
Manipulation in Games?

Raphael Eidenbenz, Yvonne Anne Oswald,
Stefan Schmid, and Roger Wattenhofer

Computer Engineering and Networks Laboratory
ETH Zurich, Switzerland

“Private Vices by the dextrous Management of a skilful Politician
may be turned into Publick Benefits”

Fable of the Bees (B. Mandeville)

Abstract. This paper studies to which extent the social welfare of a
game can be influenced by an interested third party within economic rea-
son, i.e., by taking the implementation cost into account. Besides consid-
ering classic, benevolent mechanism designers, we also analyze malicious
mechanism designers. For instance, this paper shows that a malicious
mechanism designer can often corrupt games and worsen the players’
situation to a larger extent than the amount of money invested. Surpris-
ingly, no money is needed at all in some cases. We provide algorithms
for finding the so-called leverage in games and show that for optimistic
mechanism designers, computing the leverage or approximations thereof
is NP-hard.

1 Introduction

Consider the following extension of the well-known prisoners’ dilemma where
two bank robbers, both members of the Al Capone clan, are arrested by the
police. The policemen have insufficient evidence for convicting them of robbing
a bank, but they could charge them with a minor crime. Cleverly, the policemen
interrogate each suspect separately and offer both of them the same deal. If one
testifies to the fact that his accomplice has participated in the bank robbery,
they do not charge him for the minor crime. If one robber testifies and the
other remains silent, the former goes free and the latter receives a three-year
sentence for robbing the bank and a one-year sentence for committing the minor
crime. If both betray the other, each of them will get three years for the bank
robbery. If both remain silent, the police can convict them for the minor crime
only and they get one year each. There is another option, of course, namely to
confess to the bank robbery and thus supply the police with evidence to convict
both criminals for a four-year sentence (cf. G in Fig. 1). A short game-theoretic
analysis shows that a player’s best strategy is to testify. Thus, the prisoners will
betray each other and both get charged a three-year sentence. Now assume that
Mr. Capone gets a chance to take influence on his employees’ decisions. Before
they take their decision, Mr. Capone calls each of them and promises that if they
? Research supported in part by the Swiss National Science Foundation (SNF).

both remain silent, they will receive money compensating for one year in jail,1
and furthermore, if one remains silent and the other betrays him, Mr. Capone
will pay the former money worth two years in prison (cf. V in Fig. 1). Thus,
Mr. Capone creates a new situation for the two criminals where remaining silent
is the most rational behavior. Mr. Capone has saved his clan an accumulated
two years in jail.

G

s t c

s 3 3 0 4 0 0

t 4 0 1 1 0 0

c 0 0 0 0 0 0

V V' G(V')

s t c s t c s t c s t c

s 1 1 2 0 s 4 4 2 4 0 0 s 0 5 s 3 3 0 4 0 5

t 0 2 t 4 2 1 1 0 0 t 0 2 t 4 0 1 1 0 2

c c 0 0 0 0 0 0 c 5 0 2 0 c 5 0 2 0 0 0

G(V)

Al Capone Police

Fig. 1. Extended prisoners’ dilemma: G shows the prisoners’ initial payoffs, where
payoff values equal saved years. The first strategy is to remain silent (s), the second
to testify (t) and the third to confess (c). Nash equilibria are colored gray, and non-
dominated strategy profiles have a bold border. The left bimatrix V shows Mr. Capone’s
offered payments which modify G to the game G(V). By offering payments V ′, the
police implements the strategy profile (c, c). As V1(c, c) = V2(c, c) = 0, payments V ′

implement (c, c) for free.

Let us consider a slightly different scenario where after the police officers
have made their offer to the prisoners, their commander-in-chief devises an even
more promising plan. He offers each criminal to drop two years of the four-year
sentence in case he confesses the bank robbery and his accomplice betrays him.
Moreover, if he confesses and the accomplice remains silent they would let him go
free and even reward his honesty with a share of the booty (worth going to prison
for one year). However, if both suspects confess the robbery, they will spend four
years in jail. In this new situation, it is most rational for a prisoner to confess.
Consequently, the commander-in-chief implements the best outcome from his
point of view without dropping any sentence and he increases the accumulated
years in prison by two.

From Mr. Capone’s point of view, implementing the outcome where both
prisoners keep quiet results in four saved years for the robbers. By subtracting the
implementation cost, the equivalent to two years in prison, from the saved years,
we see that this implementation yields a benefit of two years for the Capone
clan. We say that the leverage of the strategy profile where both prisoners play
s is two. For the police however, the leverage of the strategy profile where both
prisoners play c is two, since the implementation costs nothing and increases the
years in prison by two. Since implementing c reduces the players’ gain, we say
the strategy profile where both play c has a malicious leverage of two.

In the described scenario, Mr. Capone and the commander-in-chief solve the
optimization problem of finding the game’s strategy profile(s) which bear the
1 For this scenario, we presume that time really is money!

largest (malicious) leverage and therewith the problem of implementing the cor-
responding outcome at optimal cost. This paper analyzes these problems’ com-
plexities and presents algorithms for finding the leverage of games for cautious
and optimistic mechanism designers. We show that while the leverage of a sin-
gle strategy profile can be computed efficiently for both cautious and optimistic
mechanism designers, finding an optimal implementation for a set of strategy
profiles is NP-hard by a reduction from the SETCOVER problem, and we pro-
vide a lower bound for the approximation attainable by any polynomial-time
algorithm. Moreover, we prove that an optimistic mechanism designer cannot
compute the leverage of a game in polynomial time unless P=NP and finding
approximations thereof is hard as well.

Related Work. Algorithmic game theory and mechanism design have become
popular tools for gaining insights into the sociological, economical and politi-
cal complexity of today’s distributed systems such as politics, global markets or
the Internet (we refer to [10,11] for an introduction). Typically, when a game-
theoretic analysis reveals that a system may suffer from selfish behavior, appro-
priate countermeasures have to be taken in order to enforce a desired behavior
(e.g. [7]).

As it is often infeasible for a mechanism designer to influence the rules ac-
cording to which the players act in a distributed system, she has to resort to
other measures. One way of manipulating the players’ decision-making is to offer
them money for certain outcomes. Monderer and Tennenholtz [8] showed how
creditablility can be used to outwit selfish agents and influence their decisions;
in some cases no money actually has to be paid at all to implement a certain
behavior (cf. also [13]). The authors consider a mechanism designer who can-
not enforce behaviors and cannot change the system, and who attempts to lead
agents to adopt desired behaviors in a given multi-agent setting. The only way
the third party can influence the outcome of the game is by promising non-
negative monetary transfers conditioned on the observed behavior of the agents.
Eidenbenz et al. [5] have continued the analysis of [8] and have provided deeper
insights into the possibilities and algorithmic complexities of mechanism design
based on creditability. They presented algorithms for computing a strategy pro-
file set’s implementation cost and extended the notion of k-implementation to
round-based games, risk-averse player games and average payoff games. More-
over, they show that the complexity results given in [8] are not correct.

This paper extends [5,8] by introducing the concept of leverage, a measure for
the change of behavior a mechanism design can inflict, taking into account the
social gain and the implementation cost. Regarding the payments offered by the
mechanism designer as some form of insurance, it seems natural that outcomes
of a game can be improved at no costs. However, as a first contribution, in this
paper, we show that a malicious mechanism designer can in some cases even
reduce the social welfare at no costs. Second, we present algorithms to compute
both the regular as well as the malicious leverage, and provide evidence that
several optimization problems related to the leverage are NP-hard.

To the best of our knowledge, this is the first paper studying malicious
mechanism designers which aim at influencing a game based primarily on their
creditability. Other types of maliciousness have been studied before in various
contexts, especially in cryptography, and it is impossible to provide a complete
overview of this literature. Recently, the concept of BAR games [1] has been

introduced which aims at understanding the impact of altruistic and malicious
behavior in game theory. Moscibroda et al. [9] analyze a virus inoculation game
consisting of both selfish and malicious players. A similar model has recently
been studied in the context of congestion games [4].

