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Abstract
Coalitional stability in hedonic games has usually
been considered in the setting where agent pref-
erences are fully known. We consider the setting
where agent preferences are unknown; we lay the
theoretical foundations for studying the interplay
between coalitional stability and (PAC) learning in
hedonic games. We introduce the notion of PAC
stability — the equivalent of core stability under
uncertainty — and examine the PAC stabilizability
and learnability of several popular classes of hedo-
nic games.

1 Introduction
Hedonic games [Drèze and Greenberg, 1980] are often used
to model agent interactions in collaborative environments.
They describe a simple coalition formation process: agents
express their preferences over coalitions; next, a central de-
signer is interested in finding a coalition structure (i.e. a par-
tition of the agents) that satisfies certain desiderata. Recent
years have seen considerable efforts by the computational so-
cial choice community to find novel algorithms computing
hedonic solution concepts — i.e. functions mapping hedonic
games to (sets of) coalition structures guaranteed to satisfy
certain properties. The core is a central solution concept in
hedonic games. A coalition structure is core stable (or sim-
ply stable) if no subset of players can deviate, i.e. have all
its members strictly better off should it form. Coalitional sta-
bility is a highly desirable property; there is a rich literature
studying the core of hedonic games, establishing the exis-
tence (or lack thereof) of core outcomes for various classes
of hedonic games. It is usually assumed that the agents’ pref-
erences are fully known in order to identify a stable coalition
structure; this is a major obstacle in applying the research,
as in many real-world scenarios full knowledge of the agent
preferences cannot be assumed. There has been little work
identifying hedonic solution concepts under uncertainty. This
is where our work comes in; we study the following problem:

Can we find a coalition structure that is likely to
be resistant to deviation, given limited knowledge
about the underlying hedonic game?

We lay the theoretical foundations for studying the interplay
between two fundamental concepts: coalitional stability, and

Hedonic Games Learnable Stabilizable
Additively Separable 3 7
Fractional 3 7
W-games 3 7
B-games 3 3
Top Responsive 7 3

Table 1: A summary of this paper’s learnability/stabilizability re-
sults. For stabilizability, informativity is assumed, as explained in
section 4.4.

PAC learning in hedonic games. PAC learning is a canon-
ical model that studies how good probabilistic function ap-
proximations can be derived from a (polynomial) number of
samples (see Section 2.3 for details).

1.1 Our Contributions
We contrast between two objectives: learning the underlying
hedonic game — i.e. provide an estimate for agent utilities
over coalitions — and learning a stable outcome — i.e. pro-
vide a coalition structure that is likely to be resistant against
coalitional deviations. We do this for a variety of classes of
hedonic games (see Table 1). Our results show that hedonic
games exhibit surprisingly diverse behavior: learnability of
the underlying hedonic game does not necessarily guarantee
one’s ability to learn a stable outcome; conversely, there ex-
ist classes of hedonic games for which a PAC stable outcome
can be efficiently computed, though the underlying hedonic
game cannot be approximated in polynomial time. This result
stands in stark contrast to recent results on coalitional games
with transferable utility (TU cooperative games) [Balcan et
al., 2015]: in the TU domain, any coalitional game can be
PAC stabilized, irrespective of the underlying function class.

1.2 Related Work
Hedonic games have been widely studied in the AI/MAS
community; most works establish existential and computa-
tional properties of solution concepts for various classes of
hedonic games [Peters and Elkind, 2015; Aziz and Brandl,
2012; Brânzei and Larson, 2011; Deineko and Woeginger,
2013] (see Aziz and Savani [2016] or Woeginger [2013] for
an overview). Uncertainty in TU cooperative games has been
studied extensively; some works take a Bayesian approach:
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assuming a known prior over agent abilities, and finding
solution concepts under this regime (see [Chalkiadakis and
Boutilier, 2004; Chalkiadakis et al., 2007; Myerson, 2007]).
However, the work that most closely mirrors our approach is
by Balcan et al. [2015]; Balcan et al. use a PAC learning
approach to learn both stable payoff divisions, and the under-
lying game. The PAC approach has been subsequently ap-
plied to other game-theoretic domains, such as learning com-
binatorial functions from pairwise comparisons [Balcan et
al., 2016b], buyer valuations in combinatorial domains [Bal-
can et al., 2012; 2016a], and adversary models in security
games [Sinha et al., 2016].

