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Abstract

In this paper we study the NP-complete problem of finding

small k-dominating sets in general graphs, which allow k−1

nodes to fail and still dominate the graph. The classic

minimum dominating set problem is a special case with

k = 1. We show that the approach of having at least k

dominating nodes in the neighborhood of every node is not

optimal. For each α > 1 it can give solutions k
α

times larger

than a minimum k-dominating set. We also study lower

bounds on possible approximation ratios. We show that

it is NP-hard to approximate the minimum k-dominating

set problem with a factor better than (0.2267/k) ln(n/k).

Furthermore, a result for special finite sums allows us to use

a greedy approach for k-domination with an approximation

ratio of ln(∆ + k) + 1 < ln(∆) + 1.7, with ∆ being the

maximum node-degree. We also achieve an approximation

ratio of ln(n) + 1.7 for h-step k-domination, where nodes do

not need to be direct neighbors of dominating nodes, but

can be h steps away.

1 Introduction

Imagine you are tasked to manually upgrade a set of
nodes as cluster-heads in a wireless sensor network, i.e.,
every node is either a cluster-head or has one as a
neighbor. An example could be increased storage or
an enhanced battery. Upgrading every node would be
expensive, so you just choose a set as small as possible.
But due to environmental conditions, sometimes a node
is no longer available to its neighborhood. You could
counter this by picking at least k cluster-heads in the
neighborhood of each location. Of course this costs
more, but now k − 1 nodes could be cut off from their
surroundings and still every node is covered. However
this somehow feels ineffective. If a cluster-head is
cut off, then why should it need k − 1 additional
cluster-heads in its neighborhood? We show that this
observation saves up to a multiplicative factor of k/α in
the number of needed cluster-heads, for every α > 1.

Similar domination problems and its various appli-
cations have been extensively studied in the literature
for over 60 years [13, 14], with a more recent focus on
distributed computing [21, 23]. In the subsequent rise
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of wireless sensor networks, fault-tolerance has become
a desirable property [18], especially for dominating sets
[22, 28]. The failure of a single node should not be able
to destroy the domination property and a fault-tolerant
dominating set should be as small as possible. Many
results have been published using unit disk graphs as a
model, where two nodes are connected iff their distance
is at most one. However, it is already NP-hard to just
decide if a graph G = (V,E) is a unit disk graph [5].
Even adding further information like edge lengths does
not help, we refer to [20, pp. 30–33] for an overview.
Unit disk graphs also cannot cope well with restrictions
from the real world, like obstacles [24]. On the other
hand, unit disk graphs allow for strong theoretical re-
sults, e.g., [2]. In some sense, we choose the other end
of the spectrum, by studying general graphs.

More classical applications arise in operations re-
search: Choose a minimum number of service facilities
so that each region is served by its own facility or has
at least k neighboring regions with such a facility [15].
This problem is known as the k-dominating set problem
[10]: Given a graph G = (V,E) and a parameter k ∈ N,
find a small set of nodes Dk, so that even after the re-
moval of any k−1 nodes from G, every node is in Dk or
has a neighbor in Dk. A set Dk of minimum cardinality
is called a minimum k-dominating set. This problem is
NP-complete [16], so finding an optimal solution seems
out of the question, unless P=NP.

We shortly give some central notations: A mini-
mization problem has an approximation threshold of at,
if no polynomial time algorithm exists, that can always
guarantee a solution of at most at times the size of an
optimal solution, unless P=NP (see for example [29,
Chapter 13]). An approximation algorithm has an ap-
proximation ratio of ar for a minimization problem, if it
can always compute in polynomial time a solution that
is at most ar times the size of an optimal solution. We
will also assume that graphs G = (V,E) are connected,
undirected and have |V | = n nodes with a maximum
node-degree of ∆.