Our work is also related to Stackelberg theory [12] which attends to games
with selfish players where a fraction of the entire population is orchestrated
by a global leader. In contrast to our paper, this leader is not bound to offer
any incentives (or credits) to follow his objectives. In the recent research thread
of combinatorial agencies [3], a setting is studied where a mechanism designer
seeks to influence the outcome of a game by contracting the players individually;
however, she cannot observe the player’s individual actions and the contracts
only depend on the overall outcome.

2 Model

First, we will review some game theory notation and the notion of k-
implementation [8]. We will then introduce the concept of leverage and malicious
leverage in games.

Game Theory. A strategic game can be described by a tuple G = (N,X,U).
N = {1, 2, . . . , n} is the set of players and each Player i ∈ N can choose a strategy
(action) from the set Xi. The product of all the individual players’ strategies is
denoted by X := X1×X2×. . .×Xn. In the following, a particular outcome x ∈ X
is called strategy profile and we refer to the set of all other players’ strategies of
a given Player i by X−i = X1× . . .×Xi−1×Xi+1× . . .×Xn. An element of Xi is
denoted by xi, and similarly, x−i ∈ X−i; hence x−i is a vector consisting of the
strategy profiles available if Player i selects Strategy xi. U = (U1, U2, . . . , Un) is
an n-tuple of payoff functions, where Ui : X → R determines Player i’s payoff
arising from the game’s outcome. We will refer to the sum of the individual
player’s payoffs of a given strategy profile x ∈ X as the strategy profile’s gain
U(x) :=

∑n
i=1 Ui(x).

Let xi, x′i ∈ Xi be two strategies available to Player i. We say that xi dom-
inates x′i iff Ui(xi, x−i) ≥ Ui(x′i, x−i) for every x−i ∈ X−i and there exists at
least one x−i for which a strict inequality holds. xi is the dominant strategy
for Player i if it dominates every other strategy x′i ∈ Xi\{xi}. xi is a non-
dominated strategy if no other strategy dominates it. By X∗ = X∗1 × . . . ×X∗n
we will denote the set of non-dominated strategy profiles, where X∗i is the set of
non-dominated strategies available to the individual Player i. A strategy profile
x ∈ X is a Nash equilibrium if no unilateral deviation in strategy by any single
player is profitable, that is ∀i ∈ N,Ui(xi, x−i) ≥ Ui(x′i, x−i).

k-Implementation. We assume that players are rational and always choose
a non-dominated strategy. Moreover, they do not cooperate. We examine the
impact of payments to players offered by a mechanism designer (an interested
third party) who seeks to influence the outcome of a game. These payments
are described by a tuple of non-negative payoff functions V = (V1, V2, . . . , Vn),
where Vi : X → R+, i.e. the payments depend on the strategy Player i se-
lects as well as on the choices of all other players. We assume that the players
trust the mechanism designer to finally pay the promised amount of money,

i.e., consider her trustworthy. The original game G = (N,X,U) is modified to
G(V) := (N,X, [U +V]) by these payments, where [U +V]i(x) = Ui(x) +Vi(x),
that is, each Player i obtains the payoff of Vi in addition to the payoffs of Ui.
The players’ choice of strategies changes accordingly: Each player now selects a
non-dominated strategy in G(V). Henceforth, the set of non-dominated strategy
profiles of G(V) is denoted by X∗(V). For a strategy profile x, the sum of the ad-
ditional payments to all players is denoted by the payment V (x) :=

∑n
i=1 Vi(x).

A strategy profile set O ⊆ X of G is a subset of all strategy profiles X. Simi-
larly to Xi and X−i, we define Oi := {xi|∃x−i ∈ X−i s.t. (xi, x−i) ∈ O} and
O−i := {x−i|∃xi ∈ Xi s.t. (xi, x−i) ∈ O}. The mechanism designer’s main ob-
jective is to force the players to choose a certain strategy profile or a set of
strategy profiles, without spending too much. This paper studies two kinds of
implementation costs: worst-case implementation costs and uniform implemen-
tation costs.

First, we will consider a pessimistic scenario where the mechanism designer
calculates with the maximum possible payments for a desired outcome (worst-
case implementation costs). For a desired strategy profile set O, we say that
payments V implement O if ∅ ⊂ X∗(V) ⊆ O. V is called (worst-case) k-
implementation if, in addition V (x) ≤ k, ∀x ∈ X∗(V). That is, the players’
non-dominated strategies are within the desired strategy profile, and the pay-
ments do not exceed k for any possible outcome. Moreover, V is an exact k-
implementation of O if X∗(V) = O and V (x) ≤ k ∀x ∈ X∗(V). The cost
k(O) of implementing O is the lowest of all non-negative numbers q for which
there exists a q-implementation. If an implementation meets this lower bound,
it is optimal, i.e., V is an optimal implementation of O if V implements O
and maxx∈X∗(V) V (x) = k(O). The cost k∗(O) of implementing O exactly is the
smallest non-negative number q for which there exists an exact q-implementation
of O. V is an optimal exact implementation of O if it implements O exactly and
requires cost k∗(O). The set of all implementations of O will be denoted by
V(O), and the set of all exact implementations of O by V∗(O). Finally, a strat-
egy profile set O = {z} of cardinality one – consisting of only one strategy profile
– is called a singleton. Clearly, for singletons it holds that non-exact and exact
k-implementations are equivalent. For simplicity’s sake we often write z instead
of {z} . Observe that only subsets of X which are in 2X1 × 2X2 × . . .× 2Xn , i.e.,
the Cartesian product of subsets of the players’ strategies, can be implemented
exactly. We call such a subset of X a convex strategy profile set.2 In conclusion,
for the worst-case implementation costs, we have the following definitions.

Definition 1 (Worst-Case Cost and Exact Worst-Case Cost). A
strategy profile set O has worst-case implementation cost k(O) :=
minV ∈V(O){maxz∈X∗(V) V (z)}. A strategy profile set O has exact worst-case im-
plementation cost k∗(O) := minV ∈V∗(O){maxz∈X∗(V) V (z)}.

The assumption that the cost of an implementation V is equal to the cost
of the strategy profile in X∗(V) with the highest payments is pessimistic. This
paper therefore also looks at a less anxious mechanism designer who takes the
risk of high worst case costs if the expected costs are small. If players only

2 These sets define a convex area in the n-dimensional hyper-cuboid, provided that
the strategies are depicted such that all oi are next to each other.

know their own utilities, assuming them to select one of their non-dominated
strategies uniformly at random, is a first simple model an optimistic mechanism
designer might apply. We define the uniform cost of an implementation V as
the average of all strategy profiles’ possible cost in X∗(V). Thus we assume all
non-dominated strategy profiles x ∈ X∗(V) to have the same probability.

Definition 2 (Uniform Cost and Exact Uniform Cost). A strategy profile
set O has uniform implementation cost kUNI(O) := minV ∈V(O){∅z∈X∗(V) V (z)}
where ∅ is defined as ∅x∈X f(x) := 1/ |X| · ∑x∈X f(x). A strat-
egy profile set O has exact uniform implementation cost k∗UNI(O) :=
minV ∈V∗(O){∅z∈X∗(V) V (z)}.

(Malicious) Leverage. Mechanism designers can implement desired outcomes
in games at certain costs. This raises the question for which games it makes sense
to take influence at all. This paper examines two diametrically opposed kinds of
interested parties, the first one being benevolent towards the participants of the
game, and the other being malicious. While the former is interested in increasing
a game’s social gain, the latter seeks to minimize the players’ welfare. We define
a measure indicating whether the mechanism of implementation enables them to
modify a game in a favorable way such that their gain exceeds the manipulation’s
cost. We call these measures the leverage and malicious leverage, respectively.
Note that in the following, we will often write “(malicious) leverage” signifying
both leverage and malicious leverage.

