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Abstract— While neural vocoders have made significant
progress in high-fidelity speech synthesis, their application on
polyphonic music has remained underexplored. In this work,
we propose DisCoder, a neural vocoder that leverages a gen-
erative adversarial encoder-decoder architecture informed by
a neural audio codec to reconstruct high-fidelity 44.1 kHz
audio from mel spectrograms. Our approach first transforms
the mel spectrogram into a lower-dimensional representation
aligned with the Descript Audio Codec (DAC) latent space before
reconstructing it to an audio signal using a fine-tuned DAC
decoder. DisCoder achieves state-of-the-art performance in music
synthesis on several objective metrics and in a MUSHRA listening
study. Our approach also shows competitive performance in
speech synthesis, highlighting its potential as a universal vocoder.

Index Terms—vocoder, mel spectrogram, audio synthesis

I. INTRODUCTION

Recent developments in audio synthesis have significantly
improved the fidelity and efficiency of audio generation sys-
tems, especially for text-to-speech applications. While some
approaches synthesize waveforms from text directly [1], [2],
most rely on predicting intermediate lower-resolution repre-
sentations such as mel spectrograms to better manage the
complexity of raw audio. Given a mel spectrogram, a vocoder
is then used to reconstruct the audio signal represented by
the given mel spectrogram. Two notable examples are Mel-
GAN [3] and HiFi-GAN [4], which use Generative Adversarial
Networks (GANs) to efficiently convert mel spectrograms into
high-fidelity audio. Using methods such as periodic pattern
modeling and anti-aliasing, these models demonstrated notable
improvements in computational efficiency and audio synthesis
quality.

Although these developments highlight the potential of
vocoders for speech synthesis, which typically features a dom-
inant singular voice, they remain underexplored for polyphonic
music generation. Vocoders synthesizing mel spectrograms
containing music must handle overlapping instruments, com-
plex vocals, and a significantly broader frequency spectrum.
Addressing these challenges would enable high-fidelity audio
for a broader set of audio generation models, including text-to-
music approaches. There have been various attempts at music
synthesis using existing vocoders; however, the quality of the
synthesized audio has remained sub-par compared to other
approaches [5]–[7]. To this end, we explore vocoders primarily
in the context of polyphonic music synthesis.

In this work, we introduce DisCoder, a novel genera-
tive adversarial encoder-decoder architecture. Our approach
combines ideas from existing vocoders as well as recent
developments in neural audio codecs to obtain state-of-the-
art performance in music synthesis. By first projecting the
input mel spectrogram onto a lower-dimensional space, the
DisCoder encoder learns to extract the most salient aspects
of the audio. The DisCoder decoder is initialized from a pre-
trained Descript Audio Codec (DAC) [8] decoder and then
further fine-tuned, allowing us to leverage the existing prior
for high-fidelity audio reconstruction.
Our contributions can be summarized as follows:
• We propose DisCoder, a 430M parameter encoder-decoder

neural vocoder capable of high-fidelity 44.1 kHz polyphonic
music synthesis. Furthermore, we make the codebase and
model checkpoints publicly available.

• We conduct an ablation study to identify the optimal en-
coding target in the latent space compared to the number
of encoding parameters. Our findings highlight that using
the quantized continuous latent space representation of DAC
as the prediction target better captures nuances of complex
audio signals.

• We compare DisCoder with previous state-of-the-art and
show superior performance in music synthesis across several
perceptual metrics and in a MUSHRA listening test.

