
Solving the ANTS Problem with Asynchronous
Finite State Machines

Yuval Emek1, Tobias Langner2, Jara Uitto2, and Roger Wattenhofer2

1 Technion, Israel
2 ETH Zürich, Switzerland

Abstract. Consider the Ants Nearby Treasure Search (ANTS) problem
introduced by Feinerman, Korman, Lotker, and Sereni (PODC 2012),
where n mobile agents, initially placed in a single cell of an infinite
grid, collaboratively search for an adversarially hidden treasure. In this
paper, the model of Feinerman et al. is adapted such that each agent is
controlled by an asynchronous (randomized) finite state machine: they
possess a constant-size memory and can locally communicate with each
other through constant-size messages. Despite the restriction to constant-
size memory, we show that their collaborative performance remains the
same by presenting a distributed algorithm that matches a lower bound
established by Feinerman et al. on the run-time of any ANTS algorithm.

1 Introduction

“They operate without any central control. Their collective behavior arises from
local interactions.” The last quote is arguably the mantra of distributed comput-
ing, however, in this case, “they” are not nodes in a distributed system; rather,
this quote is taken from a biology paper that studies social insect colonies [16].
Understanding the behavior of insect colonies from a distributed computing per-
spective will hopefully prove to be a big step for both disciplines.

In this paper, we study the process of food finding and gathering by ant
colonies from a distributed computing point of view. Inspired by the model of
Feinerman et al. [11], we consider a colony of n ants whose nest is located at the
origin of an infinite grid that collaboratively search for an adversarially hidden
food source. An ant can move between neighboring grid cells and can communi-
cate with the ants that share the same grid cell. However, the ant’s navigation
and communication capabilities are very limited since its actions are controlled
by a randomized finite state machine (FSM) operating in an asynchronous en-
vironment — refer to the model section for a formal definition. Nevertheless,
we design a distributed algorithm ensuring that the ants locate the food source
within O(D + D2/n) time units w.h.p., where D denotes the distance between
the food source and the nest.3 It is not difficult to show that a matching lower
3 We say that an event occurs with high probability, abbreviated by w.h.p., if the event

occurs with probability at least 1 − n−c, where c is an arbitrarily large constant.

bound holds even under the assumptions that the ants have unbounded memory
(i.e., are controlled by a Turing machine) and know the parameter n.
Related Work. Feinerman et al. [10, 11] introduce the aforementioned prob-
lem called ants nearby treasure search (ANTS) and study it, assuming that the
ants (a.k.a. agents) are controlled by a Turing machine (with or without space
bounds) and do not communicate with each other at all. They show that if the n
agents know a constant approximation of n, then they can find the food source
(a.k.a. treasure) in time O(D + D2/n). Moreover, Feinerman et al. observe a
matching lower bound and prove that this lower bound cannot be matched with-
out some knowledge of n. In contrast to the model studied in [10, 11], the agents
in our model can communicate anywhere on the grid as long as they share the
same grid cell. However, due to their weak control unit (a FSM), their commu-
nication capabilities are very limited even when they do share the same grid
cell. Notice that the stronger computational model assumed by Feinerman et
al. enables an individual agent to perform tasks way beyond the capabilities of
a (single) agent in our setting, e.g., list the grid cells it has already visited or
perform spiral searches (that play a major role in their upper bound).

Distributed computing by finite state machines has been studied in several
different contexts including population protocols [4, 5] and the recent work [9]
from which we borrowed the agents communication model. In that regard, the
line of work closest to our paper is probably the one studying graph exploration
by FSM controlled agents, see, e.g., [12].

Graph exploration in general is a fundamental problem in computer science.
In the typical case, the goal is for a single agent to visit all nodes in a given
graph [1, 7, 8, 15, 17]. It is well-known that random walks allow a single agent to
visit all nodes of a finite undirected graph in polynomial time [2]. Notice that
in an infinite grid, the expected time it takes for a random walk to reach any
designated cell is infinite.

Finding treasures in unknown locations has been previously studied, for ex-
ample, in the context of the classic cow-path problem. In the typical setup, the
goal is to locate a treasure on a line as quickly as possible and the performance
is measured as a function of the distance to the treasure. It has been shown that
there is a deterministic algorithm with a competitive ratio 9 and that a spiral
search algorithm is close to optimal in the 2-dimensional case [6]. The study of
the cow-path problem was extended to the case of multiple agents by López-
Ortiz and Sweet [14]. In their study, the agents are assumed to have unique
identifiers, whereas our agents cannot be distinguished from each other (at least
not at the beginning of the execution).
Model. We consider a variant of [11]’s ANTS problem, where a set of mobile
agents search the infinite grid for an adversarially hidden treasure. The agents
are controlled by asynchronous randomized finite state machines with a common
sense of direction and communicate only with agents sharing the same grid cell.

More formally, consider n mobile agents that explore Z2. In the beginning of
the execution, all agents are positioned in a designated grid cell referred to as the
origin (say, the cell with coordinates (0, 0) ∈ Z2). We assume for simplicity that

the agents can distinguish between the origin and the other cells. We denote
the cells with either x or y-coordinate being 0 as north/east/south/west-axis,
depending on their location.

The main difference between our variation of the ANTS model and the origi-
nal one lies in the agents’ computation and communication capabilities. In both
variants, all agents run the same (randomized) protocol, however, under the
model considered in the present paper, the agents are controlled by an asyn-
chronous randomized finite state machine (FSM). This means that the individual
agent has a constant memory and thus, in general, can store neither coordinates
in Z2 nor the number of agents. On the other hand, in contrast to the model
considered in [11], our agents may communicate with each other. Specifically,
under our model, an agent a positioned in cell c ∈ Z2 can communicate with all
other agents positioned in cell c at the same time. This communication is quite
limited though: agent a merely senses for each state q of the finite state machine,
whether there exists at least one agent a′ 6= a in cell c whose current state is
q. Notice that this communication scheme is a special case of the one-two-many
communication scheme introduced in [9] with bounding parameter b = 1.