As the concept of leverage depends on the implementation costs, we exam-
ine the worst-case and the uniform leverage. The worst-case leverage is a lower
bound on the mechanism designer’s influence: We assume that without the addi-
tional payments, the players choose a strategy profile in the original game where
the social gain is maximal, while in the modified game, they select a strategy
profile among the newly non-dominated profiles where the difference between
the social gain and the mechanism designer’s cost is minimized. The value of
the leverage is given by the net social gain achieved by this implementation mi-
nus the amount of money the mechanism designer had to spend. For malicious
mechanism designers we have to invert signs and swap max and min. Moreover,
the payments made by the mechanism designer have to be subtracted twice,
because for a malicious mechanism designer, the money received by the players
are considered a loss.

Definition 3 (Worst-Case (Malicious) Leverage). Let lev(O) :=
maxV ∈V(O){minz∈X∗(V){U(z) − V (z)}} – maxx∗∈X∗ U(x∗) and mlev(O) :=
minx∗∈X∗ U(x∗) −minV ∈V(O){maxz∈X∗(V){U(z) + 2V (z)}}. The leverage and
malicious leverage of a strategy profile set O are LEV (O) := max{0, lev(O)}
and MLEV (O) := max{0,mlev(O)}, respectively.

Observe that according to our definitions, leverage values are always non-
negative, as a mechanism designer has no incentive to manipulate a game if
she will lose money. If the desired set consists only of one strategy profile z,
i.e., O = {z}, we will speak of the singleton leverage. Similarly to the (worst-
case) leverage, we can define the uniform leverage for less anxious mechanism
designers.

Definition 4 (Uniform (Malicious) Leverage). Let levUNI(O) :=
maxV ∈V(O){∅z∈X∗(V)(U(z) − V (z))} − ∅x∗∈X∗ U(x∗) and mlevUNI(O) :=
∅x∗∈X∗ U(x∗) − minV ∈V(O){∅z∈X∗(V){U(z) + 2V (z)}}. The uniform leverage
and malicious uniform leverage of a strategy profile set O are LEVUNI(O) :=
max{0, levUNI(O)} and MLEVUNI(O) := max{0,mlevUNI(O)}, respectively.

We define the exact (uniform) leverage LEV ∗(O) and the exact (uniform)
malicious leverage MLEV ∗(O) by simply changing V(O) to V∗(O) in the defi-
nition of LEV(UNI)(O) and MLEV(UNI)(O). Thus, the exact (uniform) (mali-
cious) leverage measures a set’s leverage if the interested party may only promise
payments which implement O exactly.

3 Worst-Case Leverage

Singletons. In the following we will examine a mechanism designer seeking
to implement a game’s best singleton, i.e., the strategy profile with the highest
singleton leverage. Dually, a malicious designer attempts to find the profile of
the largest malicious leverage.

We propose an algorithm that computes two arrays, LEV and MLEV , con-
taining all (malicious) singletons’ leverage within a strategy profile set O. By
setting O = X, the algorithm computes all singletons’ (malicious) leverage of
a game. We make use of a formula presented in [8] for computing a singleton’s
cost, namely that k(z) =

∑n
i=1 maxxi∈Xi{Ui(xi, z−i)− Ui(zi, z−i)}.

Algorithm 1 initializes the lev-array with the negative value of the original
game’s maximal social gain in the non-dominated set and the mlev-array with
its minimal social gain. Next, it computes

Algorithms ISAAC
Raphael Eidenbenz, Yvonne Anne Oswald, Stefan Schmid, Roger Wattenhofer
{eraphael@, oswald@tik.ee., schmiste@tik.ee., wattenhofer@tik.ee.}ethz.ch

Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 8092 Zurich, Switzerland

Algorithm 1 Singleton (Malicious) Leverage
Input: Game G, Set O ⊆ X
Output: LEV and MLEV

1: compute X∗;
2: for all strategy profiles x ∈ O do
3: lev[x] := −maxx∗∈X∗ U(x∗);
4: mlev[x] := minx∗∈X∗ U(x∗);
5: for all Players i ∈ N do
6: for all x−i ∈ O−i do
7: m := maxxi∈Xi

Ui(xi, x−i);
8: for all strategies zi ∈ Oi do
9: lev[zi, x−i] += 2 · Ui(zi, x−i)−m;

10: mlev[zi, x−i] += Ui(zi, x−i)− 2m;
11: ∀ o ∈ O: LEV [o] := max{0, lev[o]};
12: ∀ o ∈ O: MLEV [o] := max{0,mlev[o]};
13: return LEV, MLEV ;

Algorithm 2 Exact Leverage
Input: Game G, convex set O with O−i ⊂ X−i∀ i
Output: LEV ∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗

i ;
4: return max{0, ExactLev(V, n)−maxx∗∈X∗ U(x∗)};

ExactLev(V , i):
Input: payments V , current Player i
Output: lev∗(O) for G(V)

1: if |X∗
i (V)\Oi| > 0 then

2: s := any strategy in X∗
i (V)\Oi; levbest := 0;

3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max{0, Ui(s, o−i)−

(Ui(oi, o−i) + Vi(oi, o−i))};
6: lev := ExactLev(V + W, i);
7: if lev > levbest then
8: levbest := lev;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return levbest;
12: if i > 1 return ExactLev(V , i− 1);
13: else return mino∈O{U(o)− V (o)};

Algorithm 3 Exact k-Implementation (ALGexact)
Input: Game G, convex region O with O−i ⊂ X−i∀ i
Output: k∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗;
4: return ExactK(V , n);

ExactK(V , i):
Input: payments V , current Player i
Output: k∗(O) for G(V)

1: if |X∗
i (V)\Oi| > 0 then

2: s := any strategy in X∗
i (V)\Oi; kbest := ∞;

3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max(0, Ui(s, o−i)−

(Ui(oi, o−i) + Vi(oi, o−i)));
6: k := ExactK(V + W , i);
7: if k < kbest then
8: kbest := k;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return kbest;
12: if i > 1 return ExactK(V , i− 1);
13: else return maxo∈O

∑
i Vi(o);

Algorithm 4 Reduction Algorithm ALGred

Input: Game G, convex target region O
Output: Implementation V of O

1: [k, V] := greedy(G, O);
2: ktemp := −1; ci := ⊥ ∀i; Ti := {} ∀i;
3: while (k > 0) ∧ (∃i : |Oi| > 1) ∧ (∃i : Oi * Ti) do
4: for all i ∈ N do
5: xi := arg minoi∈Oi (maxo−i∈O−i Ui(oi, o−i));
6: if (Oi * Ti) ∧ (¬cj∀j) ∧ (xi ∈ Ti) then
7: xi:=arg minoi∈Oi\Ti

(maxo−i∈O−i(Ui(oi, o−i)));
8: if |Oi| > 1 then
9: Oi := Oi \ {xi};

10: [ktemp, V] := greedy(G, O);
11: if ktemp ≥ k then
12: Oi := Oi ∪ {xi}; Ti := Ti ∪ {xi}; ci := ⊥;
13: else
14: k := ktemp; Ti := {} ∀i; ci := >;
15: return V ;

the set of non-dominated strategy pro-
files X∗; in order to do this, we check,
for each player and for each of her strate-
gies, whether the strategy is dominated
by some other strategy. In the remainder,
the algorithm adds up the players’ contri-
butions to the profiles’ (malicious) lever-
age for each player and strategy profile. In
any field z of the leverage array lev, we
add the amount that Player i would con-
tribute to the social gain if z was played
and subtract the cost we had to pay her,
namely Ui(xi, x−i)− (m−Ui(xi, x−i)) =
2Ui(xi, x−i) −m. For any entry z in the
malicious leverage array mlev, we sub-
tract Player i’s contribution to the social gain and also twice the amount the
designer would have to pay if z is played since she loses money and the players
gain it, −Ui(xi, x−i) − 2(m − Ui(xi, x−i)) = Ui(xi, x−i) − 2m. Finally, lev and
mlev will contain all singletons’ leverage and singletons’ malicious leverage in
O. By replacing the negative entries by zeros, the corresponding leverage arrays
LEV and MLEV are computed. The interested party can then lookup the best
non-negative singleton by searching the maximal entry in the respective array.