2 Preliminaries
Let N = {1, . . . , n} be a set of agents or players. A coalition
is a nonempty subset of N ; let Ni = {S : S ⊆ N, i ∈ S}
be the set of all coalitions containing player i. A coalition
structure is a partition π of N ; we refer to the coalition con-
taining i in π as π(i). A hedonic game is a pair 〈N,�〉, where
�= (�1, . . . ,�n) is a preference list, reflecting each player
i’s preferences over the coalitions she would like to join. In
other words, �i is a reflexive, complete, and transitive binary
relation over Ni; given S, T ∈ Ni, we say that S 'i T if
S �i T and T �i S.

2.1 The Core of a Hedonic Game
We say that a coalition S core blocks a coalition structure π,
if every agent i ∈ S strictly prefers S to π(i), i.e. S �i π(i).
A coalition structure π is said to be core stable if there is no
coalition that core blocks π; that is, for every S ⊆ N , there
exists at least one player i ∈ S such that π(i) �i S. The set
of core stable coalition structures is called the core of 〈N,�〉,
denoted Core(N,�).

2.2 Representing Hedonic Games
Hedonic games are represented by (complete) preference or-
ders of players over subsets. In this work, we are making the
explicit assumption that player utilities are given numerically,
rather than by ranked preferences, thereby exploiting the full
strength of the classic PAC learning model; hence we will use
vi(S) ≥ vi(T ) and S �i T interchangeably.

A class of hedonic games can be represented by many pos-
sible utility functions; as we later show, the choice of repre-
sentation functions plays an important role in the learnability
of hedonic games. One can ‘cheat’ by encoding useful in-
formation in the representation function itself. For example,
one can encode preferences by integer values, and other valu-
able information (e.g. a stable partition, the actual game) in
the insignificant fractional terms. In what follows, we focus
on functions that naturally encode agent preferences, without
providing additional information about the underlying game.

2.3 PAC Learning
We briefly describe the PAC learning model; for a detailed
exposition, see [Kearns and Vazirani, 1994; Shashua, 2009].
The purpose of the Probably Approximately Correct (PAC)
learning model is finding good function approximations. We
are given some unknown function v belonging to some hy-
pothesis class H; H is a family of functions from subsets of

players to R. We let Hn be the restriction of H to functions
over n players. We refer to the unknown function as the tar-
get concept, and the proposed approximation will be called a
hypothesis.

An algorithm A that PAC learns H takes as input an er-
ror parameter ε > 0, a confidence parameter δ > 0, and m
samples (〈S1, v(S1)〉, ..., 〈Sm, v(Sm)〉); S1, . . . , Sm are as-
sumed to be i.i.d. sampled from a distribution D over 2N .
We are guaranteed that with probability at least 1 − δ, A
outputs a hypothesis v∗ ∈ Hn (here both the target con-
cept and the hypothesis are assumed to be in Hn) such that
Pr

S∼D
[v∗(S) 6= v(S)] < ε. Intuitively, assuming that all ob-

served samples were sampled i.i.d. from D, it is very likely
that the algorithm will output a hypothesis v∗ accurately pre-
dicting the values of other sets sampled from D. The classH
is efficiently PAC learnable if there is some algorithm A that
can PAC learn any v ∈ H; furthermore, both the running time
ofA and m — the number of samples that it requires as input
— are polynomial in n, 1

ε and log 1
δ .

Key results in learning theory relate the inherent com-
plexity of the hypothesis class to its PAC learnability. The
VC dimension [Kearns and Vazirani, 1994] is a canoni-
cal complexity measure for binary functions (i.e. whose
outputs are in {0, 1}). For classes of real-valued func-
tions, the analogous concept of pseudo-dimension [Anthony
and Bartlett, 1999, Chapter 11] is defined: we are given
a list of sets S1, . . . , Sm ⊆ N , and a set of real val-
ues r1, . . . , rm ∈ R; a class of functions H can pseudo-
shatter (〈S1, r1〉, . . . , 〈Sm, rm〉) if for any possible labeling
`1, . . . , `m ∈ {0, 1} there exists some function f ∈ H such
that f(Sj) > rj ⇐⇒ `j = 1. The pseudo-dimension of
H, denoted Pdim(H) is the maximal value m for which there
exists a list of m set-value pairs that can be shattered by H.
We will make use of the following theorem:
Theorem 2.1 (Anthony and Bartlett [1999]). A hypothesis
classH is (ε, δ) PAC learnable using m samples, where m is
polynomial in Pdim(H), 1

ε and log 1
δ by giving a hypothesis

v∗ consistent with the sample, i.e. v∗(Si) = v(Si) for all i.
Furthermore, if Pdim(H) is superpolynomial in n, H is not
PAC learnable.