The distance between two grid cells (x, y), (x′, y′) ∈ Z2 is defined with respect
to the `1 norm (a.k.a. Manhattan distance), that is, |x − x′| + |y − y′|. Two
cells are called neighbors if the distance between them is 1. In each step of the
execution, agent a positioned in cell (x, y) ∈ Z2 can either move to one of the
four neighboring cells (x, y + 1), (x, y − 1), (x + 1, y), (x − 1, y), or stay put in
cell (x, y). The former four position transitions are denoted by the corresponding
cardinal directions N,S,E,W , whereas the latter (stationary) position transition
is denoted by P (standing for “stay put”). We point out that the agents have
a common sense of orientation, i.e., the cardinal directions are aligned with the
corresponding grid axes for every agent in every cell.

The agents operate in an asynchronous environment. Each agent’s execution
progresses in discrete (asynchronous) steps indexed by the non-negative integers
and we denote the time at which agent a completed step i > 0 by ta(i) >
0. Following the common practice, we assume that the time stamps ta(i) are
determined by the policy ψ of an adversary that knows the protocol but is
oblivious to its random bits, whereas the agents do not have any sense of time.

Formally, the agents’ protocol is captured by the 3-tuple Π = 〈Q, s0, δ〉,
where Q is the finite set of states; s0 ∈ Q is the initial state; and

δ : Q× 2Q → 2Q×{N,S,E,W,P}

is the transition function. At time 0, all agents are in state s0 and positioned in
the origin. Suppose that at time ta(i), agent a is in state q ∈ Q and positioned
in cell c ∈ Z2. Then, the state q′ ∈ Q of a at time ta(i+ 1) and its corresponding
position transition τ ∈ {N,S,E,W,P} are dictated based on the transition
function δ by picking the pair (q′, τ) ∈ δ(q,Qa), uniformly at random from
δ(q,Qa), where Qa ⊆ Q contains state p ∈ Q if and only if there exists some
(at least one) agent a′ 6= a such that a′ is in state p and positioned in cell c at
time ta(i). (Step i is deterministic if |δ(q,Qa)| = 1.) For simplicity, we assume

that while the state subset Qa (input to δ) is determined based on the status
of cell c at time ta(i), the actual application of the transition function δ occurs
instantaneously at the end of the step, i.e., agent a is considered to be in state
q and positioned in cell c throughout the time interval [ta(i), ta(i+ 1)).

The goal of the agents is to locate an adversarially hidden treasure, i.e., to
bring at least one agent to the cell in which the treasure is positioned. The
distance of the treasure from the origin is denoted by D. As in [11], we measure
the performance of a protocol in terms of its run-time, where the time is scaled
so that ta(i+1)−ta(i) ≤ 1 for every agent a and step i ≥ 0. Although we express
the run-time complexity in terms of the parameters n and D, we point out that
neither of these two parameters is known to the agents (who cannot even store
them in their very limited memory).

2 Parallel Rectangle Search

In this section, we introduce the collaborative search strategy RS (Rectangle-
Search) that depends on an emission scheme, which divides all participating
agents in the origin into teams of size ten and emits these teams continuously
from the origin until all search teams have been emitted. We delay the description
of our emission scheme until Section 3 and describe for now the general search
strategy (without a concrete emission scheme). We assume, for the sake of the
following informal explanation, an environment in which the agents operate in
synchronous rounds and then explain how we can lift this assumption.

The RS strategy consists of two stages. The first stage works as follows:
Whenever a team is emitted, one agent becomes an explorer and four agents
become guides, one for each cardinal direction. The remaining five agents become
scouts, whose function will be explained later. Now, each guide walks into its
respective direction until it hits the first cell that is not occupied by another
guide. The explorer follows the north-guide and when they hit the non-occupied
cell (0, d) ∈ Z2 for some d > 0, the explorer starts a rectangle search by first
walking south-west towards the west-guide. When it hits a guide, the explorer
changes direction to south-east, then to north-east, and finally to north-west.
This way, it traverses all cells in distance d from the origin, referred to hereafter
as level d, (and also almost all cells in distance d+ 1). When the explorer meets
a guide on its way, the guide enters a sleep state to be awoken again in the
second stage. The explorer also enters a sleep state after arriving again at the
north-guide, thereby completing the first stage of the rectangle search.

The second stage of RS is started when the last search team is emitted
from the origin. At this point in time, Θ(n) cells are occupied by sleeping
guides/explorers in all four cardinal directions. The last search team wakes up
the innermost sleeping search team upon which it resumes its job and walks
outwards to explore the next unexplored level in the same way as in the first
stage. Each team recursively wakes up the search team of the next level until
all sleeping teams have been woken up and resumed the search. A search in the
second stage has one important difference in comparison to a search in the first

stage: When an explorer meets a guide g during a search, instead of entering a
sleep state, g moves outwards to the next unexplored level, hopping over all the
other stationary guides on its way, and waits there for the next appearance of
an explorer. When the explorer has finished its rectangle by reaching the north-
guide again, it moves north (with the north-guide) to the first unexplored level
and starts another search there. Knowing that all other guides have reached their
target positions in the same level as well, a new search can begin.

G

G

G

G

4

32

1

O

E

5

Fig. 1. An explorer (E) starts a rectangle search in level ` = 3 at the north-guide,
visits all guides (G) in level ` in a counter-clockwise fashion and ends at the north-
guide. Whenever the explorer meets a guide, the guide moves outwards in its cardinal
direction. When the explorer completes its search by arriving again at the north-guide,
both agents walk outwards together to the next level to be searched. (The numbers
indicate the order in which the explorer moves.)