Theorem 1. For a game where every player has at least two strategies, Algo-
rithm 1 computes all singletons’ (malicious) leverage within a strategy profile set
O in O

(
n|X|2) time.

Proof. The correctness of Algorithm 1 follows directly from the application
of the (malicious) singleton leverage formula. It remains to prove the time
complexity. Finding the non-dominated strategies in the original game requires
time

∑n
i=1

(|Xi|
2

)|X−i| = O(n|X|2), and finding the maximal or minimal gain
amongst the possible outcomes X∗ of the original game requires time O(n |X|).
The time for all other computations can be neglected asymptotically, and the
claim follows. �

Strategy Profile Sets. Observe that implementing singletons may be opti-
mal for entire strategy sets as well, namely in games where the strategy profile
set yielding the largest (malicious) leverage is of cardinality 1. In some games,
however, dominating all other strategy profiles in the set is expensive and un-
necessary. Therefore, a mechanism designer is bound to consider sets consisting
of more than one strategy profile as well to find a subset of X yielding the max-
imal (malicious) leverage. Moreover, we can construct games where the differ-
ence between the best (malicious) set leverage and the best (malicious) singleton
leverage gets arbitrarily large. Fig. 2 depicts such a game.

G =

20 0 11 9 10 10 10 10

11 9 20 0 10 10 10 10

19 10 10 19 9 11 0 20

10 19 19 10 0 20 9 11

V =

0 ∞ 0 ∞ 0 0 0 0

0 ∞ 0 ∞ 0 0 0 0

1 1 1 1 ∞ 0 ∞ 0

1 1 1 1 ∞ 0 ∞ 0

Fig. 2. Two-player game where set O bears the largest leverage. Implemen-
tation V yields X∗(V) = O. By offering payments V , a benevolent mechanism
designer has cost 2, no matter which o ∈ O will be played. However, she improves
the social welfare by 9. Thus O has a leverage of 7 whereas any singleton o ∈ O
has a leverage of 0. By reducing Player 2’s payoffs in the upper game half and
Player 1’s payoffs in the right game half, O ’s leverage gets arbitrarily large.

A similar game can be used to show an arbitrarily large difference for the
malicious leverage: E.g., set the payoffs in the four upper right strategy profiles
of the game G in Fig. 2 to 100 instead of 10. V still implements O but switching
to O now decreases the social gain.

Although many factors influence a strategy profile set’s (malicious) lever-
age, there are some simple observations. First, if rational players already choose
strategies such that the strategy profile with the highest social gain is non-
dominated, a designer will not be able to ameliorate the outcome. Just as well, a
malicious interested party will have nothing to corrupt if a game already yields
the lowest social gain possible.

Fact 2 (i) If a game G’s social optimum xopt := arg maxx∈X U(x) is in X∗ then
LEV (G) = 0. (ii) If a game G’s social minimum xworst := arg minx∈X U(x) is
in X∗ then MLEV (G) = 0.

As an example, a class of games where both properties (i) and (ii) of Fact 2
always hold are equal sum games, where every strategy profile yields the same
gain, U(x) = c ∀x ∈ X, c : constant. (Zero sum games are a special case of equal
sum games where c = 0.)

Fact 3 (Equal Sum Games) The leverage and the malicious leverage of an
equal sum game G is zero: LEV (G) = 0, MLEV (G) = 0.

A well-known example of an zero sum game is Matching Pennies: Two players
toss a penny. If both coins show the same face, Player 2 gives his penny to Player
1; if the pennies do not match, Player 2 gets the pennies. This matching pennies
game features another interesting property: There is no dominated strategy.
Therefore an interested party could only implement strategy profile sets O which
are subsets of X∗. This raises the question whether a set O ⊆ X∗ can ever have
a (malicious) leverage. We find that the answer is no and moreover:

Theorem 4. The leverage of a strategy profile set O ⊆ X intersecting with the
set of non-dominated strategy profiles X∗ is (M)LEV = 0.

Proof. Assume that |O ∩X∗| > 0 and let ẑ be a strategy profile
in the intersection of O and X∗. Let x∗max := arg maxx∗∈X∗ U(x∗) and
x∗min := arg minx∗∈X∗ U(x∗). Let VLEV be any implementation of O reaching
LEV (O) and VMLEV any implementation of O reaching MLEV (O). We get for
the leverage LEV (O) = max{0,minz∈X∗(VLEV){U(z)−VLEV (z)}−U(x∗max)} ≤
max{0, [U(ẑ) − VLEV (ẑ)] − U(x∗max)} ≤ max{0, U(x∗max) − VLEV (ẑ) −
U(x∗max)} = max{0,−VLEV (ẑ)} = 0, and for the malicious leverage
MLEV (O) = max{0, U(x∗min) − maxz∈X∗(VMLEV)[U(z) + 2VMLEV (z)]} ≤
max{0, U(x∗min) − U(ẑ) − 2VMLEV (ẑ)} ≤ max{0, U(x∗min) − U(x∗min) −
2VMLEV (ẑ)} = max{0,−2VMLEV (ẑ)} = 0. �

In general, the problem of computing a strategy profile set’s (malicious) lever-
age seems computationally hard. It is related to the problem of computing a set’s
implementation cost, which is conjectured in [5] to be NP-hard, and hence, we
conjecture the problem of finding LEV (O) or MLEV (O) to be NP-hard in
general as well. In fact, we can show that computing the (malicious) leverage
has at least the same complexity as computing a set’s cost.

Theorem 5. If the computation of a set’s implementation cost is NP-hard, then
the computation of a strategy profile set’s (malicious) leverage is also NP-hard.

Proof.We proceed by reducing the problem of computing k(O) to the prob-
lem of computing MLEV (O). Theorem 4 allows us to assume that O and X∗ do
not intersect since O∩X∗ 6= ∅ implies MLEV (O) = 0. By definition, a strategy
profile set’s cost are k(O) = minV ∈V(O){maxz∈X∗(V) V (z)} and from the ma-
licious leverage’s definition, we have minV ∈(V){maxz∈X∗(V){U(z) + 2V (z)}} =
minx∗∈X∗ U(x∗)−mlev(O). The latter equation’s left hand side almost matches
the formula for k(O) if not for the term U(z) and a factor of 2. If we can mod-
ify the given game such that all strategy profiles inside X∗(V) ⊆ O have a
gain of γ := −2nmaxx∈X{maxi∈N Ui(x)} − minx∗∈X∗ U(x∗) − ε where ε > 0,
we will be able to reduce O’s cost to k(O) = (minx∗∈X∗ U(x∗) − mlev(O) −

γ)/2 = (−mlev(O) + 2nmaxx∈X{maxi∈N Ui(x)} + ε), thus mlev(O) > 0 and
MLEV (O) = mlev(O), ensuring that MLEV (O) and mlev(O) are polynomi-
ally reducible to each other. This is achieved by the following transformation of
a problem instance (G,O) into a problem instance (G′, O): Add an additional
Player n+1 with one strategy a and a payoff function Un+1(x) equal to γ−U(x)
if x ∈ O and 0 otherwise. Thus, a strategy profile x in G′ has social gain equal
to γ if it is in O and equal to U(x) in the original game if it is outside O. As
Player n + 1 has only one strategy available, G′ has the same number of strat-
egy profiles as G and furthermore, there will be no payments Vn+1 needed in
order to implement O. Player (n + 1)’s payoffs impact only the profiles’ gain,
and they have no effect on how the other players decide their tactics. Thus, the
non-dominated set in G′ is the same as in G and it does not intersect with O.
Since the transformation does not affect the term minx∗∈X∗ U(x∗), the set’s cost
in G are equal to (minx∗∈X∗ U(x∗)−MLEV (O)− γ)/2 in G′.

