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Abstract—The rise of reinforcement learning (RL) in critical
real-world applications demands a fundamental rethinking of
privacy in AI systems. Traditional privacy frameworks, designed
to protect isolated data points, fall short for sequential decision-
making systems where sensitive information emerges from tem-
poral patterns, behavioral strategies, and collaborative dynamics.
Modern RL paradigms, such as federated RL (FedRL) and
RL with human feedback (RLHF) in large language models
(LLMs), exacerbate these challenges by introducing complex,
interactive, and context-dependent learning environments that
traditional methods do not address. In this position paper,
we argue for a new privacy paradigm built on four core
principles: multi-scale protection, behavioral pattern protection,
collaborative privacy preservation, and context-aware adaptation.
These principles expose inherent tensions between privacy, utility,
and interpretability that must be navigated as RL systems
become more pervasive in high-stakes domains like healthcare,
autonomous vehicles, and decision support systems powered by
LLMs. To tackle these challenges, we call for the development of
new theoretical frameworks, practical mechanisms, and rigorous
evaluation methodologies that collectively enable effective privacy
protection in sequential decision-making systems.

Index Terms—Privacy, Reinforcement Learning, Sequential
Decision-making, RLHF, LLMs

I. INTRODUCTION

The rise of reinforcement learning (RL) in critical real-
world applications [1]–[5] has exposed a fundamental tension
in AI privacy: How do we protect sensitive information in
systems that learn and make decisions over time? Traditional
privacy frameworks, built for protecting individual data points
in static datasets [6]–[8], are increasingly inadequate for
modern RL systems where sensitive information exists not
just in individual moments but in temporal patterns, behav-
ioral strategies, and collaborative dynamics [9]. These privacy
challenges arise directly from RL’s fundamental characteristic
of learning through sequential interaction.

Unlike traditional machine learning paradigms, reinforce-
ment learning operates through continuous interaction between
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Fig. 1. The essential contrast in privacy requirements between supervised
learning (left) and reinforcement learning (right). In supervised learning,
data points (x, y) are isolated and can be protected individually through
local privacy mechanisms (red dashed ellipses). In reinforcement learning,
a sequence of states s connected by actions a and rewards r creates temporal
dependencies, highlighted by the red dashed curve that spans multiple decision
points. While local privacy protection can be adapted in reinforcement
learning, the sequential nature of state transitions and action-reward pairs
creates dependencies that make point-wise privacy protection insufficient.

an agent and its environment [2]. The RL agent observes
the current state of the environment, takes actions based
on these observations, and receives feedback in the form
of rewards. This sequential learning process fundamentally
differs from supervised learning, where most existing privacy
frameworks were developed [6], [7]. As illustrated in Fig. 1,
supervised learning data points are typically treated as inde-
pendent samples, allowing privacy mechanisms to protect each
point individually. However, RL violates this independence
assumption, giving rise to three fundamental privacy concerns:
First, temporal patterns emerge from sequential relationships
between states, actions, and rewards, creating dependencies
that span entire trajectories and potentially revealing sensitive



information about the underlying process [10]. Second, behav-
ioral strategies develop as the agent learns optimal policies,
encoding complete decision-making patterns that go beyond
the simple input-output mappings of supervised learning and
may reveal proprietary algorithms or institutional expertise
[11]. Third, collaborative dynamics arise from the continuous
adaptation between the agent and its environment, creating
ongoing relationships that have no parallel in traditional super-
vised learning and potentially exposing sensitive information
through patterns of response and adjustment [12].

While these privacy challenges are fundamental to basic RL
systems, the emergence of advanced paradigms has further am-
plified these concerns, particularly in relation to collaborative
dynamics. Federated reinforcement learning (FedRL), where
multiple agents share learning experiences while keeping
data locally [13]–[20], introduces the challenge of protecting
not only individual agent data but also emergent collective
behavioral patterns. Similarly, large language models (LLMs),
such as ChatGPT [21] and DeepSeek [22], refined through re-
inforcement learning with human feedback (RLHF) [23]–[25]
extend these collaborative privacy challenges to human-AI in-
teraction, creating additional vulnerabilities around protecting
annotator characteristics and cultural information encoded in
feedback patterns [26], [27]. Recent analysis has uncovered
numerous instances of personal data in publicly available
RLHF datasets that had evaded removal [28], highlighting how
even carefully curated training data can expose private user
information. These advanced paradigms demonstrate how the
temporal and behavioral aspects of privacy intertwine with
collaborative dynamics, pushing privacy challenges beyond
individual agent privacy to encompass group-level patterns and
societal concerns.