We are interested in finding a stable partition for a hedonic
game G = 〈N,�〉; however, we do not know anything about
players’ preferences. Barring any other information, the task
is virtually impossible. One natural compromise would be to
offer a partition that is likely to be stable under some assump-
tions. More formally, we are given a set of m samples, i.e. m
pairs 〈Sj , ~v(Sj)〉; here, Sj ⊆ N and ~v(Sj) = (vi(Sj))i∈Sj

are the values assigned to Sj by the members of Sj . In what
follows, we often refer to the hedonic game G as 〈N,~v〉,
identifying agent preference orders with their utility func-
tion. Within this framework, we are interested in the follow-
ing question: given a hedonic game G = 〈N,~v〉 belonging to
some class of hedonic games H, can we find a partition that
is likely to be stable, or output that no such partition exists?

3 PAC Stability in Hedonic Games
We now present a learning-theoretic notion of core stability,
based on the PAC framework. We say that an algorithmA can

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2731



PAC stabilize a class of hedonic games, if after seeing some
examples, it is able to propose a partition that is unlikely to be
core blocked by a coalition sampled from D. More formally,
given ε > 0, a partition π is ε-PAC stable under D if

Pr
S∼D

[S core blocks π] < ε.

Given an unknown hedonic game G = 〈N,~v〉 belonging to
some hypothesis classH, a PAC stabilizing algorithmA takes
as input m samples (〈S1, ~v(S1)〉, . . . , 〈Sm, ~v(Sm)〉), where
S1, . . . , Sm ⊆ N , and parameters ε, δ > 0. The algorithm A
PAC stabilizesH, if for any hedonic game 〈N,~v〉 ∈ H, distri-
bution D over 2N , and parameters ε, δ > 0, with probability
at least 1 − δ, A outputs an ε-PAC stable coalition structure,
or reports that the core is empty. We again require that the
number of samples, m, is bounded by a polynomial in n, 1

ε

and log 1
δ . We similarly say thatH is PAC stabilizable if there

is some algorithm A that PAC stabilizesH.

4 Learnability and Stabilizability of Hedonic
Games

Learnability of a class of hedonic games alone does not imply
stabilizability; one might think that the following procedure
might work: PAC learn a hypothesis ~v∗ for ~v, compute a sta-
ble partition π∗ for 〈N,~v∗〉, and hope that π∗ PAC stabilizes
〈N,~v〉. Unfortunately, this will not necessarily work; intu-
itively, when learning a game, we only provide value guaran-
tees with respect to coalitions sampled fromD. However, sta-
ble partitions for v∗ can inevitably contain coalitions not sam-
pled from D, for which we have no information whatsoever.
However, if one can ensure that the values of coalitions in the
proposed partition are not overestimated, then core stability
of that partition for the learned hypothesis will mean ε-PAC
stability under D for the underlying game, as formalized in
Proposition 4.1 (proof omitted due to space constraints).

Proposition 4.1. Given a hedonic game G = 〈N, v〉 and v∗

be a PAC approximation of v. If π is stable for 〈N, v∗〉 and
∀i ∈ N , v∗i (π(i)) ≤ vi(π(i)) then π PAC stabilizes G.

We now analyze specific classes of hedonic games for their
PAC learnability and stabilizability.

4.1 Additively Separable Hedonic Games
Additively separable hedonic games (ASHGs) are hedonic
games where an agent’s utility from a coalition is the sum of
utilities she assigns to other members of that coalition. For-
mally, in an ASHG, each agent i ∈ N assigns a value vi(j) ∈
R to any other player j; we let vi(S) =

∑
j∈S\{i} vi(j). We

make the natural assumption that ASHGs are represented by
the utility functions used in their definition. We first observe
that ASHGs are PAC learnable.

Proposition 4.2. The class of additively separable hedonic
games is PAC learnable.

Proof. The representation functions of additively separable
hedonic games are linear functions, well known to be PAC
learnable.

1

2

3

4

5

2

1
2

1

2
1

2

1

2 1

Figure 1: An ASHG. Unshown edges have unknown weights.

The existence of a stable coalition structure in an ASHG
is not guaranteed [Banerjee et al., 2001], and as it turns out
ASHGs are not PAC stabilizable; given some information
about a game, it can extend to a game with non-empty core,
or to a game with an empty core, such that some coalition
from D will block any proposed partition.

