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Multiwinner Voting Rules 

Given a preference profile we need to select a committee 
of K candidates to represent the electorate.

e.g. K = 2
      V1   :           > Yellow >      > Pink > 

      V2   :   Yellow >        >      > Pink > 
      V3   :          >        >      > Pink > Yellow

Q: How do we pick the K-committee?
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Voters specify their dissatisfaction with each candidate.
Need to pick the K-committee that minimizes the 
total/maximum dissatisfaction. 

V1   :           > Yellow >      > Pink > 

V2   :   Yellow >        >      > Pink >
V3   :          >        >      > Pink > Yellow

Total = 3 (Utilitarian-CC) - in this talk
Maximum = 2 (Egalitarian-CC) [Betzler, Slinko, Uhlmann'13]

The Chamberlin-Courant Rule
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Hardness of CC

Utilitarian-CC is NP-hard
[Procaccia, Rosenschein,  Zohar'08]
[Lu, Boutilier'11]

Egalitarian-CC is NP-hard
[Betzler, Slinko, Uhlmann'13]
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[Roberts'77, Mirrlees'71]
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- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Problem:  Not many real elections are SC. Extend notion?
Difficulty: Preserve Condorcet domain and poly-time 
solvability of CC.

Some Properties of SC

*For odd n.
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1. We improve the current time complexity of O(n2mk) for CC 
under classical-SC achieved by [Skowron et al.'15]:
- A simple tweak gives O(nmk).
- Using Monge-concavity we further get                                         .
- For Borda disutilities we get O(nm log(nm)).

2. [Clearwater et al.'15] proposes an algorithm for CC under 
tree-SC. Unfortunately, the algorithm is not polynomial as 
claimed. We give the first polynomial algorithm.

3. Not in this talk: Conjecture DP algorithm for CC under 
grid-SC.
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CC Under Classical-SC
Key observation: in any K-committee the 
candidates representing the voters partition the 
voters into continuous subsegments.

e.g. K = 3; say we removed Blue

       > Yellow > Red    > Green

       > Red    > Yellow > Green

Red    >        > Green  > Yellow

Red    > Green  > Yellow >

Green  > Red    > Yellow >

This allows simple interval DP to work
[Skowron et al.'15], with more care it 
can be implemented in O(nmk).
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0

2

4

5

Cost for Blue to represent v1, v2

Cost for Red to represent v3, v4

Cost for Green to represent v5
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Lemma Assume a < b < c < d, then it holds that f(a, c) + f(b, d) ≤ 
f(a, d) + f(b, c) (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a 
counterexample, then there is one with N = 3.
As a result, we get Monge-concave instances of the minimum 
K-link path problem for DAGs. Relevant work:
  - [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give 
O(n log (nU)) algorithm, where U bounds dissatisfactions.
  - [Schieber'95] - Gives                                       for                        .

Need extra factor of m due to time to compute f(i, j)!
Remark For egalitarian, binary search the answer and 
then run algorithm on instance with 0-1 dissatisfactions. 
This gives O(nm log n log (nm)). 
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Assume candidates are numbered 1, 2, …, M. Root the tree 
and assume that the root has the order 1 > 2 > … > M.

Monotonicity Lemma (ins. [Clearwater et al.'15])

In any K-committee, while walking down the tree 
the representing candidate is non-decreasing.
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- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v1. Define Ti to be the downwards subtree of vi.
- Define dp[vi][c][k] to be the least possible dissatisfaction
of voters in Ti if we are allowed to use at most k candidates
from the set c, c + 1, …, m; and dp'[Ti][c][k] to be the 
same, but enforcing vi is represented by candidate c.

Interesting case: A node v with two children l and r.

dp[v][c][k] = min { dp'[v][c][k], dp[v][c + 1][k] }
dp'[v][c][k] = dis(v, c) 
  + min { dp'[l][c]    [k'] + dp'[r][c]    [k - k']
     k'   dp'[l][c]    [k'] + dp [r][c + 1][k - k'],
          dp [l][c + 1][k'] + dp'[r][c]    [k - k],
          dp [l][c + 1][k'] + dp [r][c + 1][k - k - 1] }
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- O(nmk) states, but 
O(nmk2) time!
- With care can be 
implemented in 
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Future Directions

1. How to solve CC for grid-SC?

2. Does some form of concavity hold for trees?

3. Is CC for median graphs NP-hard?



Hope you enjoyed!
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Intuition
Imagine with every voter/candidate we 
associate a real number:

Voters vote based on how far off a candidate's 
number is from their own.