Recent privacy regulations like GDPR [29] and HIPAA [30]
establish strict requirements for protecting such sensitive in-
formation, but their frameworks—designed primarily for static
data protection—struggle to address these dynamic aspects of
RL systems. These regulations presume a clear distinction
between protected and non-protected data, a distinction that
blurs in RL systems where sensitive information often emerges
from patterns of interaction rather than residing in individual
data points. This fundamental mismatch between regulatory
frameworks and the nature of RL systems creates significant
challenges for deployment in regulated domains.

To address these challenges, this position paper:
1) Articulates why traditional privacy frameworks funda-

mentally fail for sequential decision-making systems
2) Proposes four core principles for a new privacy

paradigm: multi-scale protection, behavioral pattern pro-
tection, collaborative privacy preservation, and context-
aware adaptation

3) Identifies critical open problems and research directions
for realizing effective privacy in sequential settings

The rest of this paper is organized as follows: Section II
reviews the evolution of privacy approaches in sequential
settings. Section III explains why traditional frameworks fail.
Section IV proposes four core principles that leads to our

Sequential Privacy framework for rethinking privacy in RL
setting. Section V examines implications through real-world
applications. Section VI outlines research directions, and we
conclude in Section VII with a call for community action
toward developing privacy frameworks that can meet the needs
of modern RL systems.

II. EVOLUTION OF PRIVACY APPROACHES IN SEQUENTIAL
SETTINGS

Before examining why traditional approaches fail, we trace
the historical development of privacy mechanisms and their
attempts to address sequential decision-making contexts. This
evolution reveals a progression of increasingly sophisticated
approaches, each trying to overcome the limitations of its pre-
decessors while inadvertently highlighting deeper challenges.

A. Technical Foundations

The field of privacy-preserving machine learning began with
differential privacy (DP), introduced by Dwork et al. [6]. This
framework provides a mathematical foundation for quantifying
information leakage: a randomized mechanism M satisfies
(ϵ, δ)-differential privacy if changes to individual data points
have only limited impact on the output distribution. Formally:

For any two adjacent datasets D and D′ (differing in at
most one data record), and for all measurable subsets S of
possible outputs, M satisfies (ϵ, δ)-DP if:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ.

Here, ϵ (the “privacy budget”) controls the multiplicative gap
in probabilities, while δ bounds the probability of a larger
deviation. Smaller ϵ and δ imply stronger privacy guarantees.

Two properties made this framework particularly attractive:
• Composition: Privacy guarantees combine predictably

over multiple analyses of the same dataset.
• Post-processing: Privacy guarantees persist under any

data-independent transformation of the mechanism’s out-
put.

These properties proved highly effective for static data but
would later reveal fundamental limitations in sequential set-
tings.

B. Early Adaptations to Sequential Data

The first attempts to apply privacy to sequential settings
emerged in the early 2010s, as researchers began working with
temporal data like reinforcement learning trajectories:

τ = (s0, a0, r0, s1, a1, r1, . . . , sT )

Early approaches split into two camps: those applying noise
independently at each timestep, and those treating entire
trajectories as atomic units. Both approaches revealed concern-
ing trade-offs between privacy guarantees and system utility.
Building on the original DP framework, later work extended
the ideas to streaming and continual observation settings
[31], [32] and further explored private sequential learning in
online contexts [33] and with bandit feedback [34]. These
efforts highlighted a fundamental tension: the very temporal



correlations that make sequential learning effective also create
new privacy vulnerabilities.