Proposition 4.3. The class of additively separable hedonic
games is not PAC stabilizable.

Proof. Consider an additively separable hedonic game with
5 players depicted on Figure 1 where the weight of the edge
(i, j) is vi(j), and edges not shown have unknown weights.
Consider a distribution D that assigns probability of 1/5 to
each of the five sets {i, (i mod 5) + 1} and 0 elsewhere. It
is possible that the game has empty core, for example if all of
the remaining values vi(j) = −4 in which case for any parti-
tion π, there is a set in the support of D that blocks it, hence
Pr

S∼D
[S core blocks π] ≥ 1

5 . However, if the unseen vi(j) are

non-negative, the grand coalition is core stable, hence any al-
gorithm potentially PAC stabilizing the game cannot output
that the core is empty. Hence, the class is not PAC stabiliz-
able.

Fractional Hedonic Games [Aziz et al., 2014] are differ-
ent from ASHGs in that the coalitions’ values are scaled by
their size, i.e. vi(S) =

∑
j∈S vi(j)

|S| . Due to space limita-
tion, we just note they are similar to ASHGs with respect to
learnability, and similar example can be given regarding non-
stabilizability.

Proposition 4.4. The class of Fractional Hedonic Games is
PAC learnable, but not PAC stabilizable.

4.2 W-games
In hedonic games with W-preferences (W-hedonic games),
each player i has a preference�′

i over other players and coali-
tion’s value is determined by the worst player in that coalition
[Cechlárová and Hajduková, 2004; Cechlárová and Romero-
Medina, 2001]. Formally,

S �i T ⇐⇒ ∀s ∈ S : ∃t ∈ T : s �′
i t.

Proposition 4.5. The class of all representation functions of
W-hedonic games is efficiently PAC learnable.

Proof. Consider the learnability of vi, the i-th representation
function. If it is learnable, trivially all n of them are learnable.
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We will prove the pseudo-dimension of vi is n, and hence
that vi is learnable. Consider any set of coalitions S of size
n+1. Suppose for contradiction that the hypothesis class can
pseudo-shatter S . Denote by S ′ the subset of S obtained by
removing any sets that contain some player exclusively:

1: S ′ := S
2: while ∃T ∈ S ′ : T \

⋃
U∈S′\{T}

U 6= ∅ do

3: S ′ = S ′ \ T
4: end while
5: return S ′

Line 3 results with the set
⋃

U∈S′ U shrinking by at least
one player, hence is executed at most n times, therefore S ′
returned by the procedure is non-empty. Since S is pseudo-
shattered, then its subset S ′ is pseudo-shattered. Relabel
S ′ = {S1, ..., Sm} s.t. the threshold t1 associated with S1

is the smallest. Hence, there exists a representation function
vi such that vi(S1) < t1 and for j = 2, 3, ...,m, vi(Sj) > tj .
Since vi is a representation function for a W-hedonic game
and vi(S1) < t1, there is a player x ∈ S1, such that ∀T, x ∈
T : vi(T ) < t1. Since the condition from line 2 of the proce-
dure cannot hold for the returned S ′, ∃Sj ∈ S ′ : x ∈ Sj , but
vi(Sj) > tj ≥ t1, a contradiction.

Since all representation functions have pseudo-dimension
bounded by n, they are learnable assuming we can compute
a consistent hypothesis in polynomial time.

The following algorithm computes a hypothesis v∗i con-
sistent with a given sample (〈S1, v(S1)〉, ..., 〈Sm, v(Sm)〉).
For every player k ∈ N , the score i assigns to k is
max{Sj :k∈Sj} vi(Sj) or −∞ if {Sj : k ∈ Sj} = ∅. The al-
gorithm runs in time polynomial in n and m, hence the repre-
sentation functions ofW-hedonic games are efficiently PAC
learnable.

Interestingly, the algorithm outputs an underestimate of
vi’s, hence by Proposition 4.1, any partition in the core of
the hypothesis is PAC stable. If we would only require some
PAC hypothesis with an empty core in case we cannot give a
PAC stable partition, this would be enough for stabilizability.
However, we require that the core is empty for certain.

We proveW-hedonic games are not PAC stabilizable, even
for a particularly informative representation function: every
player assigning any other player its Borda score (the number
of players ranked lower), with no ties assumed. This repre-
sentation function conveys a lot of information: vi(S) tells us
the exact ranking of the worst agent in this coalition.