Note that the (temporary) assumption of a synchronous environment is cru-
cial for the correctness of the algorithm described so far as we assume that
whenever an explorer crosses a coordinate axis, the respective cell contains a
guide. In an asynchronous setting, the guide might still be on its way to that
particular cell and hence, the explorer would continue walking diagonally ad
infinitum. We counter this problem by coupling the searches for different levels
in such a way that a search in level ` can never have progressed further than a
search in level `′ < `. This implies that a search in level ` cannot start/finish
earlier than a search in level `′ < ` starts/finishes. This coupling is implemented
by equipping each explorer with a scout that essentially allows the explorer e`
in level ` to check whether the explorer e`−1 of the preceding level has already

progressed at least as far as e` and to move only then. On top of that, explorer
e` only leaves a coordinate axis after ensuring, again by means of its scout, that
there is already a guide present in level ` + 1. This additional check (together
with a few technicalities described later) suffices to ensure that the searches are
“nested” properly and the corresponding guides of each explorer are waiting in
the right positions along the coordinate axes when those are hit by the explorer.

As a (much desirable) byproduct of the aforementioned explorers’ logic, it is
guaranteed that during the execution of the RS strategy, every cell contains at
most one explorer of each possible state. To ensure that the same holds for the
guides, they are also equipped with scouts whose role is to check that during a
guide’s journey outwards, it does not move into a cell which is already occupied
by a guide, unless the latter is in a stationary state (waiting for its explorer).

2.1 The RS strategy

Emission scheme. Initially, all n agents are located at the origin. Until all
agents become involved in the RS strategy, an emission scheme is responsible
for emitting new teams (each consisting of ten agents) from the origin. The
emission of the teams is spaced apart in time in the sense that no two teams are
emitted at the exact same time. (Under a synchronous schedule, a spacing of 20
time units is guaranteed.) To formally express (and analyze) the emission rate,
we introduce the notion of an emission function fn : N0 → N0, where, until all
teams are emitted, fn(t) bounds from below the number of teams emitted up to
time t. For simplicity, we assume that there are enough agents to execute our
algorithms, i.e., that n ≥ 30.

Let k+ 2, k ∈ Θ(n), be the total number of emitted teams where we assume
k ≥ 2. The first and last emitted teams have a special role as signal teams in our
protocol. The k remaining teams s1, . . . , sk will be referred to as search teams.
Whenever a search team becomes ready, four of the ten agents become MGuides
— one for each cardinal direction — and walk outwards in their corresponding
directions, while the fifth one becomes a MExp and follows the north-MGuide (see
below for a detailed description of the agent types). Each MGuide and MExp is
accompanied by a Scout that will stick to this particular agent for the rest of
the execution.
Agent types. In the remainder of the paper, we will refer to several different
types of agents. Since there is only a constant number of different types, these
can be modeled by having individual finite automata for the various types. We
essentially use six different types and explain their specific behavior in the fol-
lowing: Scout, Guide, MGuide (for moving guide), MExp (for moving explorer),
WExp (for waiting explorer), and Exp (for explorer). We will use the terms “out-
wards” and “inwards” in the context of agents of the two Guide-types (recall that
they are associated with a cardinal direction) to indicate the respective direction
away from or towards the origin. We subsume the types Exp/MExp/WExp and
Guide/MGuide under the name explorers and guides, resp. During the process
of the algorithm, each non-Scout agent will be accompanied by a Scout, whose

type is specific to the type of the agent it is accompanying — its owner. Since all
different Scout-types have very similar tasks, we first give a general description
of a Scout’s function and then explain its type-specific behavior together with
the owner’s behavior.
Scout. The function of each Scout-type is to control when its owner is allowed to
move further. It does so by moving to one of the four neighbor cells of the owner
– the scout position – and waiting for a certain condition (the presence/absence
of a certain type of agent) to become true in that cell. When the condition is
met, the Scout moves back to the cell containing its owner and notifies the owner.
When the owner moves to a new position, the Scout moves along. As Scouts only
play an auxiliary role in our protocol, we may refer to a cell as empty even if it
contains Scouts.
Guide. A Guide waits until a Exp performing a search (this can be encoded in the
state of the Exp) has entered its cell. When (i) the cell one coordinate inwards is
empty and (ii) its cell contains neither MGuide nor MExp, it becomes a MGuide.
MGuide. A MGuide moves outwards (at least one cell) until it hits a cell c that
contains no Guide. The north-MGuide moves north together with the MExp of
the same search team. It does so by verifying before each move (after the first)
that the MExp has caught up and is in the same cell. Otherwise, it waits for the
MExp to catch up. Upon arriving in c, the MGuide becomes a Guide, and waits
for an Exp to visit. A MGuide uses its Scout to prevent moving in a cell that
contains a MGuide, MExp or Exp.
MExp. A MExp repeatedly moves north together with the north-MGuide of the
same search team. More precisely, it only moves north when there is no MGuide
in its cell, implying that the MGuide is already one cell further and waits there
for the MExp to catch up. The MExp moves until it hits the first cell c that
contains neither a Guide that already has an Exp searching (this can be encoded
in the state of the Guide) nor an Exp. As soon as cell c contains a Guide (the
north-Guide of this explorer’s team), it becomes an Exp. A MExp uses its Scout to
prevent moving into a cell that contains another MExp while walking outwards.
WExp. A WExp waits until its cell is empty and then becomes a MExp.
Exp. An Exp does the bulk of the actual search process by moving along the
sides of a rectangle using Guides on its way to change direction. In the process,
it moves south-west, then south-east, north-east, and north-west, in this order.
Initially, an Exp performs one move west and then alternatingly south and west.

During a diagonal walk, an Exp uses its Scout to prevent it from overtaking
Exps closer to the origin during their search as follows. Consider an Exp e in the
north-west quarter-plane (walking south-west). The Scout is sent to the south-
neighbor cell, referred to as the scouting position, and notifies e, when no Exp
present there (which might immediately be the case). Only then, the Exp and the
Scout move one cell further where the Scout again enters the scouting position.