Reducing the problem of computing k(O) to lev(O) is achieved by using
the same game transformation where an additional player is introduced such
that ∀o ∈ O : U(o) = γ := nmaxx∈X{maxi∈N{Ui(x)}}+ maxx∗∈X∗{U(x∗)}+ ε
for ε > 0. We can then simplify the leverage formula to lev(O) = γ − k(O) −
maxx∗∈X∗ U(x∗) = nmaxx∈X{maxi∈N{Ui(x)}}−k(O) + ε > 0 and thus we find
the cost k(O) by computing nmaxx∈X{maxi∈N{Ui(x)}} − LEV (O)− ε. �

The task of finding a strategy pro-

Algorithms ISAAC
Raphael Eidenbenz, Yvonne Anne Oswald, Stefan Schmid, Roger Wattenhofer
{eraphael@, oswald@tik.ee., schmiste@tik.ee., wattenhofer@tik.ee.}ethz.ch

Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 8092 Zurich, Switzerland

Algorithm 1 Singleton (Malicious) Leverage
Input: Game G, Set O ⊆ X
Output: LEV and MLEV

1: compute X∗;
2: for all strategy profiles x ∈ O do
3: lev[x] := −maxx∗∈X∗ U(x∗);
4: mlev[x] := minx∗∈X∗ U(x∗);
5: for all Players i ∈ N do
6: for all x−i ∈ O−i do
7: m := maxxi∈Xi

Ui(xi, x−i);
8: for all strategies zi ∈ Oi do
9: lev[zi, x−i] += 2 · Ui(zi, x−i)−m;

10: mlev[zi, x−i] += Ui(zi, x−i)− 2m;
11: ∀ o ∈ O: LEV [o] := max{0, lev[o]};
12: ∀ o ∈ O: MLEV [o] := max{0,mlev[o]};
13: return LEV, MLEV ;

Algorithm 2 Exact Leverage
Input: Game G, convex set O with O−i ⊂ X−i∀ i
Output: LEV ∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗

i ;
4: return max{0, ExactLev(V, n)−maxx∗∈X∗ U(x∗)};

ExactLev(V , i):
Input: payments V , current Player i
Output: lev∗(O) for G(V)

1: if |X∗
i (V)\Oi| > 0 then

2: s := any strategy in X∗
i (V)\Oi; levbest := 0;

3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max{0, Ui(s, o−i)−

(Ui(oi, o−i) + Vi(oi, o−i))};
6: lev := ExactLev(V + W, i);
7: if lev > levbest then
8: levbest := lev;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return levbest;
12: if i > 1 return ExactLev(V , i− 1);
13: else return mino∈O{U(o)− V (o)};

Algorithm 3 Exact k-Implementation (ALGexact)
Input: Game G, convex region O with O−i ⊂ X−i∀ i
Output: k∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗;
4: return ExactK(V , n);

ExactK(V , i):
Input: payments V , current Player i
Output: k∗(O) for G(V)

1: if |X∗
i (V)\Oi| > 0 then

2: s := any strategy in X∗
i (V)\Oi; kbest := ∞;

3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max(0, Ui(s, o−i)−

(Ui(oi, o−i) + Vi(oi, o−i)));
6: k := ExactK(V + W , i);
7: if k < kbest then
8: kbest := k;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return kbest;
12: if i > 1 return ExactK(V , i− 1);
13: else return maxo∈O

∑
i Vi(o);

Algorithm 4 Reduction Algorithm ALGred

Input: Game G, convex target region O
Output: Implementation V of O

1: [k, V] := greedy(G, O);
2: ktemp := −1; ci := ⊥ ∀i; Ti := {} ∀i;
3: while (k > 0) ∧ (∃i : |Oi| > 1) ∧ (∃i : Oi * Ti) do
4: for all i ∈ N do
5: xi := arg minoi∈Oi (maxo−i∈O−i Ui(oi, o−i));
6: if (Oi * Ti) ∧ (¬cj∀j) ∧ (xi ∈ Ti) then
7: xi:=arg minoi∈Oi\Ti

(maxo−i∈O−i(Ui(oi, o−i)));
8: if |Oi| > 1 then
9: Oi := Oi \ {xi};

10: [ktemp, V] := greedy(G, O);
11: if ktemp ≥ k then
12: Oi := Oi ∪ {xi}; Ti := Ti ∪ {xi}; ci := ⊥;
13: else
14: k := ktemp; Ti := {} ∀i; ci := >;
15: return V ;

file set’s leverage is computationally hard.
Recall that we have to find an implemen-
tation V of O which maximizes the term
minz∈X∗(V){U(z)−V (z)}. Thus, there is
at least one implementation V ∈ V(O)
bearing O’s leverage. Since this V imple-
ments a subset of O exactly, it is also valid
to compute O’s leverage by searching
among all subsets O′ of O the one with
the largest exact leverage LEV ∗(O′).3

In the following we will provide an al-
gorithm which computes a convex strat-
egy profile set’s exact leverage. It makes
use of the fact that if X∗(V) has to be a
subset of O, each strategy ōi /∈ Oi must
be dominated by at least one strategy oi
in the resulting game G(V) – a property
which has been observed and exploited before in [5] in order to compute a set’s
exact cost. In order to compute LEV (O), we can apply Algorithm 2 for all
convex subsets and return the largest value found.

Theorem 6. Algorithm 2 computes a strategy profile set’s exact leverage in time
O
(|X|2 maxi∈N (|Oi|n|X∗

i \Oi|−1) + n|O|maxi∈N (|Oi|n|X∗
i \Oi|)

)
.

Proof. Clearly, the algorithm is correct as it searches for all possibilities of a
strategy in Xi\Oi to be dominated by a strategy in Oi. The time complexity
follows from solving the doubly recursive equation over the strategy set and the
3 Note that we do not provide algorithms for computing the malicious leverage but for

the benevolent leverage only. However, it is straightforward to adapt our algorithms
for the benevolent leverage.

number of players (compare the analysis of Algorithm 1 in [5]). �

4 Uniform Implementation Cost

We will now turn our attention to the situation of less anxious mechanism design-
ers who anticipate uniform rather than worst-case implementation cost. They
assume the players to select one of their non-dominated strategies uniformly at
random. This is a reasonable assumption if the players do only know their own
utilities.

Note that for strategy profile sets O with k∗UNI(O) = 0 any exact implemen-
tation V must have zero payments for any profile inside O, i.e. V (o) = 0 ∀o ∈ O.
Thus, for 0-implementable strategy profile sets, the concepts of worst case exact
cost and uniform exact cost coincide, i.e., k∗UNI(O) = 0 iff k∗(O) = 0. Therefore,
Algorithm 2 from [5] decides if O has uniform exact cost of 0 for the uniform
case in polynomial as well.

Complexity. In the following we show that it is NP-hard to compute the
uniform implementation cost for both the non-exact and the exact case. We
devise game configurations which reduce SETCOVER to the problem of finding
an implementation of a strategy profile set with optimal uniform cost.

Theorem 7. In games with at least two (three) players, the problem of finding a
strategy profile set’s exact (non-exact) uniform implementation cost is NP-hard.

Proof. Exact Case: For a given universe U of l elements {e1, e2, . . . , el}
and m subsets S = {S1, S2, . . . , Sm}, with Si ⊂ U , SETCOVER is the problem
of finding the minimal collection of Si’s which contains each element ei ∈ U .
We assume without loss of generality that @(i 6= j) : Si ⊂ Sj . Given a SET-
COVER problem instance SC = (U ,S), we can efficiently construct a game
G = (N,X,U) where N = {1, 2}, X1 = {e1, e2, . . . , el, s1, s2, . . . , sm}, and
X2 = {e1, e2, . . . , el, d, r}. Each strategy ej corresponds to an element ej ∈ U ,
and each strategy sj corresponds to a set Sj . Player 1’s payoff function U1 is
defined as follows: U1(ei, ej) := m+1 if i = j and 0 otherwise, U1(si, ej) := m+1
if ej ∈ Si and 0 otherwise, U1(ei, d) := 1, U1(si, d) := 0, U1(x1, r) := 0
∀x1 ∈ X1. Player 2 has a payoff of 0 when playing r and 1 otherwise. In
this game, strategies ej are not dominated for Player 1 because in column d,
U1(ej , d) > U1(si, d), ∀i ∈ {1, . . .m}. The set O we would like to implement is
{(x1, x2)|x1 = si ∧ (x2 = ei ∨ x2 = d)}. See Fig. 3 for an example.