We show that a greedy approach (Section 5) for
the minimum k-dominating set problem leads to an
approximation ratio of ln(∆ + k) + 1 < ln(∆) + 1.7
(Section 7). To obtain this result we prove a result
for special finite sums in Section 6. We also show



that this upper bound is almost tight, by giving an
approximation threshold of (0.2267/k) ln(n/k) (Section
4). We extend this upper bound of ln(n) + 1.7 for
fault-tolerant dominating sets for the related problem
of domination with a higher range than just the 1-step
neighborhood (see Section 8).

Following the notation of Hage and Harary, this
range-extension is called h-step domination [12]. Going
back to the example of cluster-heads, if a node is allowed
to be one step away, then why not extend this to h
steps, as long it is still reachable even if k − 1 nodes
fail? More practical applications of this concept arise in
distributed data structures, sparse routing tables and
server placement in networks [3, 25].

Combining fault-tolerance and extended range
gives the possibility of computing a good solution
for the specifications of a real-world network: How
large should the domination range be? How many
nodes are allowed to fail? An algorithm designer can
now parameterize these domination properties and
still achieve almost tight approximation bounds of
ln(n) + 1.7 for the desired solution.

2 Related Work

A linear time algorithm exists for the minimum k-
dominating set problem on block graphs [15]. For the
special case of unit disk graphs, various approximation
results exist, see for example [8, 22, 31]. In this spe-
cific graph model, a unit disk can contain at most five
independent nodes, which leads to a constant approx-
imation ratio for the minimum dominating set prob-
lem [27]. The LP-based algorithm in [22] for approx-
imating minimum k-dominating sets can be extended
to general graphs, giving an approximation ratio of
(e2 + e) ln(∆) > 10 ln(∆).

A related problem is the minimum k-tuple dominat-
ing set problem in graphs with minimum degree k − 1,
which demands that all nodes are dominated by at least
k nodes. This requires that all nodes in the k-tuple
dominating set are connected to at least k − 1 other
nodes in the k-tuple dominating set. This problem is
NP-complete as well [26]. Approximation algorithms
and hardness results for k-tuple domination for general
graphs have not been known before the paper of Klas-
ing and Laforest [19], even though many other results
are known for k-(tuple)-domination, see [6]. In [19] the
authors approximate the k-tuple dominating set prob-
lem with an approximation ratio of ln(n) + 1 with an
algorithm for a version of set cover, where each set has
to be covered k times. This specific technique cannot
be applied to the k-dominating set problem, as nodes
in the k-dominating set only require to be ”covered”

once. But since every k-tuple dominating set is also a k-
dominating set, one could search for small k-dominating
sets in many cases by searching for small k-tuple dom-
inating sets. In Section 3 we show that this approach
is not optimal. For each α > 1 it can give solutions k

α
times larger than a minimum k-dominating set.

We also note that in some works the notion of k-
domination is used for different problems, like k-tuple
domination. In this paper we follow the notation of
Haynes, Hedetniemi and Slater from [14, Chapter 7.1].
In [25] the notion of k-domination is used for h-step
domination: Kutten and Peleg give in [25] a distributed
approximation algorithm for h-step domination with
nearly optimal runtime. Furthermore, a greedy central-
ized algorithm gives an approximation ratio of ln(n)+1
for h-step 1-domination, e.g. again in [25].

Another different but related problem is the
B-domination problem, where each node must have
at least B facilities in its neighborhood – but it is
allowed to place multiple facilities on the same node [30].

3 Comparing the Size of k-Dominating Sets
and k-Tuple Dominating Sets

From the definition it follows that for each graph G
with minimum degree k − 1 the size of a minimum k-
dominating set is at most the size of a minimum k-tuple
dominating set. We prove the possiblity that it also can
be nearly k times smaller:

Theorem 3.1. Let k ∈ N and let α ∈ R satisfying

1 < α < k. Then for every n ∈ N with n ≥ k−1+ (k+1)2

α−1 ,
there exists a graph G with n nodes for which the size of
its minimum k-tuple dominating set is at least k

α times
as large as the size of its minimum k-dominating set.