When the Exp meets a west/south/east-Guide in an axis cell c, it changes its
moving direction. Before leaving the axis, it waits until c does contain neither
Guide nor MGuide (thereby ensuring that there is a Guide one cell outwards).

Upon arrival back at the north Guide after the rectangle search is completed, it
becomes a WExp.

The Exp of the search team exploring level 1 counts its steps (the exploration
journey at this level contains exactly 8 cells) and uses the Scout to make sure
that the cells on the coordinate axes contain a Guide before entering them.
The signal teams. The first and last emitted teams, s0 and sk+1, resp., have
a special role and they do not actively participate in the exploration of the grid
(which is handled by s1, . . . , sk). Their job is solely to signal to the other teams
when the second stage of the protocol begins.

The first team s0 enters a special signal state and stays at the origin until the
last team sk+1 has been emitted. (Due to the design of our emission scheme in
Section 3, the agents in team sk+1 know that they belong to the last emitted team
and are able to notify the agents of s0 accordingly.) The aforementioned logic of
the agents in RS ensures that as long as there is an agent present in the origin,
the Guides and Exps of the innermost search team (and recursively all other
search teams) cannot move outwards. When s0 is notified by sk+1, the agents
in both teams switch to a designated idle state, ignored by all other agents. As
now the origin appears to be empty, the Guides and Exps of the innermost (and
eventually the other search teams) can move outwards to continue searching —
the second stage has begun.

O

E1

E2

E3

Fig. 2. Three Exps (red circles) are performing a search of adjacent levels in the north-
west quadrant. Their Scouts are depicted as blue squares connected to their respective
Exp. E1 cannot walk further as there is still an Exp (E2) in the cell checked by its
Scout. Both E2 and E3 can walk further as their Scouts do not observe an explorer in
the checked cells.

2.2 Correctness

In this section we establish the correctness of the RS strategy by proving that
each cell is eventually explored and no agent is lost in the process. We say that
a cell in level ` is explored after it has been visited by an Exp exploring level

`, where we recall that level ` ∈ N0 consists of all cells in distance ` from the
origin. An Exp is said to start a (rectangle) search in level ` at time t if it moves
west from the cell (0, `) (containing the north Guide) at time t and it finishes
a (rectangle) search in level ` at time t if it enters the cell (0, `) from the east
at time t. The start time tS` , finish time tF` , and move time tM` are given by
the times at which an Exp starts a search in level `, finishes a search in level `,
and when the WExp in level ` becomes a MExp, resp. An Exp explores level ` at
time t, if tS` < t < tF` . The design of RS ensures that regardless of the emission
scheme used, the Guides in every cardinal direction occupy a contiguous segment
of cells. It also implies the following observation and lemma.

Observation 1. For two levels `′ > `, we have tS`′ > tS` , tF`′ > tF` , and tM`′ > tM` .

Proof. Consider some level ` > 1. An Exp can only start a search in level ` by
leaving cell (0, `) after the Exp of level `− 1 has left cell (0, `− 1), which implies
tS` > tS`−1. An Exp in level ` can only move to cell (0, `) and thereby finish the
search in level ` after the Exp of level `−1 has already reached the cell (0, `−1),
thus tF` > tF`−1. A WExp in level ` can become a MExp only when its Guide has
left cell (0, `). This requires in turn that the Exp in level `−1 has already left cell
(0, `− 1) which requires that it already became a MExp, hence tM` > tM`−1. ut

Lemma 2. Outside the origin, no two agents of the same type occupy the same
cell at the same time.

Proof. First, recall that the MExps emitted from the origin are emitted at dif-
ferent times. A WExp becomes a MExp only when there is no other MExp in the
same cell. MExps use Scouts to prevent stepping onto each others’ cells. A MExp
becomes an Exp in cell c only if c does not contain an Exp and Exps use Scouts
to prevent stepping into each others’ cells. As no two Exps can be in the same
cell, neither can be two WExps and the claim for all explorer agents follows.

MGuides are emitted from the origin at different times. A Guide becomes a
MGuide only if its cell does not contain a MGuide. MGuides use Scouts to prevent
stepping onto each others’ cells. A MGuide becomes a Guide only if its cell does
not contain a Guide, which establishes the assertion for the guides.

As the Scouts of owners with different types also have different types, we only
need to show the claim for Scouts of the same type. This follows by labeling a
Scout as north/east/south/west-CScout, while it is checking a scout condition in
the north/east/south/west neighboring cell of its owner’s cell. ut

Each Exp relies on Guides to indicate when it has to change the search direction
in order to search a specific level. The next lemma gives a guarantee for this.

Lemma 3. Whenever an Exp enters a cell c on an axis, cell c contains a Guide.

Proof. Observe that if c lies on the north-axis, it will contain a Guide when the
Exp e returns there because e only leaves c to start a search when c contains a
Guide and this Guide stays there until e returns. To prove the claim for the other
axis, let s` be the search team exploring level ` and let e` be the corresponding

explorer. We prove the statement by induction on `. Observe that the statement
holds for e1 as the Exp of the first search team explicitly counts cells and uses
its Scout to ensure that c contains a Guide.

Consider a cell c` on an axis in level ` and assume as the induction hypothesis
that the cell c`−1 on the axis in level `−1 contained a Guide when it was entered
by Exp e`−1. As e`−1 blocks e` from overtaking it, Exp e` can enter c` only after
e`−1 has left c`−1, which e`−1 only does after ensuring that c`−1 is empty. This
requires, in turn, that the Guide in cell c`−1 has become a MGuide and left c`−1.
This can only happen after all other MGuides have passed c`−1 and the MGuide
in cell c` has become a Guide, thereby asserting the claim. ut

The canonical paths. In what follows, we use paths in the infinite grid in their
usual graph-theoretic sense, viewing a path p as a (finite or infinite) sequence
of cells, where p(i) and p(i + 1) are grid neighbors for every i ≥ 1. Notice that
unless stated otherwise, the paths mentioned are not necessarily simple.