Samples are available online.1

II. RELATED WORK

Neural Vocoders. There has been a long line of work on
synthesizing realistic audio signals. The predominant approach
has been to leverage a two-stage synthesis by first generating
an intermediate representation such as a mel spectrogram, and
then synthesizing the audio waveform given the intermediate
representation. The Griffin-Lim algorithm [9] was an early
approach to synthesize audio by estimating the phase from a
magnitude spectrogram. However, due to compounding errors
in the mel spectrogram inversion, this often lead the generated
audio to sound unnatural [10]. More recently, there have been
various approaches inspired by GANs. MelGAN [3] generates
audio waveforms using a stack of transposed convolution
layers, together with multi-scale discriminators for better qual-
ity and efficiency in real-time applications. HiFi-GAN [4]

1https://lucala.github.io/discoder/

https://lucala.github.io/discoder/


 

Fig. 1. Proposed DisCoder architecture. The mel spectrogram is encoded into a low-dimensional latent space before being decoded to a 44.1 kHz waveform.
During the first stage of training, the latent space is aligned with the DAC prior. During the second stage of training this constraint is removed, and a skip
connection is introduced to preserve information encoded in the inital mel spectrogram.

outperformed MelGAN by using a generator with transposed
convolutions and residual blocks, combined with multi-scale
and multi-period discriminators. BigVGAN [11] and the con-
current work BigVGAN-v2 are able to synthesize high-fidelity
44.1 kHz audio by leveraging a scaled-up architecture with
periodic activations and anti-aliased representations.

Neural Audio Codecs. While advancements in neural
vocoding have significantly enhanced audio synthesis, similar
progress has been observed in the domain of neural audio
codecs. SoundStream [12] introduced the residual vector quan-
tization to encode audio into a highly compressed discrete
latent space. EnCodec [13] builds on SoundStream by us-
ing a similar encoder-decoder architecture to learn a low-
dimensional quantized latent space using a reconstruction loss,
a perceptual loss, and an adversarial loss. Descript Audio
Codec (DAC) [8] introduced several enhancements, including
a reduction of codebook collapse and a multi-scale mel loss,
enabling it to obtain better reconstruction of high-frequencies
and reduced perceptual audio artifacts.

III. METHOD

A. Architecture

DisCoder follows a GAN-based architecture, where the
generator consists of an encoder and decoder to synthesize raw
audio from mel spectrograms (cf. Fig. 1). The encoder projects
the input to a lower dimensional latent representation using
multiple 1D convolutional layers and the AMP module as
introduced by BigVGAN [11], which uses low-pass filters for
anti-aliasing and dilated convolutions with the snake activation
function [14] to provide a periodic inductive bias. During
the initial training phase, we align our latent space with the
latent space of a pre-trained DAC encoder. Specifically, we
use a version of DAC trained on 44.1 kHz audio using nine
codebooks, to ensure that the encoder learns a representation
that can be faithfully restored to high-fidelity audio. A DAC
decoder subsequently transforms this representation into a raw
audio signal. After the initial training phase, we remove the
latent space loss and activate a skip connection by taking

the output of the first convolution layer in the encoder and
applying strided average pooling to adjust the time dimension,
aligning it with the input of the decoder. The transformed out-
put is then added to the input of the decoders’ first convolution
layer. This skip connection slightly improved the results in our
experiments, likely because it preserved information encoded
in the initial mel spectrogram that was beneficial for the DAC
decoder during reconstruction.

We use several discriminators to distinguish real from
synthesized audio signals. The multi-period discriminator
(MPD), introduced by HiFi-GAN [4], consists of several
sub-discriminators that shape the input signal into a 2D
representation based on a specified period. By subsequently
applying 2D convolutions, each sub-discriminator attends to
different periodic components of the input signal. Additionally,
we use a multi-resolution spectrogram discriminator (MRSD)
introduced by UnivNet [15], where each sub-discriminator
operates over spectrograms generated with a different STFT
resolution. We use an adaptation from DAC [8] that splits the
STFT into sub-bands to improve high-frequency components
and utilizes both real and imaginary parts to improve phase
modeling.

B. Training Losses

Our approach uses a variety of loss functions, including
reconstruction, adversarial, and feature matching losses, that
have been proven effective in previous neural vocoding liter-
ature [3], [4], [11]. An additional latent space alignment loss
helps to leverage the DAC prior during the initial phase of
training. The generator GΘ (x) := Decdac

ϕ ◦Encθ ◦ψmel (x) has
parameters Θ = {θ, ϕ} and takes a normalized audio segment
x ∈ Rseg from our dataset D as input. The function ψmel

converts this signal to a mel spectrogram using a default con-
figuration of 128 mel bins, an FFT and window size of 1024,
and a hop length of 256. The waveform loss Lwav

G quantifies
the difference between the original and reconstructed signal.