Let Q = {Q1, Q2, . . . , Qk}, where each Qj corresponds to an Si. We now
claim that Q is an optimal solution for a SETCOVER problem, an optimal exact
implementation V of O in the corresponding game has payments V1(si, d) := 1
if Qi ∈ Q and 0 otherwise, and all payments V1(si, ej) equal 0.

Note that by setting V1(si, d) to 1, strategy si dominates all strategies ei
which correspond to an element in Si. Thus, our payment matrix makes all
strategies ei of Player 1 dominated since any strategy ei representing element
ei is dominated by the strategies sj corresponding to Sj which cover ei in the

minimal covering set.4 If there are any strategies si dominated by other strategies
sj , we can make them non-dominated by adjusting the payments V1(si, r) for
column r. Hence, any solution of SC corresponds to a valid exact implementation
of O.

It remains to show that such an implementa-

0

0

5

0 0

5

0

00 5

0

0 0

0

0

0

5 1

5

5 0

1

00 1

0 1

0 10

0

50 0

5 5

0

5 0

0 0

0

0

0

0

0

0

0

0

5

0

0

00

0

000

5 5

0

5

5

rde
5

e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

055

Fig. 3. Payoff matrix
for Player 1 in a game
which reduces the SET-
COVER problem in-
stance SC = (U ,S) where
U = {e1, e2, e3, e4, e5},
S = {S1, S2, S3, S4}, S1 =
{e1, e4}, S2 = {e2, e4}, S3 =
{e2, e3, e5}, S4 = {e1, e2, e3}
to the problem of comput-
ing k∗UNI(O). The optimal
exact implementation V of
O in this sample game

adds a payment V1 of 1 to
the strategy profiles (s1, d)
and (s3, d), implying that
the two sets S1 and S3

cover U optimally.

tion is indeed optimal and there are no other opti-
mal implementations not corresponding to a mini-
mal covering set. Note that by setting V1(si, d) :=
1 and V1(si, r) > 0 for all si, all strategies ej are
guaranteed to be dominated and V implements O
exactly with uniform cost ∅o∈O V (o) = m/ |O|.
If an implementation had a positive payment for
any strategy profile of the form (si, ej), it would
cost at least m + 1 to have an effect. However,
a positive payment greater than m yields larger
costs. Thus, an optimal V has positive payments
inside set O only in column d. By setting V1(si, d)
to 1, si dominates the strategies ej which corre-
spond to the elements in Si, due to our construc-
tion. An optimal implementation has a minimal
number of 1s in column d. This can be achieved
by selecting those rows si (V1(si, d) := 1), which
form a minimal covering set and as such all strate-
gies ei of Player 1 are dominated at minimal cost.
Our reduction can be generalized for n > 2 by
simply adding players with only one strategy and
zero payoffs in all strategy profiles.
Non-Exact Case: We give a similar reduction
of SETCOVER to the problem of computing
kUNI(O) by extending the setup we used for
proving the exact case. We add a third player
and show NP-hardness for n = 3 first and in-
dicate how the reduction can be adapted for
games with n > 3. Given a SETCOVER prob-
lem instance SC = (U ,S), we can construct
a game G = (N,X,U) where N = {1, 2, 3},
X1 = {e1, e2, . . . , el, s1, s2, . . . , sm}, X2 = {e1, e2, . . . , el, s1, s2, . . . , sm, d, r},
X3 = {a, b}. Again, each strategy ej corresponds to an element ej ∈ U , and each
strategy sj corresponds to a set Sj . In the following, we use ‘ ’ in profile vectors
as a placeholder for any possible strategy. Player 1’s payoff function U1 is defined
as follows: U1(ei, ej ,) := (m + l)2 if i = j and 0 otherwise, U1(ei, sj ,) := 0,
U1(si, ej ,) := (m+ l)2 if ej ∈ Si and 0 otherwise, U1(si, sj ,) := 0 if i = j and
(m+ l)2 otherwise, U1(ei, d,) := 1, U1(si, d,) := 0, U1(, r,) := 0. Player 2 has
a payoff of (m + l)2 for any strategy profile of the form (si, si,) and 0 for any
other strategy profile. Player 3 has a payoff of m+ l + 2 for strategy profiles of
the form (si, si, b), a payoff of 2 for profiles (si, ei, b) and profiles (si, sj , b), i 6= j,
and a payoff of 0 for any other profile. The set O we would like to implement is

1

1

1

1

1
rde

5
e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

81
0

s
1

s
2

s
3

s
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

81
0

81
0

81
0

81
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

11

rde
5

e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

s
1

s
2

s
3

s
4

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

0

0

0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0

0

0

0

0

0

0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

22 222222

2 1122222

2 1122222

2 222222

 2

 2

2

2

11

2 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1
rde

5
e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

81
0

s
1

s
2

s
3

s
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

81
0

81
0

81
0

81
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

11

rde
5

e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

s
1

s
2

s
3

s
4

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

0

0

0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0

0

0

0

0

0

0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

22 222222

2 1122222

2 1122222

2 222222

 2

 2

2

2

11

2 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Fig. 4. Payoff matrix for Player 1 and Player 2 given Player 3 chooses a and pay-
off matrix for Player 3 when she plays strategy b in a game which reduces a SET-
COVER instance SC = (U ,S) where U = {e1, e2, e3, e4, e5}, S = {S1, S2, S3, S4},
S1 = {e1, e4}, S2 = {e2, e4}, S3 = {e2, e3, e5}, S4 = {e1, e2, e3} to the problem of com-

puting kUNI(O). Every implementation V of O in this game needs to add any
positive payment in the second matrix to V3, i.e. V3(x1, x2, a) = U3(x1, x2, b), in order
to convince Player 3 of playing strategy a. An optimal implementation adds a payment
V1 of 1 to the strategy profiles (s1, d, a) and (s3, d, a), implying that the two sets S1

and S3 cover U optimally in the corresponding SETCOVER problem.

{(x1, x2, x3)|x1 = si ∧ (x2 = ei ∨ x2 = si ∨ x2 = d) ∧ (x3 = a)}. See Fig. 4 for
an example.

First, note the fact that any implementation of O will have V3(o1, o2, a) ≥
U3(o1, o2, b), in order to leave Player 3 no advantage playing b instead of a. In
fact, setting V3(o1, o2, a) = U3(o1, o2, b) suffices.5 Also note that for Player 2, O2

can be made non-dominated without offering any payments inside O, e.g., set
V2(ei, ej ,) = 1 and V2(ei, d,) = 1.

Analogously to the exact case’s proof, we claim that iffQ = {Q1, Q2, . . . , Qk},
where each Qj corresponds to an Si, is an optimal solution for a SETCOVER
problem, there exists an optimal exact implementation V of O in the cor-
responding game. This implementation selects a row si (V1(si, d, a) = 1), if
Qi ∈ Q and does not select si (V1(si, d, a) = 0) otherwise. All other pay-
ments V1 inside O are 0. Player 2’s payments V2(o) are 0 for all o ∈ O and
Player 3’s payoffs are set to V3(o1, o2, a) = U3(o1, o2, b). A selected row si con-
tributes costsi

= (3(l +m) + 1)/(l +m+ 1). A non-selected row sj contributes
costsj

= (3(l + m))/(l + m + 1) < costsi
. Thus including non-selected rows in

X∗(V) can be profitable. Selecting all rows si yields a correct implementation
of O with uniform cost ∅m

i=1 costsi = (3(l +m) + 1)/(l +m+ 1) < 3.
In fact, the game’s payoffs are chosen such that it is not worth implementing

any set smaller than O. We show for every set smaller than O, that its exact
uniform implementation costs are strictly larger. Assume a set yielding lower
cost implements α strategies for Player 1, β strategies ei and γ strategies sj for

4 If |Sj | = 1, sj gives only equal payoffs in G(V) to those of ei in the range of O2.
However, sj can be made dominating ei by increasing sj ’s payoff V1(sj , r) in the
extra column r.