Let s1, . . . , sk be the search teams emitted from the origin (ignoring the
two signal teams s0 and sk+1) ordered by ascending emission time and consider
some agent a participating in one of the search teams s1, . . . , sk. Given some
adversarial policy ψ, let pψa be the path traversed by a during the execution of
the algorithm under ψ starting at the time at which a is emitted from the origin.
We extend the sequence defined by pψa , fixing pψa (0) = (0, 0). We shall refer to
pψa as the execution path of a (under ψ).

The logic of the guides directly implies that if agent a is a north/south/east/west
guide, then its execution path satisfies pψa (i) = (0, i)/(0,−i)/(i, 0)/(−i, 0) for ev-
ery adversarial policy ψ. In other words, the path traversed by a guide does not
depend on the adversarial policy. We argue that this is in fact the case for all
agent types, introducing the notion of a canonical path.

Lemma 4. For every 1 ≤ i ≤ k and for each agent role ρ (among the 10
different roles in a search team), there exists a canonical path p∗i,ρ such that
if agent a is the ρ-agent in search team si, then pψa = p∗i,ρ, regardless of the
adversarial policy ψ.

Proof. As noted above, the assertion holds for the guides. Since the execution
path of a scout is fully determined by the execution path of its owner, it suffices
to show that the assertion holds for the explorer ei of search team si.

Let mi,j be the simple path leading from cell (0, i) to cell (0, j− 1) along the
north axis and let r` be the simple path corresponding to the rectangle search of
level `, starting in cell (0, `) and ending in cell (1, `), that is, the path traversed
by an explorer exploring level ` during the time interval [tS` , tF`). We argue that
the execution path of explorer ei is always

p∗i,e = m0,i ◦ ri ◦mi,k+i ◦ rk+i ◦mk+i,2k+i ◦ r2k+i · · · ,

namely, agent ei (and search team si) search levels ` = z · k + i for z = 0, 1, . . . ,
where we recall that k is the number of search teams.

To establish this argument, we prove that if ei currently searches level `, then
the next level it is going to search is `+k. The argument then follows by induction
on z as the first level searched by ei (after it is emitted from the origin) is level
i. To that end, consider the explorer ei at time tF` when it is back in cell (0, `)
as an Exp. Recall that ei becomes a MExp and starts moving outwards at time
tM` that occurs only after the corresponding north-Guide has become a MGuide
and left cell (0, `). This is turn happens only after cell (0, ` − 1) was verified
as empty, which implies that at time tM` , every other MExp ej is positioned in
some cell (0, `′), `′ > `. Since a MExp does not enter a cell containing another
MExp, it follows that ei will not overtake ej as long as both are MExps, but
rather pass over its north-Guide after ej has already started exploring its next
level. Therefore, explorer ei will have to pass the north-Guides of all other search
teams before it gets to its next explored level, which completes the proof as there
are k search teams in total. ut

It will sometimes be convenient to use the notation p∗a for the canonical path
p∗i,ρ when agent a is the ρ-agent of search team si. The key to Lemma 4’s proof
is the observation that since MExps do not overtake each other, the explorers
maintain a cyclic order between them in terms of the levels they explore. The
exact same argument can be applied to the guides, concluding that the agents
of a search team “stick together” throughout the execution.

Corollary 5. The agents that were emitted from the origin as guides of search
team si serve as Guides in levels ` = z · k + i for z = 0, 1, . . .

Preventing dead/live-locks. We now turn to prove that RS does not run into
deadlocks. Recall that during the execution of RS, agents often wait for other
agents to complete some task before they can proceed. In particular, we say
that agent a is delayed by agent a′ at time t, denoted a →t a

′, if at time t,
a is positioned in some cell c and resides in some state q and the RS strategy
dictates that a can neither leave cell c nor move to any state other than q until
a′ performs some action in cell c that may take the form of entering cell c,
leaving cell c, or moving to some state within cell c. For example, a guide in
an axis cell c is delayed by its corresponding explorer until the latter reaches c.
Another example is an explorer which is delayed by its scout in some north-west
quarter-plane cell (x, y), while the latter is delayed until the explorer exploring
the previous level leaves cell (x, y− 1). To avoid the necessity to account for the
scouts, we extend the definition of delays in the context of the correctness proof,
allowing for agent a in cell c to be delayed by agent a′ in a neighboring cell c′ if
a is actually delayed by its scout in c who is delayed by a′ in c′.

Let Dt be the directed graph that corresponds to the binary relation→t over
the set of agents. We prove that RS does not run into deadlocks by establishing
the following lemma.

Lemma 6. The directed graph Dt does not admit any (directed) cycle at all
times t.

Proof. Consider a snapshot of the agents’ states and positions at time t. Exam-
ining the RS strategy, one realizes that the outermost MExp and MGuides are
not delayed by any other agent and that the ith outermost MExp and MGuides
can only be delayed by the (i − 1)th outermost MExp and MGuides. The inner-
most Exp e is not delayed by any agent as long as it is not in an axis cell. In an
axis cell, e can only be delayed by the corresponding guide. An innermost guide
in cell c is delayed by its corresponding explorer until the latter reaches cell c
and since then, it can only be delayed by the corresponding innermost MGuide.
Non-innermost Exp and Guides in level ` can only be delayed by the Exp and
Guides in level `− 1 or by the MExps and MGuides. The assertion follows. ut

The following corollary is derived due to Lemma 6 since there is a constant
number of state transitions an agent positioned in cell c can perform before it
leaves cell c.

Corollary 7. Agent a reaches cell p∗a(i) within finite time for every i ≥ 1.

Since the canonical path p∗a contains infinitely many different nodes for every
agent a, we can deduce from Corollary 7 that RS does not run into livelocks,
thus establishing the following theorem.

Theorem 8. The cell containing the treasure is explored in finite time.