C. The Cryptographic Era

As limitations of noise-based approaches became apparent,
the field of privacy-preserving learning shifted toward cryp-
tographic solutions. Researchers explored secure multi-party
computation and homomorphic encryption, aiming to enable
secure computation without data sharing [35]. At the same
time, privacy-preserving deep learning emerged, with early
frameworks showing how collaborative deep models could be
trained without directly sharing sensitive data [36], [37]. While
these approaches provided strong cryptographic guarantees,
they faced significant scalability challenges and, more fun-
damentally, couldn’t address the broader issue of behavioral
pattern privacy that emerges in sequential settings [12].

D. Information-Theoretic Approaches

The late 2010s saw researchers turn to information theory,
introducing mutual information constraints to limit informa-
tion leakage through learned policies [38], [39]. This marked
an important shift in thinking—from protecting individual data
points to considering the information content of behavioral
patterns. While these approaches provided new theoretical
insights, they highlighted the difficulty of balancing privacy
with the need to preserve useful temporal patterns.

E. Modern Developments

Recent years have seen two parallel developments that fur-
ther complicate the privacy landscape. On one front, advances
in deep learning under differential privacy have been refined
and deployed at scale [7], [40]. These works leverage advanced
privacy accounting (e.g., the moment accountant) to tightly
track cumulative privacy loss during iterative training, ensuring
high utility despite strict privacy constraints. On another front,
theoretical insights such as privacy amplification by iteration
have demonstrated that the effective privacy loss in itera-
tive algorithms can be significantly reduced [41]. Moreover,
modern private learning approaches continue to grapple with
the challenges of gradient inversion and recovering sensitive
information from model updates [39], [42].

III. WHY TRADITIONAL PRIVACY APPROACHES FAIL

The historical evolution of privacy approaches reveals not
just technical limitations but fundamental incompatibilities
with sequential decision-making. Here we analyze why these
approaches fail, showing that the challenges arise from core
properties of sequential learning rather than implementation
limitations.

A. The Sequential Nature of RL

Consider the structure of RL data: a continuous stream of
interactions between an agent and its environment, generating
trajectories of the form

τ = (s0, a0, r0, s1, a1, r1, . . . , sT )

where each state-action pair influences the entire future se-
quence. As shown in Fig. 1, unlike supervised learning data,
which is often (implicitly) assumed to be independent and
identically distributed, RL trajectories exhibit strong temporal
dependencies [43].

Because decisions at each timestep impact future states
and rewards, RL reveals sensitive information not simply at
isolated moments but in multi-step patterns and dynamic be-
haviors. As a result, privacy threats can emerge in unforeseen
ways. For example, small changes in an action sequence can
cascade and expose strategic aspects of a policy, or aggre-
gated trajectories across agents can leak private information
about a collective population. These challenges do not arise
merely from implementation details; rather, they stem from
the fundamental sequential nature of RL.

B. Exploration-Exploitation Privacy Vulnerabilities

The exploration-exploitation dilemma—central to RL but
absent in supervised learning—introduces additional privacy
concerns [47]. During exploration, an agent must try different
actions to discover optimal strategies, creating behavioral
patterns that can leak sensitive information about:

• Knowledge boundaries: Exploration patterns reveal what
an agent doesn’t know, potentially exposing gaps in
training data

• Learning dynamics: The transition from exploration to
exploitation creates temporal signatures that reflect train-
ing procedures

• Uncertainty profiles: Methods using uncertainty-based
exploration (e.g., UCB algorithms) directly expose con-
fidence estimates derived from private data

As a consequence, traditional privacy mechanisms face a
new challenge: adding sufficient noise to mask exploration
patterns can severely impair learning efficiency, while pre-
serving learning efficiency may reveal sensitive information
through exploration behavior. This tension exacerbates the
already complex privacy-utility tradeoff in RL.

C. Analysis of Core Limitations

Building on the above observations, we identify four core
limitations that make traditional privacy approaches fundamen-
tally inadequate for RL systems.