5 Setting any V3(a, ō−3) > U3(b, ō−3) where ō−3 is outside O lets Player 3 choose
strategy a.

Player 2. Note that implementing Player 2’s strategy d is profitable if β + γ >
0, as it adds α to the denominator and at most α to the numerator of the
implementation costs of sets without d. Consequently, there are three cases to
consider: (i) β 6= 0, γ = 0: The costs add up to

∑
o∈O(V1(o)+V2(o)+V3(o))/|O| ≥

(1 + (m+ l)2 + 2αβ)/(α(β+ 1)), which is greater than 3, since α ≤ m,β ≤ l. (ii)
β = 0, γ 6= 0: The aggregated costs are at least (1 +α(m+ l) + 2αγ)/(α(γ+ 1)),
which is also greater than 3. (iii) β 6= 0, γ 6= 0: Assume there are κ sets necessary
to cover U . Hence the sum of the payments in column d is at least κ. In this
case, the costs amount to (κ+α(m+ l)+2α(β+γ))/(α(β+γ+1))=2+(m+ l−
2 + κ/α)/(β + γ + 1) ≥ k∗(O). Equality only holds if α = γ = m and β = l. We
can conclude that O has to be implemented exactly in order to obtain minimal
cost.

Therefore, an optimal implementation yields X∗(V) = O with the inalienable
payments to Player 3 and a minimal number of 1-payments to Player 1 for
strategy profiles (si, d, a) such that every ej is dominated by at least one si. The
number of 1-payments is minimal if the selected rows correspond to a minimal
covering set, and the claim follows.

Note that a similar SETCOVER reduction can be found for games with
more than three players. Simply add players to the described 3-player game
with only one strategy. �

Due to the nature of the reduction the inapproximability results of SET-
COVER [2,6] carry over to our problem.

Theorem 8. No polynomial-time algorithm can achieve an approximation ratio
better than Ω (nmaxi{log |X∗i \Oi|}) for both the exact and non-exact implemen-
tation costs within any function of the input length unless P=NP.

Proof. Exact Case: In order to prove this claim, a reduction similar to
the one in the proof of Theorem 7 can be applied. Consider again a SET-
COVER instance with a universe U of l elements {e1, e2, . . . , el} and m sub-
sets S = {S1, S2, . . . , Sm}, with Sj ⊂ U . We construct a game G = (N,X,U)
with n players N = {1, . . . , n}, where Xi = {e1, e2, . . . , el, s1, s2, . . . , sm}
∀i ∈ {1, . . . , n−1}, and Xn = {e1, e2, . . . , el, d, r}. Again, each strategy ej corre-
sponds to an element ej ∈ U , and each strategy sj corresponds to a set Sj . Player
i’s payoff function Ui, for i ∈ {1, . . . , n− 1}, is defined as follows: Let ek and sk
be strategies of Player i and let el be a strategy of Player n. If k = l, Player i
has payoff m+ 1, and 0 otherwise. Moreover, Ui(sk, el) := m+ 1 if el ∈ Sk and
0 otherwise, and Ui(ek, d) := 1, Ui(sk, d) := 0, Ui(xk, r) := 0 ∀xk ∈ Xi. Thus,
Player i’s payoffs only depend on Player i and Player n’s strategies. Player n
has a payoff of 0 when playing r and 1 otherwise, independently of all other
players’ choices. We ask for an implementation of set O where Player i, for
i ∈ {1, . . . , n − 1}, plays any strategy sk, and Player n plays any strategy el or
strategy d.

Due to the independence of the players’ payoffs, the situation is similar to the
example in Fig. 3, and a SETCOVER instance has to be solved for each Player
i ∀i ∈ {1, . . . , n − 1}. According to the well-known inapproximability results
for SETCOVER, no polynomial time algorithm exists which achieves a better
approximation ratio than Ω (log |X∗i \Oi|) for each Player i, unless P = NP,
and the claim follows.

Non-Exact Case: We use the inapproximability results for SETCOVER
again. Concretely, we assume a set of n = 3k players for an arbitrary constant
k ∈ N and make k groups of three players each. The payoffs of the three players
in each group are the same as described in the proof of Theorem 7 for the
non-exact case, independently of all other players’ payoffs. Hence, SETCOVER
has to be solved for n/3 players. �

5 Uniform Leverage

A mechanism designer calculating her average case cost is more optimistic than
an anxious designer. Thus, the observation stating that the uniform (malicious)
leverage is always at least as large as the worst-case (malicious) leverage does
not surprise.

Theorem 9. A set’s uniform (malicious) leverage is always larger or equal the
set’s (malicious) leverage.

Proof. levUNI(O) = maxV ∈V(O){∅z∈X∗(V) {U(z)−V (z)}} − ∅x∗∈X∗(V) U(x∗)
≥ maxV ∈V(O) {minz∈X∗(V) {U(z) − V (z)}} − maxx∗∈X∗(V) U(x∗) = lev(O),
and mlevUNI(O) = ∅x∗∈X∗(V) U(x∗) − minV ∈V(O) {∅z∈X∗(V) {U(z) + 2V (z)}}
≥ minx∗∈X∗(V) {U(x∗)} − minV ∈V(O) {maxz∈X∗(V) {U(z) + 2V (z)}} =
mlev(O). �

Another difference concerns the sets O intersecting with X∗, i.e., O∩X∗ 6= ∅:
Unlike the worst-case leverage (Theorem 4), the uniform leverage can exceed zero
in these cases, as can be verified by calculating O’s leverage in Fig. 3.

Complexity. We show how the uniform implementation cost can be computed
in polynomial time given the corresponding leverage. Thus the complexity of
computing the leverage follows from the NP-hardness of finding the optimal
implementation cost. The lower bounds are derived by modifying the games
constructed from the SETCOVER problem in Theorem 7, and by using a lower
bound for the approximation quality of the SETCOVER problem. If no poly-
nomial time algorithm can approximate the size of a set cover within a certain
factor, we get an arbitrarily small approximated leverage LEV approxUNI ≤ ε while
the actual leverage is large. Hence the approximation ratio converges to infinity
and, unless P=NP, there exists no polynomial time algorithm approximating
the leverage of a game within any function of the input length.

Theorem 10. For games with at least two (three) players, the problem of com-
puting a strategy profile set’s exact (non-exact) uniform (malicious) leverage is
NP-hard. Furthermore, the (exact) uniform leverage of O cannot be approxi-
mated in polynomial time within any function of the input length unless P=NP.

Proof. NP-Hardness: Exact Case. The claim follows from the observation
that if (M)LEV ∗UNI(O) is found, we can immediately compute k∗UNI(O)
which is NP-hard (Theorem 7). Due to the fact that any z ∈ O is also in
X∗(V) for any V ∈ V∗(O), levUNI(O) = maxV ∈V∗(O){∅z∈X∗(V){U(z) −

V (z)}} − ∅z∈X∗ U(x∗) = maxV ∈V∗(O){∅z∈X∗(V) U(z) − ∅z∈X∗(V) V (z)} −
∅x∗∈X∗ U(x∗) = ∅z∈X∗(V) U(z) − minV ∈V∗(O){∅z∈X∗(V) V (z)} −
∅x∗∈X∗ U(x∗) = ∅z∈X∗(V) U(z)− k∗UNI(O)−∅x∗∈X∗ U(x∗).

mlevUNI(O) = ∅x∗∈X∗ U(x∗) − minV ∈V∗(O){∅z∈X∗(V){U(z) + 2V (z)}} =
∅x∗∈X∗ U(x∗) − ∅z∈X∗(V) U(z) − 2 minV ∈V∗(O){∅z∈X∗(V) V (z)} =
∅x∗∈X∗ U(x∗)−∅z∈X∗(V) U(z)− 2k∗UNI(O).

Observe that ∅x∗∈X∗ U(x∗) and ∅z∈X∗(V) U(z) can be computed easily.
Moreover, as illustrated in the proof of Theorem 5, we can efficiently construct
a problem instance (G′, O) from any (G,O) with the same cost, such that for
G′: (m)lev(UNI) = (M)LEV(UNI).

