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ABSTRACT
We revisit the problem of distributed k-selection where, given
a general connected graph of diameter D consisting of n
nodes in which each node holds a numeric element, the goal
is to determine the kth smallest of these elements. In our
model, there is no imposed relation between the magnitude
of the stored elements and the number of nodes in the graph.
We propose a randomized algorithm whose time complexity
is O(D logD n) with high probability. Additionally, a de-
terministic algorithm with a worst-case time complexity of
O(D log2

D n) is presented which considerably improves the
best known bound for deterministic algorithms. Moreover,
we prove a lower bound of Ω(D logD n) for any randomized
or deterministic algorithm, implying that the randomized
algorithm is asymptotically optimal.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
Data Aggregation, Distributed Algorithms, In-Network Ag-
gregation, Median, Time Complexity, Sensor Networks
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1. INTRODUCTION
There is a recent growing interest in distributed aggrega-

tion, thanks to emerging application areas such as, e.g., data
mining or sensor networks [5, 17, 18]. The goal of distributed
aggregation is to compute an aggregation function on a set
of distributed values, each value stored at a node in a net-
work. Typical aggregation functions are max, sum, count,
average, median, variance, kth smallest or largest value, or
combinations thereof such as, e.g., “What is the average of
the 10% largest values?”

The database community classifies aggregation functions
into three categories: distributive (max, min, sum, count),
algebraic (plus, minus, average, variance), and holistic (me-
dian, kth smallest or largest value). Combinations of these
functions are believed to support a wide range of reasonable
aggregation queries.1

It is well-known that distributive and algebraic functions
can easily be computed using the so-called convergecast op-
eration, a straightforward flooding-echo procedure executed
on a spanning tree. Convergecast is fast, as it terminates
after at most 2D time, where D denotes the diameter of the
network. On the other hand, it is believed that holistic func-
tions cannot be supported by convergecast. After all, the
very name “holistic” indicates that one “cannot look into”
the set of values, more precisely, that all the values need to
be centralized at one node in order to compute the holistic
function. Bluntly, in-network aggregation is considered to
be practically impossible for holistic functions.

For arbitrary k, a selection algorithm answers questions
about the kth smallest value in a set or network. The well-
known median problem is a special case of the k-selection
problem. Generally speaking, selection solves aggregation
queries about order statistics and percentiles. Surprisingly,
little is known about distributed (network) selection, despite
being a significant missing piece of understanding data ag-
gregation.

In this paper, we shed some new light on the problem of
distributed selection for general networks with n nodes and
diameter D. In particular, we prove that distributed selec-
tion is strictly harder than convergecast by giving a lower
bound of Ω(D logD n) on the time complexity in Section 5.
In other words, to the best of our knowledge, we are the
first to formally confirm the preconception about holistic
functions being strictly more difficult than distributive or

1We encourage the reader to think of a natural aggregation
(single value result) query that cannot be formulated by
a combination of distributive, algebraic, and holistic func-
tions.



algebraic functions. In addition, in Section 4.1, we present
a novel Las Vegas algorithm which matches this lower bound
with high probability, improving the best randomized algo-
rithm. As for many networks this running time is strictly
below collecting all values at one node, our new upper bound
proves that (contrary to common belief) in-network aggre-
gation is possible also for holistic functions; in fact, in net-
work topologies where the diameter is large, e.g. in grids,
selection can be performed within the same asymptotic time
bounds as convergecast. As a third result, in Section 4.2,
we derandomize our algorithm, and arrive at a determin-
istic distributed selection algorithm with a time complexity
of O(D log2

D n) which constitutes a substantial improvement
over prior art.

2. RELATED WORK
Finding the kth smallest value among a set of n elements

is a classic problem which has been extensively studied in
the past approximately 30 years, both in a distributed and a
non-distributed setting. The problem of finding the median,
i.e., the element for which half of all elements are smaller and
the other half is larger, is a special case of the k-selection
problem which has also received a lot of attention. Blum et
al. [1] proposed the first deterministic sequential algorithm
that, given an array of size n, computes the kth smallest
element in O(n) time. Subsequently, Schönhage et al. [15]
developed an algorithm requiring fewer comparisons in the
worst-case.