2.3 Runtime Analysis

For the sake of a clearer run-time analysis, we analyze RS employing an ideal
emission scheme with emission function fn(t) = Ω(t), i.e., a new search team is
emitted from the origin every constant number of time units. We do not know
how to implement such a scheme, but in Section 3, we will describe an emission
scheme with an almost ideal emission function of fn(t) = Ω(t − logn) and in
Section 4, we will show how to compensate for the gap.

Our proof consists of two parts. First, we analyze the run-time of RS assuming
a “synchronous” adversarial policy ψs, where ta(i) = i for all a and i. Then, we
lift this assumption by showing that ψs is actually the worst case policy. We
start with the following lemmas.

Lemma 9. Under ψs, we have tM`+1 − tM` ≥ 4 and tS`+1 − tS` ≥ 4.

Proof. By Observation 1, we know that a search in level ` + 1 cannot finish
before a search in level `. By construction of the algorithm, e`+1 cannot become
a MExp in level `+ 1 before time tM` + 4, hence tM`+1 − tM` ≥ 4.

Consider the two explorers e`+1 and e` exploring levels `+1 and `, resp. The
design of the emission process and the inequality tM`+1− tM` ≥ 4 imply that when
e`+1 and e` were MExps, they had a distance of at least 3 with e`+1 being closer
to the origin. As e`+1 has to walk to level `+ 1 to start a search and e` only to
level `, the claim holds. ut

Lemma 10. Under ψs, the explorer of search team si is not delayed after time
tMi .

Proof. Recall that tMi is the time when the Exp of search team si turns into a
MExp after search level i in the first stage of the algorithm. By Lemma 9, we
know that after time tMi , the distance between any two MExps at least 3 and
hence, they cannot delay each other. It is easy to see that under ψs, an Exp
never has to wait for the Guide of the next level in order to leave an axis and
thus cannot be delayed by a Guide. Since tS`+1 − tS` ≥ 4, two Exps of adjacent
levels can never delay each other either. ut

Lemma 11. Under ψs, we have tF` ∈ O(`+ `2/n) for any level ` > 0.

Proof. Consider level ` ≤ k and recall that this level will be searched by the `th

search team s`. Let t` be the time at which s` is emitted from the origin and
note that fn guarantees t` ∈ O(`). Observe that no delays can occur during the
first stage. Hence, s` reaches level ` after time O(`), visits the 8` cells to explore
level ` in time O(`) and thus guarantees tF` ∈ O(`). Moreover, since the last
team is emitted from the origin by time O(k) and at this time, all search teams
are positioned in the first k levels, it follows that each search team si starts its
second stage by time O(k), that is, tMi = O(k).

Consider now level ` > k. Assume wlog. that level ` is explored by search
team i and let e be the explorer of that search team. Lemma 4 guarantees that e
moves along its canonical path p∗e. Let π be the canonical path p∗e truncated after
the exploration of level `. Combining Lemma 10 with the fact that tMi = O(k),
and recalling that ` > k = Ω(n), it suffices to show that the length of π (in
hops) is |π| = O(`2/k).

To that end, we write |π| = mm +mx, where mm is the number of hops in π
that e performs as a MExp and mx is the number of hops in π it performs as an
Exp. The design of RS ensures that mm = O(`) which is O(`2/k) as ` > k. Since
e is part of si, we know that mx =

∑b`/kc
z=0 8(i+ zk) = O(`2/k), which yields the

assertion. ut

We now turn to show that the run-time of RS under any adversarial policy ψ is
at most the run-time under ψs. By definition, policy ψs maximizes the length of
the time between consecutive completion times of the agents’ steps. Informally,
we have to prove that by speeding up some agents, the adversary cannot cause
larger delays later on.

To that end, consider two agents a and a′ and recall that Lemma 4 guarantees
that they follow the canonical paths p∗a and p∗a′ , resp., regardless of the adversar-
ial policy. The agents can delay each other only when they are in the same cell,
so suppose that there exist two indices i and i′ such that p∗a(i) = p∗a′(i′) = c.

Given some adversarial policy ψ, let tψin(a) (resp., tψin(a′)) be the time at which
agent a (resp., a′) enters c in the step corresponding to p∗a(i) (resp., p∗a′(i′)) under
ψ and let tψout(a) (resp., tψout(a′)) be the time at which agent a (resp., a′) exits
c for the first time following tψin(a) (resp., tψin(a′)) under ψ. The key observation
now is that the adversarial policy does not affect the order in which a and a′

enter/exit cell c.

Observation 12. For every two adversarial policies ψ1, ψ2, we have tψ1
in (a) <

tψ1
in (a′) if and only if tψ2

in (a) < tψ2
in (a′) and tψ1

out(a) < tψ1
out(a′) if and only if

tψ2
out(a) < tψ2

out(a′).

Therefore, the adversary may decide to modify its policy relatively to ψs by
speeding up some steps of some agents, but this modification cannot delay the
progression of the agents along their canonical paths. Corollary 13 now follows
from Lemma 11.

Corollary 13. Under any adversarial policy, tF` ∈ O(` + `2/n) for any level
` > 0.

3 An Almost Optimal Emission Scheme

We introduce the emission scheme PTA (ParallelTeamAssignment) that w.h.p.
guarantees an emission function of fn(t) = Ω(t− logn). In Section 4, we describe
the search strategy GS (GeometricSearch), that yields an optimal run-time of
O(D + D2/n) when combined with RS. The main goal of this section is to
establish the following theorem.

Theorem 14. Employing the PTA emission scheme, RS locates the treasure in
time O(D +D2/n+ logn) w.h.p.

Our first goal is to describe the process FS (FastSpread), where n agents spread
out along the east ray R consisting of the cells (x, 0) for x ∈ N>0 such that
each cell in some prefix of R is eventually assigned to a unique agent. The main
idea behind the implementation of FS is that on every step, agent a throws a
fair coin and moves outwards (towards east) if the coin shows heads and stays
put otherwise. If a senses that it is the only agent occupying cell c, then it
marks itself as ready and stops moving; cell c is also said to be ready following
this event. Furthermore, when a walks onto a ready cell, it moves outwards
deterministically.