Proof. Let k,m ∈ N with k ≤ m, we construct a
tripartite undirected graph G(K,M,MK ) with n = k +

m+
⌈
m
k

⌉
≥ 2k+ 1 nodes as follows (see Figure 1 for an

example):

• we construct three independent sets K,M, MK with

|K| = k, |M | = m and
∣∣M
K

∣∣ =
⌈
m
k

⌉
• we connect every node from K with every node

from M

• we connect
⌈
m
k

⌉
−1 nodes from M

K with
(⌈
m
k

⌉
− 1
)
k

nodes from M , so that no two nodes from M share
a common neighbor in M

K

• if
⌈
m
k

⌉
= m

k , then connect the last remaining

unconnected node from M
K with the last k nodes

from M that are not yet connected to nodes from
M
K



• else connect the last remaining unconnected node
from M

K with the m − (
⌈
m
k

⌉
− 1)k nodes that are

not yet connected to any nodes from M
K and also

connect it with k−
(
m− (

⌈
m
k

⌉
− 1)k

)
other random

nodes from M
K , so that it is connected to exactly k

nodes from M
K .

In G(K,M,MK ) the nodes from K and M
K form a k-

dominating set. For a k-tuple dominating set, one needs
at least m nodes to k-dominate the nodes in M

K . It
follows that the quotient between the size of a minimum
k-tuple dominating set and a minimum k-dominating
set for a graph G(K,M,MK ) is at least m

k+dmk e
≥ m

k+m
k +1 =

m
k2+m+k

k

= mk
k2+k+m . For a given α > 1, we want that

quotient to be ≥ k
α , i.e., mk

k2+k+m ≥
k
α ⇔

k2+k+m
m ≤

α ⇔ k2 + k + m ≤ m + (α − 1)m ⇔ k2+k
α−1 ≤ m.

Now we can calculate for given α, k a number of nodes
nα,k ∈ N, so that for every n ≥ nα,k, n ∈ N there exists
a graph G(K,M,MK ) with n nodes where the minimum

k-tuple-dominating set is at least k
α times as large as

the minimum k-dominating set: The number of nodes
in G(K,M,MK ) is n = m + k +

⌈
m
k

⌉
. It follows that

n + 1 ≥ m + k + m
k . To calculate nα,k, we can

now substitute m with k2+k
α−1 since k2+k

α−1 ≤ m and get

nα,k + 1 ≥ k2+k
α−1 + k +

k2+k
α−1

k = k2+k
α−1 + k + k+1

α−1 =
k2+2k+1
α−1 +k ⇔ nα,k ≥ k2+2k+1

α−1 +k−1 = k−1 + (k+1)2

α−1 .

�

Furthermore, Theorem 3.1 is sharp in the sense that the
lower bound α > 1 cannot be improved:

Lemma 3.1. Let the graph G have a k-dominating set
D and let each node of G have at least degree k − 1.
Then there exists a k-tuple dominating set DT with size
|DT | ≤ k|D|.

Proof. We start with an empty set DT and add all nodes
from D to DT . Then we take each node v ∈ DT and
add neighbors of v in V to DT until v has k neighbors
in the DT . One needs at most k−1 nodes for each node
from the k-dominating set D to do so, since a node is
also its own neighbor. The nodes of G originally not in
D are already dominated k times by the definition of a
k-dominating set. The resulting k-tuple dominating set
DT therefore is at most k times as large as the original
k-dominating set D. �

Using Lemma 3.1 we immediately obtain a bound
for the approximability of the minimum k-dominating
set problem in relation to the approximability of the
minimum k-tuple dominating set problem:

K

M

M
K

Figure 1: An example for the Graph G(K,M,MK ) with

|K| = k = 2, |M | = m = 9 and
∣∣M
K

∣∣ =
⌈
m
k

⌉
=
⌈

9
2

⌉
= 5,

which results in n = 16 nodes in total. Each node from
K is connected to each node from M and each node
from M

K is connected to k = 2 different nodes from M ,
except for the most left one which shares one neighbor
in M with the node next to it. In this example, K and
M
K form a k-dominating set with k +

⌈
m
k

⌉
= 2 + 5 = 7

nodes. On the other hand, every k-tuple dominating set
needs to dominate each node from M

K at least k times.
This means a minimum k-tuple dominating set contains
at least |M | = m = 9 nodes. Similar graphs can be
constructed for fixed k by chosing an arbitrarily large
m.

