 - [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give
O(n log (nU)) algorithm, where U bounds dissatisfactions.
 - [Schieber'95] - Gives for .

Need extra factor of m due to time to compute f(i, j)!
Remark For egalitarian, binary search the answer and
then run algorithm on instance with 0-1 dissatisfactions.
This gives O(nm log n log (nm)).

CC Under Tree-SC

CC Under Tree-SC

Similar Connectivity Observation: In any K-committee
the candidates representing the voters partition the
voters into connected subtrees.

CC Under Tree-SC

Similar Connectivity Observation: In any K-committee
the candidates representing the voters partition the
voters into connected subtrees.

B > R > Y

B > Y > R

B > Y > R Y > B > R

Y > R > B Y > B > R

CC Under Tree-SC

Similar Connectivity Observation: In any K-committee
the candidates representing the voters partition the
voters into connected subtrees.

B > > R

B > > R

B > > R Y > > R

Y > > R Y > > R

Assume candidates are numbered 1, 2, …, M. Root the tree
and assume that the root has the order 1 > 2 > … > M.

CC Under Tree-SC

Assume candidates are numbered 1, 2, …, M. Root the tree
and assume that the root has the order 1 > 2 > … > M.

CC Under Tree-SC

1>3>2

1>2>3

1>2>3 2>1>3

2>3>1 2>1>3

Assume candidates are numbered 1, 2, …, M. Root the tree
and assume that the root has the order 1 > 2 > … > M.

Monotonicity Lemma
In any K-committee, while walking down the tree
the representing candidate is non-decreasing.

CC Under Tree-SC

1>3>2

1>2>3

1>2>3 2>1>3

2>3>1 2>1>3

Assume candidates are numbered 1, 2, …, M. Root the tree
and assume that the root has the order 1 > 2 > … > M.

Monotonicity Lemma (ins. [Clearwater et al.'15])

In any K-committee, while walking down the tree
the representing candidate is non-decreasing.

CC Under Tree-SC

1>3>2

1>2>3

1>2>3 2>1>3

2>3>1 2>1>3

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[Ti][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k']
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[Ti][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k']
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[Ti][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k']
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[Ti][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k']
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[Ti][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k']
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[Ti][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k']
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[vi][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k']
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[vi][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k']
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[vi][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k']
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[vi][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k']
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[vi][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k'],
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[vi][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k'],
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[vi][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k'],
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k'],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[vi][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k'],
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k'],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k' - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[vi][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k'],
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k'],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k' - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- O(nmk) states, but
O(nmk2) time!

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[vi][c][k] to be the
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c)
 + min { dp'[l][c] [k'] + dp'[r][c] [k - k'],
 k' dp'[l][c] [k'] + dp [r][c + 1][k - k'],
 dp [l][c + 1][k'] + dp'[r][c] [k - k'],
 dp [l][c + 1][k'] + dp [r][c + 1][k - k' - 1] }

CC Under Tree-SC

v2

v1

v3

v5v4

T3

- O(nmk) states, but
O(nmk2) time!
- With care can be
implemented in
O(nmk).

Future Directions

Future Directions

1. How to solve CC for grid-SC?

Future Directions

1. How to solve CC for grid-SC?

2. Does some form of concavity hold for trees?

Future Directions

1. How to solve CC for grid-SC?

2. Does some form of concavity hold for trees?

3. Is CC for median graphs NP-hard?

Hope you enjoyed!

Intuition

Intuition
Imagine with every voter/candidate we
associate a real number:

Intuition
Imagine with every voter/candidate we
associate a real number:

Intuition
Imagine with every voter/candidate we
associate a real number:

Voters vote based on how far off a candidate's
number is from their own.