Proposition 4.6. W-hedonic games with the Borda score of
the worst agent as the representation functions are not PAC
stabilizable.

Proof. Consider a W-hedonic game with 5 players depicted
in Figure 2a, where the weight of edge (i, j) is the Borda
score for player j in i’s preference. Consider a distribution
D that returns one of the sets {i, (i mod 5) + 1} uniformly
at random. Depending on the values of edges not shown,
the game may extend to the game depicted on Figure 2b or
a similar game that would be obtained if players were per-
muted according to p(i) := (i mod 5) + 1. The respec-
tive sets of partitions resistant to coalitions supported by D

1
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3

2

3
2

3

2

3 2

(a) A W-game. Unshown edges
have unknown weights.
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(b) Possible extension of the
game from Figure 2a.

Figure 2

are A = {{{1}, {2, 5}, {3, 4}}, {{1, 2, 5}, {3, 4}}} and B =
{{{2}, {3, 1}, {4, 5}}, {{2, 3, 1}, {4, 5}}}. Since A∩B = ∅,
even after observing all coalitions from D, it is impossible to
indicate a partition π for which Pr

S∼D
[S core blocks π] < 1

5

with non-zero confidence. Since in both cases the core of
the game is not empty (respectively {{1}, {2, 5}, {3, 4}} and
{{2}, {3, 1}, {4, 5}} are core stable), any algorithm poten-
tially PAC stabilizing the class cannot output that the core is
empty. Hence, the class is not PAC stabilizable.

4.3 B-games
B-games [Cechlárová and Hajduková, 2003; Cechlárová and
Romero-Medina, 2001] are the counterpart of W-games,
where the value of a coalition depends on the favorite agent
in that coalition. However, if two coalitions of different size
share their most preferred agent, the smaller one is preferred.
Formally, S �i T if and only if either: (a) for s = max�i S
and t = max�i T we have s �i t; or (b) for s = max�i S
and t = max�i

T , s = t and |S| < |T |. We assume strict
agent preferences over individuals. Similarly to W-games,
B-games are learnable.

Proposition 4.7. B-hedonic games with arbitrary represen-
tation functions are efficiently PAC learnable.

Proof Sketch. B-games differ from W-games with respect
to learning in that the values of coalitions with the same
most preferred agent can differ if they are of a different size.
However, if we consider only coalitions of the same size,
then we can show that no set of size bigger than n can be
pseudo-shattered (this is done in a manner similar to that of
W-games). Since n different coalition sizes are possible, the
pseudo-dimension of B-games is bounded by n2.

To construct a hypothesis v∗i consistent with S =
{S1, . . . , Sm}, let us run the following procedure. Relabel
Sk’s s.t. vi(S1) ≥ · · · ≥ vi(Sm); given j ∈ {1, . . . ,m}, we
write Tj = {S1, . . . , Sj}. Set T to the highest indexed Tj s.t.
(a) ∀T1, T2 ∈ T : vi(T1) > vi(T2) ⇐⇒ |T1| < |T2|; and
(b) X =

⋂
T∈T T \

⋃
S∈S\T S 6= ∅. We can now choose v∗i

for any (one) x ∈ X in a way that ensures consistency with
vi(T ) for all T ∈ T (details omitted). The same procedure is
then applied to S\T , until a consistent labeling of the players
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is completed. Players that were not labeled by this procedure
are given arbitrary small values.

Representation functions for B-games turn out to play an
important role in their stabilizability; we begin by showing
the following negative result.

Proposition 4.8. The class of B-games with arbitrary repre-
sentation functions is not PAC stabilizable.

Proof Sketch. Consider a B-game with 7 players and a uni-
form distribution D of coalitions S1 = {7, 1, 2}, S2 =
{2, 3}, S3 = {3, 4}, S4 = {4, 5}, S5 = {5, 6, 7, 1}, where

S1 �1 S5, S1 �7 S5, S2 �2 S1,
S3 �3 S2, S4 �4 S3, S5 �5 S4

Since |S5| > |S1|, it cannot be determined if 2 �1 7. The
only coalition structure resistant to coalitions thatD supports,
that is common for all possible games if 2 �1 7 is assumed,
is the grand coalition; however, if 7 �1 2, it is possible that
S5 blocks the grand coalition. The core is never empty for
B-games, hence the class cannot be PAC stabilized.