Theorem 3.2. Let k ∈ N and let G = (V,E) with
|V | = n. If s(n) is an approximation threshold for
the minimum k-tuple dominating set problem, then
1
ks(n) is an approximation threshold for the minimum
k-dominating set problem.

Proof. Consider the family of graphs with minimum de-
gree k − 1. If there is an approximation threshold of
1
ks(n) for the minimum k-dominating set problem on
this family of graphs, then it also applies to general
graphs. Let us assume there exists a polynomial ap-
proximation algorithm for the minimum k-dominating
set problem with approximation threshold of 1

ks(n) for
this family of graphs. Then we could construct a k-tuple
dominating set from it with at most k times its size.
But this is a contradiction to the existence of an ap-
proximation threshold of s(n) for the minimum k-tuple
dominating set problem. �

4 Lower Bounds for Approximating the
Minimum k-Dominating Set Problem

At first we prove a theorem that allows us to transfer ap-
proximation thresholds from the minimum dominating
set problem to the minimum k-dominating set problem.
We can then use this Theorem 4.1 to apply the best
threshold known to us for the minimum dominating set
problem to the minimum k-dominating set problem in
Corollary 4.1:



Theorem 4.1. For k ∈ N and arbitrary G = (V,E)
with |V | = n: If there is an approximation threshold of
s(n) for the minimum dominating set problem for G,
then there is also an approximation threshold of 1

ks
(
n
k

)
for the minimum k-dominating set problem for G.

Alon et. al. proved in [1] that it is NP-hard to approxi-
mate the minimum set cover problem within an approx-
imation ratio of 0.2267 ln(n). Also, the minimum set
cover problem is equivalent to minimum dominating set
problem under L-reduction, which means here that each
instance of each problem can be turned in polynomial
time into an equivalent instance of the other problem,
see [4][17, pp. 108–109]. Now we can directly derive the
following new lower bound:

Corollary 4.1. For k ∈ N and arbitrary G = (V,E)
with |V | = n: it is NP-hard to approximate the mini-
mum k-dominating set problem within

(4.1)
0.2267

k
ln
(n
k

)
.

For ease of notation in the proof of Theorem 4.1, we
first introduce the concept of a k-multiplication graph
Gk, see Figure 2 for an example. We will use this graph
to transfer the approximation thresholds:

Definition 4.1. Let k ∈ N, G = (V,E). Let Kk =
(Vk, Ek) be the complete graph with k nodes. The
k-multiplication graph Gk = (V k, Ek) is defined as
follows:

1. V k is the cartesian product V × Vk

2. Two nodes (u1, u2) and (v1, v2) are adjacent iff

(a) u1 ∈ V and v1 ∈ V are adjacent in G

(b) or u1 = v1 with u1 ∈ V and v1 ∈ V

G G3

Figure 2: An example for the k-multiplication Graph
Gk with k = 3.