1) Temporal Privacy Challenge: The Temporal Privacy
Challenge arises from the fact that each timestep in an RL
trajectory is tightly coupled with past and future timesteps.
As shown by Mironov [48] and Zhang et al. [44], privacy loss
can grow faster than standard composition theorems would
predict, because small inferences at one timestep accumulate
into bigger insights about the entire trajectory. In other words,
even if each individual (st, at) pair is “protected” in isola-
tion, long-range temporal correlations can still reveal private
information. This challenge implies that privacy cannot be
guaranteed by simply masking individual points; we must
consider correlations across multiple temporal scales.



TABLE I
SUMMARY OF CORE PRIVACY CHALLENGES IN SEQUENTIAL DECISION-MAKING

Privacy Challenge Root Cause Prior Work Attempts Limitations
Temporal Multi-step correlations across tra-

jectory segments
[31], [32], [44] Standard composition theorems insufficient; privacy

loss accumulates faster than expected
Behavioral Learned policy encodes sensitive

information in behavioral patterns
[11], [9] Per-sample protection fails to bound policy-level

leakage; dynamic sensitivity undermines guarantees
Collaborative Non-local information flow across

agents and human feedback
[12], [42], [27] Local protection mechanisms ignore global patterns;

aggregated updates expose institutional strategies
Context-Dependent Domain-specific constraints and

varying regulatory requirements
[45], [29], [30], [46] One-size-fits-all frameworks inadequate for diverse

deployment contexts

2) Behavioral Privacy Challenge: The Behavioral Privacy
Challenge stems from dynamic sensitivity and the possibility
that a learned policy encodes sensitive information in its
behavioral patterns [9], [49]. A shift in a single action can
propagate through future states and unravel details about the
underlying policy (or the environment that shaped that policy).
Cundy et al. [11] show how observing an agent’s behavior
distribution can leak crucial details about training data or pro-
prietary algorithms. Traditional privacy frameworks that focus
on per-sample data protection cannot bound this “policy-level”
leakage. In domains where the strategy itself is sensitive (e.g.,
proprietary approaches in healthcare or competitive settings),
such behavioral leakage is a direct threat.

3) Collaborative Privacy Challenge: The Collaborative
Privacy Challenge emerges from multi-agent systems, feder-
ated reinforcement learning (FedRL), and human-in-the-loop
methods (RLHF). These settings involve continuous sharing
of updates, observations, or feedback among different par-
ties (agents, servers, humans). Even if each local dataset or
feedback instance is protected, the aggregated patterns of
interaction and adaptation can reveal sensitive information
about individuals or institutions [12], [42]. This non-local
information flow is especially difficult to secure, because high-
level behaviors or group updates can expose private attributes
that traditional pointwise protection ignores.

4) Context-Dependent Privacy Challenge: Finally, the
Context-Dependent Privacy Challenge arises from the fact
that privacy sensitivities and regulatory requirements vary
drastically across different domains, user populations, and
deployment contexts. A healthcare RL system must comply
with HIPAA or GDPR, while an autonomous vehicle system
may face different proprietary or safety-driven constraints [45].
Similarly, an LLM refined via RLHF may need to guard the
cultural or demographic information of human annotators in
ways that differ from other RL use cases. Privacy is not
“one size fits all,” and the severity of temporal, behavioral,
and collaborative leakage depends intimately on the context
in which the RL system is deployed. This challenge calls
for adaptive privacy frameworks that respond to domain- or
population-specific requirements.

D. Failed Extension Attempts

Attempts to extend traditional privacy frameworks to RL
reveal fundamental limitations. Adding noise at individual

timesteps often destroys sequential structure, while protect-
ing entire trajectories sacrifices utility. Cryptographic ap-
proaches [35] provide strong guarantees but face prohibitive
computational overhead and still struggle with higher-level
behavioral patterns.

Sophisticated techniques in federated or collaborative set-
tings cannot fully prevent leakage of global patterns, as
demonstrated by gradient inversion attacks [42] and adap-
tive interactions revealing participant attributes [12]. Recent
work [50], [51] shows progress under restricted settings but
still fails to address the interplay of temporal, behavioral,
collaborative, and contextual factors.