Non-Exact Case. The claim can be proved by reducing the NP-hard problem
of computing kUNI(O) to the problem of computing (M)LEVUNI(O). This re-
duction uses a slight modification of Player 3’s utility in the respective game in
the proof of Theorem 7 ensuring ∀z ∈ O U(z) = γ := −4(m + l)2 − 2m2 +
m(l + m). Set U3(si, ej , a) = γ − U1(si, ej , a) − U2(si, ej , a), U3(si, ej , b) =
γ + 2 − U1(si, ej , a) − U2(si, ej , a) for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , l},
U3(si, sj , a) = γ−U1(si, sj , a)−U2(si, sj , a), U3(si, sj , b) = γ+2−U1(si, sj , a)−
U2(si, sj , a) for all i 6= j, U3(si, si, a) = γ − U1(si, si, a) − U2(si, si, a),
U3(si, si, b) = γ + (m + l + 2) − U1(si, si, a) − U2(si, si, a) for all i. Since in
this 3-player game, mlevUNI(O) > 0, we can give a formula for kUNI(O) de-
pending only on O’s (malicious) leverage and the average social gain, namely
kUNI(O) = (∅x∗∈X∗ U(x∗) −MLEVUNI(O))/2. Thus, once MLEVUNI(O) is
known, kUNI(O) can be computed immediately, and therefore finding the uni-
form malicious leverage is NP-hard as well. We can adapt this procedure for
LEVUNI(O) as well.

Lower Bound Approximation: Exact Case. The game constructed from the
SETCOVER problem in Theorem 7 for the exact case is modified as follows: The
utilities of Player 1 remain the same. The utilities of Player 2 are all zero except
for U2(e1, r) = (l + m)(

∑m
i=1 |Si|(m + 1)/(ml + m) − kLB − ε), where k is the

minimal number of sets needed to solve the corresponding SETCOVER instance,
ε > 0, and LB denotes a lower bound for the approximation quality of the
SETCOVER problem. Observe that X∗ consists of all strategy profiles of column
r. The target set we want to implement exactly is given by O1 = {s1, ..., sm}
and O2 = {e1, ..., el, d}. We compute levoptUNI = ∅o∈O U(o)−∅x∈X∗ U(x)− k =∑m
i=1 |Si|(m + 1)/(ml + m) −∑m

i=1 |Si|(m + 1)/(ml + m) − (−kLB − ε) − k =
k(LB − 1) + ε.

As no polynomial time algorithm can approximate k within a factor LB,
LEV approxUNI ≤ ε. Since limε→0 LEV

opt
UNI/LEV

approx
UNI = ∞ the claim follows for a

benevolent mechanism designer.
For malicious mechanism designers, we modify the utilities of the game from

the proof of Theorem 8 for Player 2 as follows: U2(e1, r) = (l +m)(2kLB + ε+∑m
i=1 |Si|(m+ 1)/(ml +m)), and U2(,) = 0 for all other profiles. It is easy to

see that by a similar analysis as performed above, the theorem also follows in
this case.

Non-Exact Case. We modify the game construction of Theorem 7’s proof for
the non-exact case by setting U2(e1, r, b) := ((

∑m
i=1 |Si|(m+ l)2 +m2(m+ l)2 +

3m(m+ l))/(m2 +ml +m)− kLB − ε)(m+ l), where k is the minimal number
of sets needed to solve the corresponding SETCOVER instance, ε > 0, and

LB denotes a lower bound for the approximation quality of the SETCOVER
problem and zero otherwise. Observe that X∗ = {x|x ∈ X,x = (, r, b)},
O has not changed, and payments outside O do not contribute to the im-
plementation cost; therefore, implementing O exactly is still the cheapest
solution. By a similar analysis as in the proof of Theorem 7 the desired
result is attained. For malicious mechanism designers we set U2(e1, r, b) =
((
∑m
i=1 |Si|(m+ l)2 +m2(m+ l)2 +3m(m+ l))/(m2 +ml+m)+2kLB+ε)(m+ l)

and proceed as above. �

Algorithms. To round off our analysis of the uniform (malicious) leverage,
we investigate algorithms for risk neutral mechanism designers. Recall Algo-
rithm 1 in Section 3 which computes the leverage of singletons of a desired
strategy profile set. We can adapt this algorithm in Line 3 and 4 to accommo-
date the definition of the uniform leverage, i.e., set mlev[x] := ∅x∗∈X∗ U(x∗) and
mlev[x] := −mlev[x]. This algorithm thus helps to find an optimal singleton.

A benevolent mechanism designer can adapt Algorithm 2 in order to com-
pute LEV ∗UNI(O): She only has to change Line 4 to max{0, ExactLev(V, n) −
∅x∗∈X∗ U(x∗)} and ‘min’ in Line 13 to ‘∅’. Invoking this algorithm for any
O′ ⊆ O yields the subset O with maximal leverage LEVUNI(O).

Due to Theorem 10 there is no polynomial time algorithm giving a non-trivial
approximation of a uniform leverage. The simplest method to find a lower bound
for LEVUNI(O) is to search the singleton in O with the largest uniform leverage.
Unfortunately, there are games (cf. Fig. 2) where this lower bound is arbitrarily
bad, as for the worst case leverage.

6 Conclusion

This paper has studied benevolent and malicious mechanism designers whose
goal is to change the game’s outcome if the improvement or deterioration in
social welfare exceeds the cost. We have presented several algorithms and com-
putational complexity results for cautious and optimistic mechanism designers.
Our models still pose many interesting questions which have to be tackled in
future research, including the quest for implementation cost approximation al-
gorithms or for game classes which allow a leverage approximation. Furthermore,
the mixed leverage and the leverage of dynamic games with an interested third
party offering payments in each round are still unexplored.

References

1. A. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth. BAR Fault
Tolerance for Cooperative Services. In Proc. 20th ACM Symposium on Operating
Systems Principles (SOSP), 2005.

2. N. Alon, D. Moshkovitz, and M. Safra. Algorithmic Construction of Sets for k-
Restrictions. ACM Transactions on Algorithms (TALG), pages 153–177, 2006.

3. M. Babaioff, M. Feldman, and N. Nisan. Combinatorial Agency. In Proc. 7th ACM
Conference on Electronic Commerce (EC), pages 18–28, 2006.

4. M. Babaioff, R. Kleinberg, and C. Papadimitriou. Congestion Games with Ma-
licious Players. In Proc. ACM Conference on Electronic Commerce (EC), San
Diego, CA, USA, 2007.

5. R. Eidenbenz, Y. A. Oswald, S. Schmid, and R. Wattenhofer. Mechanism Design
by Creditability. In Proc. 1st International Conference on Combinatorial Opti-
mization and Applications (COCOA), Springer LNCS 4616, 2007.

6. U. Feige. A Threshold of log n for Approximating Set Cover. Journal of the ACM,
pages 634–652, 1998.

7. J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A BGP-based Mech-
anism for Lowest-Cost Routing. In Proc. 21st Annual ACM Symp. on Principles
of Distributed Computing (PODC), 2002.

8. D. Monderer and M. Tennenholtz. k-Implementation. In Proc. 4th ACM Confer-
ence on Electronic Commerce (EC), pages 19–28, 2003.

9. T. Moscibroda, S. Schmid, and R. Wattenhofer. When Selfish Meets Evil: Byzan-
tine Players in a Virus Inoculation Game. In Proc. 25th Annual Symposium on
Principles of Distributed Computing (PODC), Denver, Colorado, USA, 2006.

10. N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proc. 31st Annual
ACM Symposium on Theory of Computing (STOC), 1999.

11. Osborne and Rubinstein. A Course in Game Theory. MIT Press, 1994.
12. T. Roughgarden. Stackelberg Scheduling Strategies. In Proc. ACM Symposium on

Theory of Computing (STOC), pages 104–113, 2001.
13. I. Segal. Contracting with Externalities. The Quarterly Journal of Economics,

pages 337–388, 1999.