Lwav
G = Ex∼D

[
∥x−GΘ (x)∥1

]
(1)



To align the latent space of DisCoder with the latent space of
the frozen DAC encoder, we use the L1-loss.

Ldac
G = Ex∼D

[
∥Encθ

(
ψmel (x)

)
− Encdac (x)∥1

]
(2)

The multi-scale mel loss [8] Lmel
G calculates the difference

between the mel spectrogram of the original and reconstructed
audio for multiple mel configurations. Lstft

G is defined similarly
for the real STFT output. For f ∈ {mel, stft} the losses are
defined as

Lf
G =

∑
c

Ex∼D

[
∥ψf

c (x)− ψf
c (GΘ (x))∥1

]
(3)

Similar to HiFi-GAN [4], we use the least-squares GAN loss
[16] for our adversarial objective. We denote the i-th sub-
discriminator of type t ∈ T as Dt

i where T = {MPD,MRSD}.
The number of sub-discriminators of type t are represented by
nt. As shown in Fig. 1, we use nMPD = 5 and nMRSD = 3.

Lgen
G =

∑
t∈T

nt∑
i=1

Ex∼D

[(
1−Dt

i (GΘ (x))
)2]

(4)

LD =
∑
t∈T

nt∑
i=1

Ex∼D

[
Dt

i (GΘ (x))
2
+
(
1−Dt

i (x)
)2]

(5)

We also use a feature matching loss [17] Lfeat
G that mini-

mizes the L1 distance between the feature maps of all sub-
discriminators for the original and reconstructed audio. We
denote the j-th layer of the i-th sub-discriminator of type t as
Dt,j

i . Let Lt denote the number of layers and N t
j the number

of features in the j−th layer of a discriminator of type t.

Lfeat
G =

∑
t∈T

nt∑
i=1

Lt∑
j=1

1

N t
j

Ex∼D

[
∥Dt,j

i (x)−Dt,j
i (GΘ (x))∥1

]
(6)

Finally, the generator losses Ls
G are weighted with λs for

s ∈ {wav, dac,mel, stft, gen, feat} and aggregated.

IV. EXPERIMENTS

A. Training
For training, we convert the MTG-Jamendo [18] music and

LibriTTS [19] speech datasets to 44.1 kHz mono audio and
perform normalization on a per-file basis. Segments of 16,384
frames (0.37s) are randomly extracted and converted to mel
spectrograms with 128 mel bins, using an FFT and window
size of 1024, and a hop length of 256. We use a learning rate
of α = 10−4 and the AdamW [20] optimizer with β1 = 0.8
and β2 = 0.99. In our experiments, exponentially decaying the
learning rate with γ = 0.9995 and clipping gradients above
103 made training significantly more stable. The loss functions
are weighted as follows: λdac = λmel = 15, λstft = λwav =
λgen = 1, λfeat = 2. The parameters ϕ of the DAC decoder
are initially frozen during training to enable the DisCoder
encoder to approximate the DAC latent space. However, we
found that this latent representation could not be reconstructed
perfectly, likely due to the missing phase information in the
mel spectrogram. By unfreezing the DAC decoder after 105

steps and setting λdac = 0, the fidelity of the reconstructed
audio was significantly improved.

TABLE I
ABLATION STUDY COMPARING PREDICTION TARGETS AND MODEL SIZES.
RESULTS OF UNSEEN AUDIO CLIPS FROM THE MTG-JAMENDO DATASET.
THE REPORTED VALUES (MEAN ± STANDARD DEVIATION) SHOW THAT
PREDICTING THE QUANTIZED CONTINUOUS LATENT Z PERFORMS BEST.