E. Implications for Privacy Design

Taken together, these observations emphasize that privacy
in RL cannot be retrofitted with simple modifications of
traditional frameworks. The four challenges require us to:

1) Address multi-step correlations (temporal challenge) →
Multi-scale Privacy Protection (Section IV-A)

2) Protect the policy itself (behavioral challenge) → Be-
havioral Pattern Protection (Section IV-B)

3) Preserve privacy across interacting agents and hu-
mans (collaborative challenge) → Collaborative Pri-
vacy Preservation (Section IV-C)

4) Adapt protections to domain-specific constraints
(context-dependent challenge) → Context-Aware
Adaptation (Section IV-D)

Any new approach must jointly tackle these dimensions
while striking a careful balance between privacy, utility, in-
terpretability, and feasibility. These requirements motivate the
principles we propose next.

IV. CORE PRINCIPLES FOR SEQUENTIAL PRIVACY

We now introduce four core principles that address the
challenges identified in Section III.

A. Multi-scale Privacy Protection

To counteract the Temporal Privacy Challenge, privacy must
hold across multiple temporal scales—not just at the gran-
ularity of individual actions or states. We extend traditional
definitions of differential privacy to account explicitly for
trajectory segments of varying lengths [44], [48]:



Definition 4.1 (Multi-scale Privacy): A mechanism M pro-
vides (k, ϵ, δ)-multi-scale privacy if for all scales 1 ≤ j ≤ k
and all trajectory segments τt:t+j ,

Pr[M(τt:t+j) ∈ S] ≤ eϵj Pr[M(τ ′t:t+j) ∈ S] + δj ,

where τt:t+j , τ
′
t:t+j are adjacent trajectory segments of length

j, and ϵj (respectively δj) may increase with segment length.
Such multi-scale protection ensures that RL trajectories do

not leak information cumulatively over time, thereby limiting
the adversary’s ability to reconstruct sensitive patterns from
sequential data. It generalizes the usual composition theorems
in differential privacy [6] by allowing an ϵj budget for each
trajectory segment length j. In practice, one might set ϵj to
grow sub-linearly in j to reflect partial reuse of noise across
overlapping segments, or adopt advanced composition results
that limit how quickly the overall privacy budget depletes
over time. A rigorous analysis requires bounding correlations
between overlapping segments τt:t+j , which is an open the-
oretical question. For instance, one could assume a Markov
property and then derive ϵj by combining concentration in-
equalities with standard DP composition results–however, the
exact rate of growth in ϵj would depend on the mixing time
of the underlying Markov chain. Investigating these parameter
choices remains an important research direction.

B. Behavioral Pattern Protection

Addressing the Behavioral Privacy Challenge requires pro-
tecting the policy—i.e., the mapping from states to actions—
rather than just the individual samples. This protection must
cover both exploitation patterns (revealing what was learned)
and exploration patterns (revealing uncertainty and learn-
ing dynamics). We thus focus on bounding divergences be-
tween entire trajectory distributions induced by different poli-
cies [11]:

Definition 4.2 (Behavioral Pattern Privacy): A policy learn-
ing mechanism M satisfies (α, β)-behavioral privacy if for any
policies π1, π2 learned from adjacent training sets,

Dα

(
Pτ∼π1

∥Pτ∼π2

)
≤ β,

where Dα is the Rényi divergence [48] of order α and Pτ∼π

is the distribution of trajectories under policy π.
This definition encompasses both exploitation and explo-

ration behaviors, as π contains both components. However,
exploration patterns present unique privacy challenges: they di-
rectly reveal uncertainty estimates which are typically derived
from training data distributions. For example, in algorithms
using upper confidence bounds (UCB) or Thompson sampling,
the exploration strategy directly exposes confidence intervals
calculated from private data.

By bounding how much a single agent’s (or institution’s)
policy distribution—including both exploitation and explo-
ration components—can shift under small changes in the
underlying data, we reduce the risk that adversaries infer
proprietary strategies, specialized treatment protocols, data
sparsity patterns, or other policy-level knowledge.