In other words Gk is being constructed by replacing
every node of V with a clique of k nodes (see 1. and
2.(b) in Definition 4.1) and generating an edge between
nodes if and only if their “original” nodes in G were
neighbors (see 2.(a) in Definition 4.1). We can now
prove Theorem 4.1:

Proof. Let D be a dominating set for G = (V,E). Then
the set of nodes D×Vk is a k-dominating set for Gk. We
also note the property of |V k| = k|V |. Let D∗ be an op-
timal solution of the minimum dominating set problem
for G and let D∗k be an optimal solution of the minimum
k-dominating set problem for Gk. Then |D∗k| ≤ k|D∗|
holds.
Let us assume that there exists a polynomial approxi-
mation algorithm A for the minimum k-dominating set
problem with an approximation ratio of 1

ks
(
n
k

)
. Then it

follows from contradiction that the following algorithm
solves the minimum dominating set problem with an
approximation ratio of s(n):

1. Construct Gk

2. Generate a k-dominating set Dk of Gk with algo-
rithm A

3. Generate the set of nodes D ⊆ V as follows:
v ∈ D if u exists with (v, u) ∈ Dk

Gk has nk nodes, therefore the following inequality
holds:

(4.2) |Dk| ≤
1

k
s

(
nk

k

)
|D∗k| =

1

k
s(n)|D∗k| .

Furthermore it follows that D is a dominating set for G
with |D| ≤ |Dk| . But now we get a contradiction by
applying (4.2): |D| ≤ s(n)|D∗| . �

5 A Greedy Approach to k-Domination

Before giving an approximation algorithm, we first need
two definitions that will play a central role in the
algorithm. They will define an appropriate measure how
to select the next node in a greedy fashion:

Definition 5.1. Let G = (V,E) be a graph, D ⊆ V be
a set of nodes and k ∈ N. The degree of k-domination
of a node v ∈ V by D is defined as:

(5.1) dk (v,D) =

 min (k, |N(v) ∩D|) , if v /∈ D

k , if v ∈ D

This means that dk is k if v is in D or the amount
of neighbors in D otherwise, but limited to k. If the
relation to D or v is not clear from the context, we will
use the notation of dk(v,D) or dk(v).

Definition 5.2. Let G = (V,E) be a graph, D ⊆ V be
a set of nodes and k ∈ N. The remaining cost a(G,D)
for k-domination is defined as:

(5.2) a (G,D) = nk −
∑
v∈V

dk (v,D) .



The remaining cost therefore is the difference between
the sum of all dk(v,Dk) for all nodes v ∈ V for a k-
dominating set Dk and the sum of all dk(v,D) for all
nodes v ∈ V for any set of nodes D ⊆ V :

(5.3) a (G,D) =
∑
v∈V

dk (v,Dk)−
∑
v∈V

dk (v,D) .

The following new algorithm generates a finite series
of sets of nodes Di

k with strictly monotone decreasing
remaining cost a(G,Di

k). The last element of the series
is a k-dominating set:

Algorithm 1. Greedy approximation for a k-
dominating set
Input: G = (V,E) and k ∈ N.
Output: k-dominating Set Dk.

1: Initialize D0
k = ∅ and i = 0.

2: Give all nodes their current degree of k-domination:
dk(v) = 0 for all v ∈ V .

3: while there are nodes v ∈ V with dk(v) < k do
4: Choose a node gi ∈ V, gi /∈ Di

k that reduces the
remaining cost a(G,Di

k

⋃{
gi
}

) in comparison to
a(G,Di

k) the most.
5: dk(gi) = k and Di+1

k = Di
k

⋃{
gi
}

.
6: Raise for all v′ ∈ N(gi) with dk(v′) < k the degree

of k-domination dk(v′) by one, i.e., dk(v′) =
dk(v′) + 1.

7: i = i+ 1.
8: end while
9: Dk = Di

k.
10: return Dk

The algorithm terminates correctly, since it adds nodes
to the set until all nodes are k-dominated. In the worst
case it will add all n nodes. The runtime is dominated
by the while loop, which is executed at most n times.
All steps in the while loop can be executed in O(n+|E|)
time, which results in a total runtime of O(n(n+ |E|)).
We will show in Section 7 that the Algorithm 1 has an
approximation ratio of ln(∆ + k) + 1 < ln(∆) + 1.7,
with ∆ being the maximum node-degree. For the
convenience of the reader, we split the proof and first
show a theorem for special finite sums in Section 6,
which will be used as a central argument in the proof.