As far as distributed k-selection is concerned, a rich col-
lection of algorithms has been amassed for various models
over the years. A lot of work focused on special graphs such
as stars and complete graphs [6, 10, 13, 14]. The small graph
consisting of two connected nodes where each node knows
half of all n elements has also been studied and algorithms
with a time complexity of O(log n) have been presented [2,
9]. For deterministic algorithms in a restricted model, this
result has been shown to be tight [9]. Frederickson [3] pro-
posed algorithms for rings, meshes, and also complete bi-
nary trees whose time complexities are O(n), O(

√
n), and

O(log3 n), respectively.
Several algorithms, both of deterministic [7, 8, 16] and

probabilistic nature [11, 12, 16], have also been devised for
arbitrary connected graphs. Some of these deterministic al-
gorithms restrict the elements the nodes can hold in that
the maximum numeric item xmax has to be bounded by
O(nO(1)). Given this constraint, applying binary search re-
sults in a time complexity of O(D log xmax) = O(D log n) [8].
Alternatively, by exponentially increasing the initial guess of
xk = 1, the solution can be found in O(D log xk) [7]. To the
best of our knowledge, the only non-restrictive determinis-
tic k-selection algorithm for general graphs with a sublinear
time complexity in the number of nodes is due to Shrira et
al. [16]. Their adaptation of the classic sequential algorithm
by Blum et al. for a distributed setting has a worst-case run-
ning time of O(Dn0.9114). In the same work, a randomized
algorithm for general graphs is presented. The algorithm
simply inquires a random node for its element and uses this
guess to narrow down the number of potential elements. The
expected time complexity is shown to be O(D log n). Kempe
et al. [4] proposed a gossip-based algorithm that, with proba-
bility at least 1−ε, computes the kth smallest element within
O((log n+log 1

ε
)(log n+log log 1

ε
)) rounds of communication

on a complete graph.

If the number of elements N is much larger than the num-
ber of nodes, in O(D log log min{k, N−k+1}) expected time,
the problem can be reduced to the problem where each node
has exactly one element using the algorithm proposed by
Santoro et al. [11, 12]. However, their algorithm depends
on a particular distribution of the elements on the nodes.
Patt-Shamir [8] showed that the median can be approxi-
mated very efficiently, again subject to the constraint that
the maximum element must be bounded by a polynomial in
n.

3. MODEL AND DEFINITIONS
In our system model, we are given a connected graph

G = (V, E) of diameter D with node set V and edge set E.
The cardinality of the node set is |V | = n and the nodes are
denoted v1, . . . , vn. The diameter of a graph is the length
of the longest shortest path between any two nodes. Each
node vi holds a single element xi.

2 Without loss of gener-
ality, we can assume that all elements xi are unique. If two
elements xi and xj were equal, node IDs, e.g. i and j, could
be used as tiebreakers. The goal is to efficiently compute the
kth smallest element among all elements x1, . . . , xn, and the
nodes can achieve this goal by exchanging messages. Nodes
vi and vj can directly communicate if (vi, vj) ∈ E.

The standard asynchronous model of communication is
used. Throughout this paper, the communication is consid-
ered to be reliable, there is no node failure, and all nodes
obediently follow the mandated protocol. We do not impose
any constraint on the magnitude of the stored elements.
However, we restrict the size of any single message such
that it can contain solely a constant number of both node
IDs and elements, and also at most O(log n) arbitrary addi-
tional bits. Such a restriction on the message size is needed,
otherwise a single convergecast would suffice to accumulate
all elements at a single node, which could subsequently solve
the problem locally.

As both proposed algorithms are iterative in that they
continuously reduce the set of possible solutions, we need to
distinguish between nodes holding elements that are still of
interest from the other nodes. Henceforth, the first set of
nodes is referred to as candidate nodes or candidates. We
call the reduction of the search space by a certain factor a
phase of the algorithm. The number of candidate nodes in
phase i is denoted n(i).

We assume that all nodes know the diameter D of the
graph. Furthermore, it is assumed that a breadth first search
spanning tree rooted at the node initiating the algorithm
has been computed beforehand. These assumptions are not
critical as both the diameter and the spanning tree can be
computed in 2D time.

The main complexity measure used is the time complex-
ity which is, for deterministic algorithms, the time required
from the start of an execution to its completion in the worst
case for every legal input and every execution scenario. The
time complexity is normalized in that the slowest message is
assumed to reach its target after one time unit. As far as our
randomized algorithm is concerned, we determine the time
after which the execution of the algorithm has completed

2Our results can easily be generalized to the case where more
than one element is stored at each node. The time complex-
ities are then stated in terms of the number of elements
N > n instead of the number of nodes.



with high probability, i.e., with probability at least 1 − 1
nc

for a constant c ≥ 1. Thus, in both cases, we do not assign
any cost to local computation.