C. Collaborative Privacy Preservation

The Collaborative Privacy Challenge is especially evi-
dent in federated or multi-agent RL, and in RLHF where
human feedback is continuously integrated. We can frame
this via information-theoretic constraints on collaborative sys-
tems [38]:

Definition 4.3 (Collaborative Privacy): A mechanism M
provides (γ, η)-collaborative privacy if for all interaction his-
tories Ht and new interactions it:

I(M(Ht ∪ {it}); sensitivet|Ht) ≤ γ

with probability at least 1 − η, where I(·; ·|·) denotes condi-
tional mutual information and sensitivet represents any sensi-
tive attributes at time t including:

• Demographic information of participants
• Group-level behavioral patterns
• Institutional strategies or protocols
• Collective learning dynamics
This definition limits how much additional information is

revealed about sensitive attributes (e.g., user demographics,
group-level strategies) from each incremental interaction, even
when prior interactions are already known.

D. Context-Aware Adaptation

Finally, the Context-Dependent Privacy Challenge demands
that privacy guarantees adapt to different domains, user pop-
ulations, and regulatory environments. We capture this adap-
tivity via:

Definition 4.4 (Context-Aware Privacy): A privacy mecha-
nism M is (Θ, λ)-context-aware if for all contexts c ∈ C and
privacy requirements θc ∈ Θ:

Pr
[
M(τ, c) satisfies θc

]
≥ 1− λ,

where θc specifies context-specific privacy parameters.
In high-stakes environments (e.g., clinical healthcare), θc

may demand stricter bounds and narrower noise budgets,
while less-sensitive tasks can tolerate relaxed protections. The
mechanism adjusts its privacy parameters or noise injection
strategies according to these evolving contextual requirements.
It formalizes the idea that privacy mechanisms must adapt
to different contexts while maintaining guaranteed levels of
protection [8].

For instance, in a hospital environment, context-aware pri-
vacy might mean enforcing tighter privacy budgets (ϵ) for
particularly sensitive patient attributes, in compliance with
HIPAA or GDPR, while still allowing less-protected telemetry
data to facilitate real-time decision-making. By contrast, in
autonomous vehicles, the context might revolve around loca-
tion data and proprietary driving logs: the system could relax
certain bounds for purely operational metrics (e.g., mechanical
sensors), but apply stricter protections for route data or user
identities. These domain-specific variations underscore why
static, one-size-fits-all privacy mechanisms often fail in prac-
tice: each context demands unique trade-offs between privacy,
regulatory compliance, and system performance.



E. The Sequential Privacy Framework
These four principles form our Sequential Privacy Frame-

work for reinforcement learning in sequential decision-making.
A straightforward way to ensure that all aspects of privacy
are satisfied is to enforce each principle independently and
then take a worst-case (intersection) view of the guarantees.
Formally, the overall privacy guarantee can be expressed as:

P(τ) = min
i∈{1,2,3,4}

Pi(τ),

where Pi(τ) represents the privacy guarantee derived from
each of the four principles (multi-scale, behavioral, collabora-
tive, and context-aware). This worst-case perspective provides
a conservative baseline, ensuring that an adversary cannot
exploit any single dimension of leakage.

In practice, implementing these principles may involve
combining multiple mechanisms:

M(τ) = h
(
Mmulti(τ), Mbehav(τ), Mcollab(τ), Mcontext(τ)

)
,

where each Mmulti,Mbehav,Mcollab,Mcontext enforces one of
the four privacy principles, and h composes their outputs or
noise parameters. For example, Mmulti might add calibrated
noise to gradient updates at multiple timescales, while Mbehav
further imposes policy-level divergence bounds to ensure an
entire learned policy does not reveal sensitive information. The
function h could be a higher-level controller that orchestrates
noise or post-processing across these components, balancing
their respective privacy-utility trade-offs.

We note, however, that existing composition theorems for
differential privacy are largely tailored to static or i.i.d. set-
tings [6], and directly applying them in sequential RL may
be over-restrictive or suboptimal. Investigating novel compo-
sition rules that account for temporal dependence, policy-level
constraints, and collaborative feedback remains a key open
research problem. Future work could explore alternative ways
of combining these principles to yield a single privacy budget,
or develop contextual composition strategies that selectively
apply stricter bounds in high-risk scenarios.