Target Param. MR-STFT ↓ MR-MEL ↓ CDPAM ↓ ViSQOL ↑
QL 220M 1.062±0.08 2.768±0.28 0.315±0.23 4.394±0.20
QL 430M 0.994±0.08 2.577±0.30 0.313±0.24 4.479±0.19
Z 220M 1.053±0.09 2.625±0.29 0.319±0.22 4.401±0.21
Z 430M 0.943±0.10 2.456±0.31 0.312±0.23 4.512±0.17

B. Validation

We evaluate our model using several objective metrics. The
multi-resolution STFT (MR-STFT) [21] metric aggregates the
STFT loss over several configurations that differ in their FFT
size, window size, and hop length. The multi-resolution mel
spectrogram loss (MR-MEL) [8] computes the sum over the
differences between the mel spectrogram of the original and
reconstructed audio signal for multiple STFT and mel bin
configurations. We also use ViSQOL [22], a metric that mim-
ics the subjective assessments of audio quality, and CDPAM
[23], which computes the similarity between two audio signals.
For validation on speech, we additionally employ PESQ [24].
Finally, we conduct a listening test using webMUSHRA [25],
following the standard MUSHRA protocol [26]. We present
audio experts with 5-second snippets from MTG-Jamendo and
MUSDB-HQ [27] that were not seen during training. The
listeners rate these snippets on a scale between 0 and 100
in a double-blind setting. A hidden reference and a 7 kHz
low-pass version of the reference are used as anchors.

C. Ablation

We conducted an ablation study to determine how the
number of parameters and different DAC prediction targets
impact the audio reconstruction quality. The prediction target
determines which latent representation of DAC is learned
during the initial training phase and how Ldac

G is calculated. As
shown in Fig. 1, this choice also specifies the bottleneck di-
mension of our architecture. We used a DAC model trained on
44.1 kHz audio with 9 codebooks, each with 1024 quantized
vectors of dimension 8. We tested the following targets:
• Quantized Latents (QL): In the QL setup, we predict for

each audio frame (86 per second) the quantized vectors for
all 9 codebooks. The bottleneck dimension of our encoder
is therefore [8 · 9, frames].

• Quantized continuous representation (Z): DAC projects
the quantized latents to the quantized continuous represen-
tation of dimension [1024, frames] before passing it to the
DAC decoder. Using this prediction target, the bottleneck
dimension is significantly higher.
We also investigated a third approach, in which the model

only predicted the indices of the quantized vectors used
for each codebook, resulting in a bottleneck dimension of
[9, frames]. Preliminary results showed that our encoder was
unable to approximate this low-dimensional representation,
which may be attributed to the absent phase information in



Ground Truth HiFi-GAN BigVGAN-v2 DisCoder

Fig. 2. Comparison of mel spectrogram reconstruction quality between HiFi-GAN, BigVGAN-v2, and DisCoder against the ground truth. The three model
columns show the absolute error between the mel spectrogram of the synthesized audio and ground truth audio. The rows represent two unseen music clips
from the MTG-Jamendo dataset. DisCoder contains significantly less pronounced errors compared to HiFi-GAN and BigVGAN-v2.

TABLE II
RESULTS (MEAN ± STD.) OF UNSEEN LIBRITTS CLIPS FROM THE
TEST-CLEAN AND TEST-OTHER SUBSETS. DISCODER ACHIEVES

COMPETITIVE PERFORMANCE ON SPEECH RECONSTRUCTION.

Model MR-STFT ↓ MR-MEL ↓ CDPAM ↓ ViSQOL ↑ PESQ ↑
HiFi-GAN 0.886±0.07 2.295±0.20 0.099±0.05 4.512±0.08 3.651±0.30
BigVGAN 0.802±0.08 1.819±0.13 0.051±0.03 4.613±0.07 4.251±0.15
BigVGAN-v2 0.713±0.07 1.845±0.14 0.053±0.04 4.691±0.02 4.130±0.21
DisCoder 0.712±0.09 1.826±0.15 0.047±0.03 4.664±0.03 4.025±0.30

mel spectrograms. Table I shows the results of this ablation
study for two model sizes and prediction targets of QL and
Z. Each model was trained for 500k steps and evaluated on
unseen audio clips from the MTG-Jamendo dataset. The 430M
parameter model and the Z prediction target achieved the best
results. This suggests that the higher-dimensional latent repre-
sentation was beneficial, enabling greater modeling flexibility
and reducing the impact of early-stage mispredictions in the
latent space.