4. ALGORITHMS
As mentioned before, the algorithms presented in this pa-

per operate in sequential phases in which the space of can-
didates is steadily reduced. This pattern is quite natural
for k-selection and used in all other proposed algorithms
including the non-distributed case. The best known deter-
ministic distributed algorithm for general graphs uses the
well-known median-of-median technique, resulting in a time
complexity of O(Dn0.9114) for a constant group size. A
straightforward modification of this algorithm in which the

group size in each phase i is set to O(
√

n(i)) results in a
much better time complexity. It can be shown that the time
complexity of this variant of the algorithm is bounded by
O(D(log n)log log n+O(1)). However, since our proposed al-
gorithm is substantially better, we will dispense with the
analysis of this median-of-median-based algorithm. Due to
the more complex nature of the deterministic algorithm, we
will treat the proposed randomized algorithm first.

4.1 Randomized Algorithm
While the derivation of an expedient deterministic algo-

rithm is somewhat intricate, it is remarkably simple to come
up with a fast randomized algorithm. An apparent solution,
proposed by Shrira et al. [16], is to choose a node randomly
and take its element as an initial guess. After computing
the number of nodes with smaller and larger elements, it is
likely that a considerable fraction of all nodes no longer need
be considered. By iterating this procedure on the remain-
ing candidate nodes, the kth smallest element can be found
quickly for all k.

A node can be chosen randomly using the following scheme:
A message indicating that a random element is to be selected
is sent along a random path in the spanning tree starting
at the root. If the root has l children v1, . . . , vl where child
vi is the root of a subtree with ni candidate nodes includ-
ing itself, the root chooses its own element with probability
1/(1+

∑l
j=1 nj). Otherwise, it sends a message to one of its

children. The message is forwarded to node vi with probabil-
ity ni/(1 +

∑l
j=1 nj) for all i ∈ {1, . . . , l}, and the recipient

of the message proceeds in the same manner. It is easy to
see that this scheme selects a node uniformly at random,
and that it requires at most 2D time, because the times to
reach any node and to report back are both bounded by
D. Note that after each phase the probabilities change as
they depend on the altered number of candidate nodes re-
maining in each subtree. However, having determined the
new interval in which the solution must lie, the number of
nodes satisfying the new predicate in all subtrees can again
be computed in 2D time.

This straightforward procedure yields an algorithm that
finds the kth smallest element in O(D log n) expected time,
as O(log n) phases suffice in expectation to narrow down the
number of candidates to a small constant. It can even be
shown that the time required is O(D log n) with high proba-
bility. The key observation to improve this algorithm is that
picking a node randomly always takes O(D) time, therefore
several random elements ought to be chosen in a single phase
in order to further reduce the number of candidate nodes.
The method to select a single random element can easily

Algorithm 1 Arand(t, k)

1: xj−1 := −∞; xj := ∞
2: repeat
3: x0 := xj−1; xt+1 := xj

4: {x1, . . . , xt} := getRndElementsInRange(t, (xj−1, xj))
5: for i = 1, . . . , t in parallel do
6: ri := countElementsInRange((xi−1, xi])
7: od
8: if x0 6= −∞ then r1 := r1 + 1 fi
9: j := minl∈{1,...,t+1}

∑l
i=1 ri > k

10: k := k −∑j−1
i=1 ri

11: if k 6= 0 and j 6= 1 then k := k + 1 fi
12: until rj ≤ t or k = 0
13: if k = 0 then
14: return xj

15: else
16: {x1, . . . , xs} := getElementsInRange([xj−1, xj ])
17: return xk

18: fi

be modified to allow for the selection of several random ele-
ments by including the number of needed random elements
in the request message. A node receiving such a message
locally determines whether its own element is chosen, and
also how many random elements each of its children’s sub-
trees has to provide. Subsequently, it forwards the requests
to all of its children whose subtrees must produce at least
one random element. Note that all random elements can
be found in D time independent of the number of random
elements, but due to the restriction that only a constant
number of elements can be packed into a single message, it
is likely that not all elements can propagate back to the root
in D time. However, all elements still arrive at the root in
O(D) time if the number of random elements is bounded by
O(D).

Pseudo-code for the algorithm Arand which determines
the kth smallest element by making use of a larger number
of random elements is depicted in Algorithm 1.