F. Theoretical Bounds on Privacy-Utility Trade-offs
Our Sequential Privacy framework implies that any mecha-

nism satisfying (α, β)–behavioral privacy must incur a quan-
tifiable performance cost. Below we state a concrete bound
under standard finite-MDP assumptions.

Lemma 4.1 (Privacy–Utility Trade-off (Sketch)): In any
finite MDP with discount γ, a mechanism satisfying
(α, β)–behavioral privacy (Def. 4.2) must incur

E
[
V π∗

(s0)− V πpriv(s0)
]
= Ω

(
(1− γ)/β

)
.

The above results can be obtained by applying the standard
performance-difference lemma [52] to the Rényi bound. It
mirrors the familiar inverse-scaling trade-offs in differentially-
private supervised learning (e.g. Ω(1/ϵ) lower bounds in
DP-SGD [53]), but here it applies at the level of entire
policies rather than per-step gradient updates. It concretely
demonstrates that any mechanism strongly limiting policy
divergence must pay a nontrivial price in expected return.

V. SEQUENTIAL PRIVACY IN PRACTICAL APPLICATIONS

Our Sequential Privacy framework addresses critical chal-
lenges in high-stakes domains. Here we demonstrate how the
principles can be implemented in three key areas.

A. Healthcare: Privacy-Critical Treatment Optimization

RL systems optimizing treatment strategies must protect
temporal patterns in patient care that could reveal both in-
dividual conditions and institutional protocols. For chronic
conditions like diabetes, blood glucose and insulin adjustment
sequences encode sensitive information even when individual
decisions are protected. In such clinical settings, policy gradi-
ent methods can be adapted for multi-scale privacy:

θt+1 = θt + η ·
(∑

i

clip (∇θ log πθ(ai|si)A(si, ai), Cmed)

+N (0, σ2
medC

2
medI)

)
Here, Cmed represents the HIPAA-compliant clipping thresh-

old with σmed calibrated to satisfy differential privacy for
sensitive medical attributes. Critical in healthcare is adap-
tive privacy budgeting, where diagnostic phases may receive
stronger protection than maintenance phases while still pre-
serving overall temporal pattern privacy.

B. Autonomous Vehicles: Proprietary Strategy Protection

Vehicle fleets generate massive behavioral data encoding
navigation strategies and risk assessment algorithms. The
behavioral pattern protection principle becomes crucial when
companies share driving experiences to enhance safety while
protecting proprietary algorithms [45], [46]. Q-learning vari-
ants are particularly suited for autonomous vehicle settings,
with behavioral pattern privacy implemented through:

π(a|s) = exp(Q(s, a)/τauto)∑
a′ exp(Q(s, a′)/τauto)

The temperature parameter τauto can be dynamically ad-
justed based on driving context—higher in routine naviga-
tion (preserving proprietary algorithms) and lower in safety-
critical scenarios where precise behavior is essential. This
implementation balances the need to share knowledge of
hazardous scenarios while preserving competitive algorithmic
advantages.

C. LLMs: Human Feedback Privacy

RLHF systems must protect not only model behavior but
also the characteristics of human feedback providers [27], [54].
Even with anonymized instances, preference patterns could
reveal annotator demographics through temporal correlations.
For collaborative privacy in RLHF, we can implement a
stratified protection approach:

rprivate = roriginal + Lap(∆f/ϵdemo)

where demographic-correlated feedback receives stronger
protection (ϵdemo) than content-specific feedback. Critically,
preference order preservation constraints must be maintained



while obscuring demographic patterns. For federated RLHF
settings, secure aggregation with temporal sensitivity weight-
ing can further protect annotator characteristics while preserv-
ing useful preference signals.

VI. THE PATH FORWARD: A RESEARCH AGENDA

The preceding sections highlight critical questions for
achieving robust privacy in sequential decision-making. Here,
we sketch four complementary directions that together form a
research agenda for sequential privacy in RL.

