Graph Neural Networks as
Application of Distributed Algorithms
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Graph Neural Networks




Networks Images



High-res 3D simulations

up to 19k particles
2 different simulators (MPM & SPH)



Language models of protein sequences at the scale of evolution enable accurate

structure prediction
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EULER CHARACTERISTIC SURFACES
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(a) Control: No disease (b) NoDR: Diabetes, but no retinopathy. (c) DR: Diabetes with retinopathy.
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An Introduction to Graph Neural Networks from
a Distributed Computing Perspective

Pal Andras Papp and Roger Wattenhofer

ETH Ziirich, Switzerland
{apapp,wattenhofer}@ethz.ch

Abstract. The paper provides an introduction into the theoretical ex-
pressiveness of graph neural networks. We discuss the basic properties
and main applications of standard GNN models, and we show how these
constructions are both upper and lower bounded in expressive power by
the Weisfeiler-Lehman test. We then outline a wide variety of approaches
to increase the expressiveness of GNNs above this theoretical limit, and
discuss the strengths and weaknesses of these methods.



GNNs vs. Distributed Computing



Distributed Computing (Message Passing)

Nodes communicate with neighbors by sending messages.
In each synchronous round, every node sends a message to its neighbors.




Graph Neural Networks

Nodes communicate with neighbors by sending messages.
In each synchronous round, every node sends a message to its neighbors.




DC Track

“Designed” algorithm
Usually node IDs
Individual messages

Solve graph problems
like coloring or routing

ML Track

“‘Learned” parameters
Usually node features
Aggregated messages

Solve classification
(node, edge, graph)




How Do GNNs Work?



Graph Neural Networks

a, = AGGREGATE ({{ h,| ue N(v) }})

h, &Y =UpPDATE (h,, a,)



Graph Neural Networks
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Any Limitations?



Graph Neural Networks




Graph Neural Networks
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Weisfeiler-Lehman Graph Isomorphism Test

Original labels Relabeled Relabeled
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Shrikande vs. Rooks




GNNs Falil on e.g. Cycles
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DC Track ML Track

aggregation 12 oversmoothing

local underreaching

congest oversquashing




More Expressive GNNs?



DropGNN: Random Dropouts Increase the
Expressiveness of Graph Neural Networks
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GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #1



GNNSs with Dropouts
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Angle Features




input graph

what GNNs see

Random Features




A Theoretical Comparison of Graph Neural Network Extensions

Pal Andras Papp' Roger Wattenhofer !
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Explainable GNN



DT+GNN: A Fully Explainable Graph Neural
Network using Decision Trees

Input Layer:
State 2 < 9

L

Input Layer:
State3 < 2
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® Layer 2: State 2<0.5
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https://interpretable-gnn.netlify.app/
https://interpretable-gnn.netlify.app/

Asynchronous GNN



Asynchronous Neural Networks
for Learning in Graphs
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Example: CORA Benchmark

cites content

cited_paper_id [int paper_id int
citing_paper_id |int word_cited_id | varchar
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Example: CORA Benchmark
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Graph Generation



Planar

SBM

Proteins

True Graphs

SPECTRE : Spectral Conditioning Helps to Overcome the Expressivity Limits
of One-shot Graph Generators

Karolis Martinkus' Andreas Loukas > Nathanaél Perraudin *° Roger Wattenhofer '

GraphRNN MolGAN* GG-GAN (RS)* GG-GAN*

SPECTRE




Automating Rigid Origami Design

Jeremia Geiger, Karolis Martinkus, Oliver Richter, Roger Wattenhofer




Summary
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Thank You!

Questions & Comments?
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Roger Wattenhofer, ETH Zurich, www.disco.ethz.ch