To prevent any cell from becoming empty, the agents employ a mechanism
that ensures that at least one agent stays put in each cell. To implement this
mechanism, the agents decide in advance, i.e., in step i, if they want to move in
step i+ 1 and report their decision to the other agents. In other words, an agent
a throws a coin in step i and enters a state H or T that correspond to throwing
heads or tails, resp. Then, a moves outwards in step i+1 if and only if it entered
state H in step i and if it senses at least one other agent in state T . Informally,
a only moves if at least one other agent has promised to stay put next time it
acts.

Next, we show that the protocol works correctly, i.e., no cell in the prefix
of R will become empty before getting ready. Suppose for contradiction that
there is a cell c, such that c becomes empty at time t. Let a be an agent and
i a step of a such that for all agents a′ in cell c and all steps j, it holds that
ta′(j) ≤ ta(i) < t. In other words, no agent in c changes its state during time

ta(i) < t′ < t. According to the design of our protocol, a must sense some
other agent a′ in state T precisely at time ta(i). Since a′ does not wake up after
ta(i) and before t, it follows that a′ resides in state T at time t, which is a
contradiction.

Lemma 15. For every positive integer s ≤ 16n, the first s/16 cells of the ray
R are ready after s+O(logn) time units w.h.p.

Proof. Let Xa be the random variable that counts the number of moves a non-
ready agent a made outwards by time s ≤ 16n. Unfortunately, the moves that a
makes are not independent of the previous moves. Therefore, we study a weaker
probabilistic process, where the number of a’s moves dominates Xa. Assume
that a occupies cell c at time ta(j) and let a0, a1, . . . , az−1 denote the set of
non-ready agents that occupy cell c at time ta(j). In the weaker process, a = ai
only moves in step j + 1 if ai+1 (index arithmetic in this proof is modulo z) is
in state T and a is in state H at time ta(j) or if there is a ready agent in c.

Let j′ be the last step ai+1 performs before ta(j). The probability that ai+1
enters state T in step j′ is 1/2. In addition, the probability that ai enters H in
step j is 1/2 and therefore, the probability of ai actually moving towards east in
step j+1 is at least 1/4 in the weaker process. Since we want to count movements
of ai that are independent of the previous movements, we divide the execution
of FS into intervals of 2 time units. Now the last step that ai executes in the
end of each such interval only depends on the previous step that ai+1 executed.
Since every agent wakes up at least once per time unit, both of these steps are
unique for every interval and, in particular, independent of the previous time
intervals.

Let X ′a be the random variable that counts the number of moves a made
east in the weaker process conditioned on the event where a is not ready by
time s+O(logn). Since the coin tosses made in each step are independent and a
moves towards east each 2 time units with probability at least 1/4, we get that
E[X ′a] ≥ (1/2) · (1/4) · (s+O(logn)). By applying a Chernoff bound we get that
P (X ′a < 1/2 ·E[X ′a]) ∈ O(n−h) for a choosable constant h > 0. Since Xa ≥ X ′a,
any agent a that is not ready by time s+O(logn), the distance to the origin is
at least s/16 w.h.p. ut

Intuitively, the aforementioned process can be seen as parallel leader election.
Since we want to describe an efficient emission scheme, it remains to show how
the process can be used to quickly emit search teams consisting of five agents
with their respective Scouts from the origin. To enable the FS procedure to elect
ten different kinds of agents per search team, we dedicate every tenth cell to
a specific kind of agent. As an example, every cell in distance d ≡ 1 (mod 10)
is dedicated to an Exp. After an Exp is alone in a cell using the FS procedure
described above, it collects its search team in the following manner: it first takes
one step east where a leader election for the Scout dedicated to it takes place.
If the corresponding cell is occupied by a Scout that is marked ready, they both
move outwards to collect the next agent. Otherwise, the Exp waits until the
leader election is over. After the Exp (accompanied by the collected Guides and

Scouts) collected all agents needed for the search team, the team walks to the
origin from where it will then be emitted into the four cardinal directions. We
refer to the FS protocol combined with the collection of the agents as PTA.

In addition, we always keep track of the innermost search team in the fol-
lowing way. We flag the agents in the leftmost cell that has not been collected
as the innermost agents. Every time an agent moves out of the innermost cell
with a coin toss, this flag is turned off. In addition, when the Exp collects its
search team, it performs one additional move outwards to flag the cell where the
Exp for the next team is elected as the innermost. An Exp only starts collecting
its search team after it has been flagged as the innermost agent. This way we
know that the closer the team is elected to the origin, the earlier it starts moving
towards the origin. The use of the grid by the PTA is illustrated in Figure 3.

O E G GE

︸ ︷︷ ︸
n

. . .

1 2 3 4

432

H H GG H. . .

987

987 10

11

Fig. 3. First, the n agents executing the PTA protocol form a ray of single agents in
cells (0, 1), . . . (0, n). After the innermost Exp e in cell (0, 1) (denoted with red circle) is
ready, it starts collecting its search team. Assuming that all the agents to join its search
team are ready, after at most ten time units, e has collected all the agents needed for
its search team. Then in at most two more time units, e flags the Exp of the next team
as innermost.

Similarly as in the RS protocol, every agent a always checks with its Scout
before moving that the next cell is not occupied by an agent of the same type
to prevent a from overtaking any of the other agents. Given that the agents
never overtake or pass other agents, we observe that the canonical path p∗a for
any agent is fixed, i.e., is independent of the adversarial policy, starting from
the time when a becomes ready. Furthermore, under ψs, all agents in a single
team enter the origin simultaneously and PTA provides a spacing of more than
6 between emitted teams.

Lemma 16. Assume that n agents start executing PTA protocol in round 0.
Then at least bmin{s, n}/10c search teams have entered the origin by time 17s+
O(logn) w.h.p.