As hinted in the proof sketch, the non-stabilizability stems
from our inability to decide if two intersecting coalitions have
the same most preferred agent. However, if we assume that
the representation function allows us to decide whether a
coalition S is preferred to T based on size or agent identity,
then B-games are PAC stabilizable; indeed, as we show in
Section 4.4, we can PAC stabilize Top Responsive games, a
superclass of B-games, based on a similar assumption.

4.4 Top Responsive Games
In Top Responsive games [Alcalde and Revilla, 2004], each
agents appreciation of a coalition depends on the most pre-
ferred subset within the coalition. More formally, let the
choice sets of agent i in coalition S ∈ Ni be defined by

Ch(i, S) := {X ⊆ S : ∀Y ⊆ S, i ∈ Y : X �i Y }.

If |Ch(i, S)| = 1, we denote the only element of Ch(i, S) by
ch(i, S). A game satisfies top-responsiveness if:

1. For all i ∈ N and S ∈ Ni, |Ch(i, S)| = 1

2. For all i ∈ N and S, T ∈ Ni:

(a) If ch(i, S) �i ch(i, T ) then S �i T

(b) If ch(i, S) = ch(i, T ) and S ⊂ T , then S �i T

Note that for B-games, if S �i {i}, then |ch(i, S)| = 2.
We assume that Top Responsive games are represented

using an informative utility model; this means that for any
i ∈ N and S, T ∈ Ni, it can be decided whether ch(i, S) �i

ch(i, T ), by observing the values vi(S) and vi(T ).
This assumption is based on the intuition that coalitions are

primarily judged by the worth of their choice set. If a repre-
sentation function is informative and two coalitions have dif-
ferent choice sets, the function values will indicate the coali-
tions are in different ‘buckets’. A simple example of an infor-
mative representation function, is one for which

bvi(S)c = bvi(T )c ⇐⇒ ch(i, S) = ch(i, T ).

Intuitively, the utility derived from the coalitions ch(i, S)
is given by integers, and any tiebreaking done by size con-
straints is done on lower order fractional terms.

We show that Top Responsive games are not PAC learn-
able, even if their representation functions are informative.

Proposition 4.9. Top Responsive hedonic games with infor-
mative representation functions are not PAC learnable.

Proof Sketch. Consider the class R of hedonic games where
∀S, T ∈ Ni : |S| > |T | =⇒ S �i T ; it is easy to see that
R is a subclass of Top Responsive games. One can show that
the set X = {S ∈ Ni : |S| = dn2 e} can be pseudo-shattered
byR. Since |X | > 2

n−1
2 , Pdim(R) > 2

n−1
2 ; invoking Theo-

rem 2.1 we conclude thatR is not PAC learnable.

Theorem 4.10. Top Responsive hedonic games with informa-
tive representation are efficiently PAC stabilizable.

Proof. We claim that Algorithm 1 PAC stabilizes Top Re-
sponsive games. Algorithm 1 is similar to the Top Cover-
ing Algorithm [Alcalde and Revilla, 2004] used to find sta-
ble outcomes for Top Responsive hedonic games in the full-
information setting. Intuitively, instead of using the exact
choice sets, Algorithm 1 approximates them.

Algorithm 1 An algorithm finding a PAC stable outcome for
Top Responsive games

Input: ε, δ, set S of m = (2n4 + 2n3)d 1ε log
2n3

δ e samples
from D

1: l← 0, Rl ← N , π ← ∅
2: ω ← d2n2 1

ε log
2n3

δ e
3: while Rl 6= ∅ do
4: S ′ ← take and remove ω samples from S
5: S ′ ← {T : T ∈ S ′, T ⊆ Rl}
6: for i ∈ Rl do
7: if i /∈

⋃
X∈S′ X then

8: Bi,l ← {i}
9: else

10: Bi,l ∈ argmaxT∈S′ vi(T )
11: end if
12: Bi,l ←

⋂
{T∈S′:ch(i,T )=ch(i,Bi,l)}

T .

13: end for
14: for j = 1, ..., |Rl| do
15: S ′′ ← take and remove ω samples from S
16: for i ∈ Rl do
17: Bi,l ← Bi,l ∩

⋂
T∈S′′:ch(i,T )=ch(i,Bi,l)

T .