A. Theoretical Foundations

While classical differential privacy provides a strong base-
line in static settings, sequential RL poses unique chal-
lenges due to overlapping trajectories, temporal dependencies,
and adaptive interaction. Researchers must formalize privacy
notions specifically for these correlated settings, extending
composition theorems to account for overlapping segments
or multi-scale observations. For instance, bounding privacy
leakage at partial trajectory segments and analyzing privacy
amplification under Markovian assumptions remain open prob-
lems. Establishing impossibility results—where no mechanism
can simultaneously achieve strong privacy and high utility
for certain classes of RL tasks—would also offer valuable
theoretical guidance. Lastly, rigorous empirical metrics are
needed to quantify privacy-utility trade-offs across different
time horizons.

B. Mechanism Design for Temporal Privacy

Existing privacy approaches in RL typically protect ei-
ther individual timesteps or entire trajectories, risking either
excessive noise or unmitigated leakage. Future work must
blend adaptive noise injection and multi-scale perturbations
so that data at highly sensitive timesteps is masked more
heavily, while allowing enough signal to learn effective poli-
cies. Policy-level regularization methods—such as constrain-
ing the divergence between learned policies and a reference
policy—could further limit the risk of revealing private in-
formation through policy behaviors. Additionally, designing
lightweight, domain-aware privacy layers for continuous or
partially observed environments would expand the applica-
bility of privacy-preserving RL beyond discrete, small-scale
benchmarks.

C. Collaborative Privacy Preservation

Federated RL, multi-agent RL, and RLHF settings intro-
duce continuous coordination and real-time feedback among
agents or human annotators. Classic individual-level privacy
guarantees (e.g., per-user DP) often fail to capture group-
level or cross-party inferences. New metrics are thus needed
to quantify information leakage in group updates or shared
gradients, and mechanisms must ensure that aggregated model
parameters do not inadvertently reveal collective sensitive
patterns. In RLHF scenarios, privacy solutions must conceal
annotator identities and attributes, even as the model iteratively
incorporates feedback to refine its policies. Developing robust

defenses against membership inference, gradient inversion,
and other adaptive attacks in collaborative RL is paramount
for real-world trust.

D. Implementation and Deployment
Bridging theory and practice requires tools for measuring

privacy leakage and ensuring scalable algorithmic performance
in complex RL tasks. This includes (1) developing stan-
dardized benchmarks and simulations that stress-test privacy
mechanisms under diverse temporal structures, (2) creating
open-source software libraries that integrate privacy-by-design
principles into typical RL pipelines (e.g., policy gradient
or Q-learning frameworks), and (3) defining domain-specific
best practices to satisfy regulatory or ethical constraints in
sensitive environments such as healthcare or autonomous
driving. Ultimately, practical deployment necessitates recon-
ciling privacy with real-world demands for minimal latency,
interpretability, and fault-tolerance, underscoring the need for
multi-disciplinary collaboration among ML researchers, do-
main experts, and policymakers.

VII. CONCLUSION

Reinforcement learning has rapidly evolved from a research
frontier to a technology shaping critical real-world applications
in healthcare, transportation, and AI services like language
models. Yet existing privacy frameworks, designed primarily
for static, pointwise data protection, leave these sequential
systems vulnerable. As we have illustrated, privacy breaches in
RL can reveal not only isolated data points but entire temporal
or behavioral strategies, along with emergent insights about
collaborating agents and their contexts.

To address these challenges, we introduce the Sequen-
tial Privacy framework built on four fundamental principles:
multi-scale protection, behavioral pattern protection, collab-
orative preservation, and context-aware adaptation. Deliver-
ing on this vision demands new theory for temporal and
group-level privacy, domain-aware mechanisms, and standard-
ized evaluations that balance privacy, utility, and interpretabil-
ity.

The time is ripe to confront the inseparable link between
sequential decision-making and emergent privacy risks. By
building on the Sequential Privacy principles and open re-
search questions we have posed, the broader AI community
can foster a more secure and privacy-preserving foundation
for the next generation of reinforcement learning systems.
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