Proof. By Lemma 15, the first s cells are ready w.h.p. by time t′ = 16s+O(logn),
which indicates that the agents in these cells are ready to perform their collection
process latest at time t′. In addition, in each time unit after t′, the Exps occupying
one of the first s cells moves east unless they have already collected their teams.
Therefore, latest at time 16s+O(logn) + 10 = t, all full teams within the first
s cells have been collected after which they start moving towards the origin.

Let a1, . . . , am denote the non-Scout agents of some type, say Exps, within
the first s cells. We first observe that after ai has moved 10i times after being
collected, it reaches the origin. Next, we point out that obeying a synchronous
schedule, no agent ever gets blocked by the other agents. Assume that agent ai
is blocked by ai−1 from entering cell c. This indicates that ai has made more
than 1 move per time unit. Furthermore, ai is able to move to c without blocks
latest when it would have moved to c according to the synchronous schedule.

It follows that all agents from any team ei reaches the origin latest when they
would reach the origin according to the synchronous schedule. Since performing
10i moves takes 10i time units in the synchronous schedule, all agents in team
em will reach the origin latest at time t+ 10m ≤ t′ + s ≤ 17s+O(logn). ut

By Lemma 16, the emission function fn(t) provided by the PTA protocol satisfies
fn(t) = Ω(t− logn) and therefore, Theorem 14 follows.

4 Optimal Rectangle Search

In this section, we will present the search strategy HybridSearch that locates the
treasure with optimal run-time of O(D+D2/n). This is achieved by, combining
RS employing the PTA with the randomized search strategy GS that is fast only
if the treasure is close to the origin.

The search strategy GS is suited to locate the treasure very quickly if it is
located close to the origin, more precisely if D ≤ log(n)/2. Initially, each of the
n agents chooses uniformly at random one of the four quarter-planes that it will
be searching. We will explain the strategy exemplary for an agent “responsible”
for the north-east quarter-plane. The other three types operate analogously in
their respective quarter-plane.

Initially, the agent moves one cell to the east. From then on, it moves a
geometrically distributed number of steps east following which it moves a geo-
metrically distributed number of steps to the north. More precisely, with prob-
ability 1/2 the agent moves further and otherwise stops walking in the current
direction. Both these processes can be realized in our model by having two state
transitions where one of them moves the agent further while the other one ends
the current walk. Either of the two transitions is chosen uniformly at random
and a walk of geometrically distributed length is obtained.

Lemma 17. If D ≤ log(n)/2, then GS locates the treasure in time O(D) w.h.p.

Proof. Consider some cell c at distance d ≤ log(n)/2 from the origin and fix
some agent a. Let Xa be a random variable that captures the length of the walk
of agent a and observe that Xa obeys a negative binomial distribution so that

P (Xa = k) = (k + 1) · 2−(k+2) .

Recalling that a has already moved one step, we conclude that the probability
that a moves up to distance d is

P (Xa = d− 1) = d · 2−d−1 ≥ 2−d−1 = Ω(1/
√
n) .

Since all cells at distance d from the root have the same probability of being
explored by a and since there are O(logn) such cells, it follows that a explores
cell c with probability at least Ω

(
1√

n logn

)
. Therefore, the probability that none

of the agents explores cell c is at most(
1−Ω

(
1√

n logn

))n
< e
−Ω
(√

n
log n

)
.

The assertion follows. ut

We can now combine the two search strategies GS, which is optimal for D ≤
log(n)/2, and RS employing PTA, which is optimal for D = Ω(logn), into the
HybridSearch strategy as follows.

At the beginning of the execution, each agent tosses a fair coin to decide
whether it participates in RS or GS. Let nr and ng be the number of agents
participating in RS and GS, resp. and observe that nr, ng ≥ n/3 w.h.p. Then
the agents enter according states so that they do not interfere with each other
anymore. One group executes GS and locates the treasure w.h.p. in time O(D)
if D ≤ log(n)/2 and the other group executes RS locates the treasure w.h.p. in
time O(D +D2/n) if D = Ω(logn), thereby establishing Theorem 18.

Theorem 18. HybridSearch locates the treasure in time O(D +D2/n) w.h.p.

References

1. Albers, S., Henzinger, M.: Exploring Unknown Environments. SICOMP, 2000
2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random Walks,

Universal Traversal Sequences, and the Complexity of Maze Problems. In: SFCS,
1979

3. Alon, N., Avin, C., Koucky, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many Random
Walks are Faster Than One. In: SPAA, 2008

4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
Networks of Passively Mobile Finite-State Sensors. Distributed Computing, 2006

5. Aspnes, J., Ruppert, E.: An Introduction to Population Protocols. In: Middleware
for Network Eccentric and Mobile Applications.

6. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. In-
formation and Computation, 1993

7. Deng, X., Papadimitriou, C.: Exploring an Unknown Graph. JGT, 1999
8. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree Exploration with Little

Memory. Journal of Algorithms, 2004
9. Emek, Y., Wattenhofer, R.: Stone Age Distributed Computing. In: PODC, 2013

10. Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized Collaborative
Search and Implications for Biology. In: DISC, 2012

11. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the
Plane Without Communication. In: PODC, 2012

12. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph Exploration by a
Finite Automaton. TCS, 2005

13. Förster, K.T., Wattenhofer, R.: Directed Graph Exploration. In: OPODIS, 2012

14. López-Ortiz, A., Sweet, G.: Parallel Searching on a Lattice. In: CCCG, 2001
15. Panaite, P., Pelc, A.: Exploring Unknown Undirected Graphs. In: SODA, 1998
16. Prabhakar, B., Dektar, K.N., Gordon, D.M.: The Regulation of Ant Colony For-

aging Activity Without Spatial Information. PLoS Computational Biology, 2012
17. Reingold, O.: Undirected Connectivity in Log-Space. JACM, 2008