6 A Helpful Lemma for Special Finite Sums

In order to prove upper bounds for the approximation
ratio of greedy algorithms for domination problems, sev-
eral authors (e.g., Guha and Khuller in [11]) have used
results for special finite sums for their investigations. In
this paper we will use the following estimation, which
we need for the proof of our main results in Section 7:

Lemma 6.1. Let r ∈ N with r > 1 and let
a1, a2, . . . , as ∈ N with

(6.1) aν ≥
1

r
(As −Aν−1) for ν = 1, 2, . . . , s ,

where the numbers A0, A1, . . . , As are defined by

(6.2) Aν =

ν∑
µ=1

aµ .

Then it follows that Aλ > As − r for

(6.3) λ >
ln
(
As
r

)
ln
(

r
r−1

) .

Remark 6.1. In Lemma 6.1 note that the following
rough estimation holds:

(6.4)
1

ln
(

r
r−1

) ≤ r(1− 1

2r

)
.

For the proof consider for real-valued r > 1 the
continuous function f defined by

(6.5) f(r) = ln

(
r

r − 1

)
− 1(

r − 1
2

) .
The value of f(r) tends to zero as r tends to infinity.
Since the first order derivative of f is smaller than zero
for r > 1, f is monotonically decreasing and therefore
f is positive in (1,∞).

We now prove Lemma 6.1:

Proof. Let b1, b2, . . . , bs be the real numbers defined by

(6.6) bν =
1

r
(As −Bν−1) for ν = 1, 2, . . . , s ,

where B0, B1, . . . , Bs are given by

(6.7) Bν =

ν∑
µ=1

bµ .

At first we prove by induction that

(6.8) Aν ≥ Bν for ν = 0, 1, . . . , s .

For ν = 0 we have A0 = B0 = 0. We assume that (6.8)
holds for a fixed ν < s:

(6.9) Aν = Bν + cν , cν ≥ 0 .

From (6.2), (6.7) and (6.9) it follows that
(6.10)
Aν+1 −Bν+1 = (Aν −Bν) + (aν+1 − bν+1)

≥ cν + 1
r (As −Aν) + 1

r (As −Bν)
= cν − 1

r (Aν −Bν) = cν
(
1− 1

r

)
≥ 0 .



Now we prove by induction that for each λ ≥ 1

(6.11) Bλ = As

(
1−

(
1− 1

r

)λ)
.

(6.11) is valid for λ = 1 since by (6.6) we have

(6.12) B1 = b1 =
1

r
As = As

(
1−

(
1− 1

r

))
.

Assuming the correctness of (6.11) for a fixed λ ≥ 1 we
obtain
(6.13)

Bλ+1 = Bλ + bλ+1 = Bλ + 1
r (As −Bλ)

=
(
1− 1

r

)
Bλ + 1

rAs

=
(
1− 1

r

)
As

(
1−

(
1− 1

r

)λ)
+ 1

rAs

= As

(
1−

(
1− 1

r

)λ+1
)
,

which proves (6.11) for each λ ≥ 1. Now with (6.8) and
(6.11) we consider the inequalities

(6.14) Aλ ≥ Bλ = As

(
1−

(
1− 1

r

)λ)
> As − r

where the second inequality is equivalent to the inequal-
ity

(6.15)

(
r

r − 1

)λ
>
As
r
,

which holds iff

(6.16) λ >

(
ln

(
As
r

))
/

(
ln

(
r

r − 1

))
.

This proves Inequality (6.3). �

7 Approximation Ratios for k-Domination

In this section we will prove the announced approxima-
tion ratio of ln(∆ + k) + 1 < ln(∆) + 1.7 < ln(n) + 1.7
for Algorithm 1. We first state an even stronger result
in Theorem 7.1 and then the above mentioned results
in Corollary 7.1 and 7.2. After that we prove Theorem
7.1 with the help of Lemma 6.1 from Section 6.