18: end for
19: end for
20: CC (i, Rl) ← {i′ ∈ Rl : ∃j1, ..., jk ∈ Rl : j1 =

i ∧ jk = i′ ∧ j2 ∈ Bj1,l, . . . , jk ∈ Bjk−1,l}
21: i∗ ∈ argminj∈Rl

|CC (j, Rl)|
22: Xl ← CC (i∗, Rl)
23: π ← π ∪Xl

24: Rl+1 ← Rl \Xl, l← l + 1
25: end while
26: return π
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Note that after step 19 the algorithm constructs a coalition
of players based on (approximations of) choice sets, adds that
coalition to π, removes it from the set Rl of players left to be
considered, and if Rl is non-empty starts over, similarly to the
Top Covering Algorithm. Note that Rl grows strictly smaller
with every iteration, hence l ≤ n− 1.

Define �i,Rl
as a modified preference of the player i, that

equates any coalitions not entirely contained in Rl to the
worst:
• If T ⊆ Rl and S ⊆ Rl, T �i,Rl

S ⇐⇒ T �i S

• If T ⊆ Rl but S * Rl, T �i,Rl
S

• If T * Rl and S * Rl, T 'i,Rl
S

Given a distribution D, we say that a coalition T is Rl-top-ε
for player i, if

Pr
S∼D

[S �i,Rl
T ] ≤ ε.

Trivially, the probability of sampling an Rl-top-ε coalition for
player i from D is at least ε. Note that if Pr

S∼D
[S ⊆ Rl] ≤ ε,

then any set is Rl-top-ε.
Bi,l is the approximation of the choice set ch(i, Rl). The

algorithm’s objective is to ensure that

Pr
S∼D

[v(S) is inconsistent with some Bi,l = ch(i, Rl)] ≤ ε.

Steps 4 to 12 approximate ch(i, Rl) by Bi,l by ensuring
that sampling a coalition from D with a better choice set than
Bi,l is unlikely; this is done by examining enough coalitions
so as to see some Rl-top- ε

2n2 coalition for every player. Let us
bound the probability that for a given i, none of the coalitions
in S ′ are Rl-top- ε

2n2 :(
1− ε

2n2

)ω
=
(
1− ε

2n2

)d2n2 1
ε log 2n3

δ e

≤

((
1− ε

2n2

) 2n2

ε

)log 2n3

δ

<

(
1

e

)log 2n3

δ

<
δ

2n2

Taking a union bound, the probability that there is some l
and some player i ∈ Rl s.t. there is no Rl-top- ε

2n2 coalition
for i in S ′ is at most δ

2 .
Note that seeing a coalition entirely contained in Rl may

be very unlikely, and any coalitions not contained in Rl are
removed from S ′ at step 5; hence, S ′ can end up not con-
taining any coalition with some player i (condition in line 7).
But then with high confidence, as above, every coalition is
Rl-top- ε

2n2 , and the algorithm can pick for example {i}.
Note that steps 12 and 17 require an informative represen-

tation.
The intuition of steps 14 to 19 is to further approximate

ch(i, Rl) by Bi,l, ensuring that seeing a coalition from D
with the same choice set as Bi,l, but not containing some
player from Bi,l, is unlikely. Let E(S, l, i) be the event
[S ⊆ Rl ∧ ch(i, Bi,l) = ch(i, S) ∧ Bi,l \ S 6= ∅]. Sup-
pose (*) Pr

S∼D
[E(S, l, i)] ≥ ε

2n2 ; then the probability that

@S ∈ S ′′ : E(S, l, i) is
(
1− ε

2n2

)ω
< δ

2n3 . By the union
bound, for every iteration of l and j, for all i s.t. (*) holds,
∃S ∈ S ′′ : E(S, l, i) with confidence 1− δ

2 .

Note that if ∃S ∈ S ′′ : E(S, l, i), then step 17 removes
some agent from Bi,l, hence the loop at step 14 would be
redundant with more iterations. Concluding, after the algo-
rithm’s execution, (*) does not hold for any l and i with con-
fidence 1− δ

2 .
To examine if the algorithm achieves PAC stability, con-

sider some coalition T that core blocks π. Let k = min{l :
∃i ∈ T ∩ Xl} and i ∈ T ∩ Xk. Since T core blocks π,
T �i Xk. By top-responsiveness, one of the following holds:
(a) ch(i, T ) �i ch(i,Xk) or (b) Xk \ T 6= ∅. Suppose that
(a) holds; by construction of Xk, ch(i,Xk) �i Bi,k. By top-
responsiveness, T �i Bi,k. Recall that with confidence 1− δ

2
it can be assumed that Bi,k is Rk-top- ε

2n2 . By the choice of
k, T ⊆ Rk. By the union bound, Pr

T∼D
[T �i Bi,k] <

ε
2 .