D. Results

We evaluate our proposed architecture against state-of-
the-art neural vocoders on both speech and music datasets,
utilizing publicly available checkpoints of the models for
comparison. For BigVGAN, we test two different variants:
the original model trained on the LibriTTS [19] dataset using
100 mel bins and a 22 kHz sampling rate, and a more recent
version trained on a broader set of data sources using 128
mel bins and a 44.1 kHz sampling rate. The more recent ver-
sion showed significant improvements and reduced perceptual
artifacts for non-speech audio. We also include a pre-trained
checkpoint of HiFi-GAN provided by AudioLDM [6] that was
trained on the AudioSet [28] dataset using 256 mel bins and
a 48 kHz sampling rate. For the DisCoder architecture, we
used a 430M parameter model with the Z prediction target as
outlined in Table I and extended the training time to 2M steps.

The mel spectrogram reconstruction quality of two sam-
ples from the MTG-Jamendo dataset between HiFi-GAN,
BigVGAN-v2, and DisCoder is shown in Fig. 2. Our approach
is able to reconstruct music with less artifacts; this is most

TABLE III
RESULTS (MEAN ± STD.) OF UNSEEN MTG-JAMENDO AND UNSEEN

MUSDB-HQ AUDIO CLIPS. DISCODER STATISTICALLY SIGNIFICANTLY
OUTPERFORMS OTHER APPROACHES ON MUSIC SYNTHESIS IN MUSHRA.

Model MR-STFT ↓ MR-MEL ↓ CDPAM ↓ ViSQOL ↑ MUSHRA ↑
HiFi-GAN 0.982±0.05 2.485±0.24 0.073±0.04 4.621±0.08 78.97±17.12
BigVGAN 1.056±0.07 2.568±0.23 0.073±0.04 4.619±0.07 55.71±22.12
BigVGAN-v2 0.979±0.06 2.642±0.27 0.080±0.04 4.641±0.06 83.42±14.93
DisCoder 0.877±0.09 2.328±0.22 0.067±0.04 4.594±0.10 88.14±13.91

noticeable when the audio contains sudden modulations or
accented beats.

Speech. We evaluate the models on speech clips from
LibriTTS [19]. Table II shows the objective metrics, with our
architecture and both BigVGAN versions performing similarly,
while HiFi-GAN shows slightly worse performance.

Music. Table III outlines the validation results of audio
clips from MTG-Jamendo [18] and MUSDB-HQ [27]. Except
for ViSQOL, DisCoder outperforms the previous approaches
on objective metrics. In the conducted MUSHRA test, nine
participants with a background in audio signal processing were
presented with ten randomly selected five-second stimuli. The
hidden reference anchor scored the best at 99.78 ± 1.23, the
hidden 7 kHz anchor received the lowest score at 43.53 ±
17.84. A Wilcoxon signed rank-test found the difference
between the models to be statistically significant (p-value
< 0.05) with DisCoder performing the best, and participants
noting better reconstruction of pronounced beats matching the
results observed in Fig. 2.

V. CONCLUSION

We propose a novel neural vocoder using a discriminative
encoder-decoder architecture informed by neural audio codecs
for high-fidelity audio synthesis from mel spectrograms. Dis-
Coder achieves state-of-the-art performance in music synthesis
by connecting the previously distinct areas of neural audio
codecs and neural vocoders. We validate our approach on
several objective metrics and through a MUSHRA test with
audio experts. We believe this work contributes to the field
of audio synthesis and opens up new possibilities for audio
generation in various applications, including spectrogram-
based generation of high-fidelity polyphonic music.
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