Theorem 7.1. Let k ∈ N and G = (V,E) with |V | = n.
Let r > 1 be the size of an optimal solution for the min-
imum k-dominating set problem for G. Then Algorithm
1 generates a k-dominating set with approximation ratio

(7.1)
ln
(
nk
r

)
r ln

(
r
r−1

) + 1 .

Remark 7.1. If we apply Equation (6.4) from Remark
6.1, then a rough estimation results in

(7.2)
ln
(
nk
r

)
r ln

(
r
r−1

) + 1 ≤
(

1− 1

2r

)
ln

(
nk

r

)
+ 1 .

One node can at most k-dominate itself and 1-dominate
all of its at most ∆ neighbors. Therefore nk

∆+k ≤ r ⇔
nk
r ≤ ∆ + k holds. With

(
1− 1

2r

)
< 1 we obtain:

Corollary 7.1. Algorithm 1 has an approximation
ratio of less than ln(∆ + k) + 1.

If we would set k > ∆, then each node of the graph
would need to be a part of the dominating set and
a greedy algorithm would find an optimal solution.
Therefore we can use the bound k ≤ ∆ for our upper
bound, which results in ln(∆+∆)+1 = ln(∆)+ln(2)+
1 < ln(∆)+1.7. Since ∆ ≤ n−1, the following corollary
holds:

Corollary 7.2. Algorithm 1 has an approximation
ratio of less than ln(∆) + 1.7 < ln(n) + 1.7.

We now prove Theorem 7.1:

Proof. Let us fix an arbitrary optimal solution of the
minimum k-dominating set problem for the input by
calling it D∗k. If we would set Di

k = Di−1
k ∪ D∗k, then

Di
k would be a k-dominating set with remaining cost

of domination of a(G,Di
k) = 0. It follows from the

pigeonhole principle that in the set of nodes D∗k\D
i−1
k ,

there is at least one node that reduces the remaining
cost a by a factor of 1

|D∗
k|

. Since the algorithm chooses

the node gi in a greedy fashion, it holds that

a(G,Di
k) =a(G,Di−1

k ∪
{
gi
}

)

≤a(G,Di−1
k )

(
1− 1

|D∗k|

)
.

(7.3)

We can now use Lemma 6.1 with r = |D∗k| and As =
nk to estimate after how many steps of the greedy
algorithm the remaining cost of domination is less than
|D∗k|. Since the cost is a natural number, the remaining
cost is then at most |D∗k| − 1. In the worst case, the
greedy algorithm will need to add |D∗k| − 1 more nodes
to achieve a remaining cost of 0. We can now combine
these arguments: If the Algorithm 1 has ended after s
steps, then we can bound s by

s ≤
{⌊(

ln

(
nk

|D∗k|

))
/

(
ln

(
|D∗k|
|D∗k| − 1

))
+ 1

⌋}
+ (|D∗k| − 1) .

(7.4)



Since we are looking for the approximation ratio, we
divide s by |D∗k|, which concludes the proof:
(7.5)
s

|D∗k|
≤
{(

ln

(
nk

|D∗k|

))
/

(
|D∗k| ln

(
|D∗k|
|D∗k| − 1

))}
+ 1 .

�

8 Domination with Extended Range

With the help of our Lemma 6.1 we can also apply the
general greedy approach from Algorithm 1 to domina-
tion with a range greater than one. All we need to
change are two things: The degree of domination d for
a single node from Definition 5.1 and the remaining cost
a for a domination from Definition 5.2. If the modified
greedy algorithm still runs in polynomial time, then we
still can achieve an approximation ratio of ln(n) + 1.7.

A node v is h-step dominated by a set Dh, if there
is a node in Dh at most h steps away from v. A h-step
k-dominating set Dh

k is a set of nodes, that remains a
h-step dominating set even if any k−1 nodes get deleted
from the graph.