Next, suppose that (b) holds. By construction of Xk

and i ∈ T ∩ Xk, there is a player j ∈ T ∩ Xk, s.t.
Bj,k * T . Since T core blocks π, T �j Xk. Then either
ch(j, T ) �j ch(j, Bj,k) or E(T, k, j) occurs. The former
implies (a). Recall that with confidence 1 − δ

2 , for all l and
i, Pr

T∼D
[E(T, l, i)] < ε

2n2 . By union bound, the latter hap-

pens with probability smaller than ε
2 . Taking a union bound,

Pr
T∼D

[T core blocks π] < ε with confidence 1− δ.

5 Conclusions and Future Work
Our results seem to imply that classes of hedonic games with
instances having an empty core are impossible to PAC stabi-
lize. However, things are not as simple as that: some of our
examples (Proposition 4.6 and 4.8) face an algorithm with
a decision between two possible games with a non-empty
core; however, partitions that stabilize one will destabilize the
other.

One interesting direction for future work would be using
structural restrictions: recent works study hedonic games
where agent preferences follow a graph structure [Igarashi
and Elkind, 2016]. It would be useful to see whether cer-
tain graphical assumptions imply PAC stabilizability. Fur-
thermore, while our work studies the core, one can focus on
other hedonic solution concepts.

Beyond its theoretical interest, we believe that our ap-
proach sets a compelling research agenda. It is often neces-
sary to assume uncertainty in real-world domains; indeed, by
grounding stability on observed data rather than the entirety
of agents’ preferences, we offer a tailored domain-specific so-
lution. Since our algorithms (and PAC learning in general)
do not use any information regarding the distribution D, they
may output different results in different domain implementa-
tions. Moving forward in this direction, it is quite possible
that making certain assumptions with respect to D will cir-
cumvent some of our negative stability results.

Our work formally relates observational data and stability
in hedonic games; this relation opens the door to empirical
evaluation of hedonic games, a further step towards their im-
plementation in real-world systems.

Acknowledgements
The authors were supported by MOE Grant no. R-252-000-
625-133, and by NRF Fellowship no. R-252-000-750-733.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2735



References
[Alcalde and Revilla, 2004] J. Alcalde and P. Revilla. Re-

searching with whom? stability and manipulation. Journal
of Mathematical Economics, 40(8):869–887, 2004.

[Anthony and Bartlett, 1999] M. Anthony and P. Bartlett.
Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999.

[Aziz and Brandl, 2012] H. Aziz and F. Brandl. Existence
of stability in hedonic coalition formation games. In
Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS’12,
pages 763–770, 2012.

[Aziz and Savani, 2016] H. Aziz and R. Savani. Hedonic
games. In F. Brandt, V. Conitzer, U. Endriss, J. Lang,
and A.D. Procaccia, editors, Handbook of Computational
Social Choice, chapter 15. Cambridge University Press,
2016.

[Aziz et al., 2014] H. Aziz, F. Brandt, and P. Harrenstein.
Fractional hedonic games. In Proceedings of the 13th In-
ternational Conference on Autonomous Agents and Multi-
agent Systems, AAMAS’14, pages 5–12, 2014.

[Balcan et al., 2012] M.F. Balcan, F. Constantin, S. Iwata,
and L. Wang. Learning valuation functions. In Proceed-
ings of the 25th Annual Conference on Learning Theory,
COLT’12, pages 4.1–4.24, 2012.

[Balcan et al., 2015] M.F. Balcan, A.D. Procaccia, and
Y. Zick. Learning cooperative games. In Proceedings of
the 24th International Joint Conference on Artificial Intel-
ligence, IJCAI’15, pages 475–481, 2015.

[Balcan et al., 2016a] M.F. Balcan, T. Sandholm, and
E. Vitercik. Sample complexity of automated mechanism
design. In Advances In Neural Information Processing
Systems, NIPS’16, pages 2083–2091, 2016.

[Balcan et al., 2016b] M.F. Balcan, E. Vitercik, and
C. White. Learning combinatorial functions from pair-
wise comparisons. In Proceedings of the 29th Annual
Conference on Learning Theory, COLT’16, pages 1–35,
2016.

[Banerjee et al., 2001] S. Banerjee, H. Konishi, and
T. Sönmez. Core in a simple coalition formation game.
Social Choice and Welfare, 18(1):135–153, 2001.

[Brânzei and Larson, 2011] S. Brânzei and K. Larson. So-
cial distance games. In Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, IJ-
CAI’11, pages 91–96, 2011.
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