However now k dominating nodes in the h-
neighborhood of v no longer guarantee that v /∈ Dh

k

will be h-step dominated if any other k−1 nodes fail. v
could have just one neighbor v′, who has k more neigh-
bors in the dominating set. If v′ fails, then v is no longer
2-step dominated. If there were k node disjoint paths
from v /∈ Dh

k to Dh
k (disjoint except for v), then any k−1

nodes could fail and v would still be h-step dominated.
This condition is not only sufficient, but also necessary:
If there were only k − 1 node disjoint paths, then there
would be k − 1 nodes whose removal would violate the
h-step domination property for v.

The checking for such k node disjoint paths of
length at most h to a set of nodes Dh

k can be performed
in a runtime of O(k|E|), see for example [7, 9]. For ease
of notation, we first define the number of node disjoint
paths from v to Dh

k :

Definition 8.1. Let G = (V,E) be a graph, Dh
k ⊆ V

be a set of nodes and h, k ∈ N. The set of node disjoint
paths (disjoint except for the start-node) of length at
most h from v to nodes in Dh

k in G is defined as
p(v, h,Dh

k , G).

We can now define the degree of domination dhk
and the remaining cost ahk in a similar way as in the
Definitions 5.1 and 5.2:

Definition 8.2. Let G = (V,E) be a graph, Dh
k ⊆ V

be a set of nodes and h, k ∈ N. The degree of h-step

k-domination of a node v ∈ V by Dh
k is defined as:

(8.1)

dhk
(
v,Dh

k

)
=

 min
(
k,
∣∣p(v, h,Dh

k , G)
∣∣) , if v /∈ Dh

k

k , if v ∈ Dh
k

This means that if a node fails that is not v and v ∈ Dh
k

holds, then v still dominates itself. Should any k − 1
nodes fail and v /∈ Dh

k holds, then there is at least one
path left from v to Dh

k . This degree of domination is
limited by k. We can now define the remaining cost:

Definition 8.3. Let G = (V,E) be a graph, D ⊆ V
be a set of nodes and h, k ∈ N. The remaining cost
ahk(G,D) for h-step k-domination is defined as:

(8.2) ahk (G,D) = nk −
∑
v∈V

dhk (v,D) .

Similar as before, the remaining cost ahk is the difference
between the sum of all dhk(v,Dh

k ) for all nodes v ∈ V
for a h-step k-dominating set Dh

k and the sum of all
dhk(v,D) for all nodes v ∈ V for any set of nodes D ⊆ V :

(8.3) ahk (G,D) =
∑
v∈V

dhk
(
v,Dh

k

)
−
∑
v∈V

dhk (v,D) .

We can now apply this to our greedy algorithm pre-
sented earlier:

Theorem 8.1. Let k, h ∈ N and G = (V,E) with |V | =
n. There exists a greedy algorithm for the minimum h-
step k-dominating set problem on G with approximation
ratio of ln(n) + 1.7.

Proof. If we modify Algorithm 1 with the Definitions
8.2 and 8.3 it still has a polynomial runtime. We use
basically the same proof as for Theorem 7.1 and Corol-
laries 7.1 and 7.2 for 1-step k-domination. However now
one node can k-dominate itself and its h-neighborhood,
instead of just the 1-neighborhood. If we define ∆h to
be the largest h-neighborhood of any node, then we can
bound the size of a optimal solution |Dh,∗

k | by

(8.4)
nk

∆h + k
≤ |Dh,∗

k | ⇔
nk

|Dh,∗
k |
≤ ∆h + k .

This yields an approximation ratio of ln(∆h + k) + 1 ≤
ln(n + k) + 1. We can bound k ≤ n, since else every
node would be a part of the dominating set and the
greedy algorithm would find an optimal solution. This
yields the desired approximation ratio of ln(n+n)+1 ≤
ln(n) + ln(2) + 1 < ln(n) + 1.7. �
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