The algorithm Arand takes two parameters, the number
of random elements t considered in each phase, and the po-
sition of interest k. The function getRndElementsInRange
collects t random elements in the range (xj−1, xj). As men-
tioned before, this operation includes in a first step the
counting of nodes whose elements lie in the specified in-
terval. Once the number of candidate nodes in each subtree
has been determined, the t random elements are selected
and reported back to the root. Hence, this function call
overall takes O(D + t) time. After acquiring the random
elements, which are ordered such that x1 < . . . < xt, the
number of elements ri in the intervals (xi−1, xi] are counted
using the function countElementsInRange. All these count-
ing requests can be sent one after the other, thus there is no
need to wait for one single counting operation to complete.
By counting the nodes in each fraction in parallel, the time
complexity of this operation is again O(D + t). Afterwards,
the interval (xj−1, xj ] in which the wanted element is to be
found is determined, and k is updated accordingly. These
steps are repeated until the solution is found, i.e., k = 0, or
the fraction is small enough such that all elements can be
collected in O(D+t) time and the solution can be computed
locally.



It is evident that the number of iterations determines the
overall time complexity, as each operation can be performed
in O(D) time provided that t ∈ O(D). The following lemma
states how many phases are required in order to find the
solution with high probability.

Lemma 4.1. In a connected graph of diameter D ≥ 2 con-
sisting of n nodes, algorithm Arand(8λD, k), where λ ≥ 1,
determines the kth smallest element in less than 3 logD n
phases w.h.p.

Proof. First, we compute an upper bound on the proba-
bility that after any phase i the wanted element is in a frac-
tion of size at least c log D

D
times the size of the fraction after

phase i−1 for a suitable constant c, i.e., n(i) ≥ n(i−1) c log D
D

.
Let x̂1 < . . . < x̂n denote the total order of all elements. The
probability that none of the elements x̂k+1, . . . , x̂k+ c log D

2D

are among the t = 8λD random elements is bounded by(
1− c log D

2D

)8λD
. The same argument holds for the elements

x̂k−1, . . . , x̂k− c log D
2D

and thus, by virtue of a union-bound

argument, we have that

P
[
n(i) ≥ n(i−1) c log D

D

]
≤ 2

(
1− 4λc log D

8λD

)8λD

≤ 2e−4λc log D.

We call phase i successful if n(i) < n(i−1) c log D
D

. By set-

ting c := 16
17

, less than 2 logD n successful phases are required

to find x̂k as it holds for all D ≥ 1 that
(

c log D
D

)2
< 1

D
for

this choice of c.
Let the random variable U(τ) denote the number of un-

successful phases out of τ phases in total. The probability
that τ := 3 logD n phases suffice is therefore

P[U(3 logD n) ≥ logD n]

≤
3 logD n∑

i=logD n

(
3 logD n

i

)(
2e−4λc log D

)i(
1− 2e−4λc log D

)3 logD(n)−i

≤
(

3 logD n

logD n

) (
2e−4λc log D

)logD n

≤
(

6ee−4λc log D logD n

logD n

)logD n

≤
(
e−(4λc log D−ln 6e)

)logD n

≤
(

1

Dλ

)logD n

=
1

nλ
.

This holds because 4λc ln D
ln 2

− ln 6e > λ ln D for c = 16
17

and
D ≥ 2. Hence, with high probability, the algorithm termi-
nates after less than 3 logD n phases.

As the number of phases is O(logD n) with high probabil-
ity, we immediately get the following result.

Theorem 4.2. In a connected graph of diameter D ≥
2 consisting of n nodes, the time complexity of algorithm
Arand(8λD, k), where λ ≥ 1, is O(D logD n) w.h.p.

This algorithm is considerably faster than the algorithm se-
lecting only a single random element in each phase. In Sec-
tion 5, we prove that no deterministic or probabilistic algo-
rithm can be better asymptotically, i.e., algorithm Arand is
asymptotically optimal.

4.2 Deterministic Algorithm
The difficulty of deterministic iterative algorithms for k-

selection lies in the selection of elements that provably al-
low for a reduction of the search space in each phase. Once
these elements have been found, the reduced set of candidate
nodes can be determined in the same way as in the random-
ized algorithm. Therefore, the only difference between the
two algorithms is the way these elements are chosen. While
the function getRndElementsInRange performs this task in
the randomized algorithm Arand, a suitable counterpart for
the deterministic algorithm, referred to as Adet, has to be
derived.

A simple idea to go about this problem is to start sending
up elements from the leaves of the spanning tree, accumu-
lating the elements from all children at the inner nodes, and
then recursively forwarding a selection of t elements to the
parent. The problem with this approach is the reduction
of all elements received from the children to the desired t
elements. If a node vi receives t elements from each of its
ci children in the spanning tree, the t elements that par-
tition all cit nodes into segments of approximately equal
size ought to be found. However, in order to find these el-
ements, the number of elements in each segment has to be
counted starting at the leaves. Since this counting has to
be repeated in each step along the path to the root, the
time required to find a useful partitioning into k segments
requires O(D(D + Ct)) time, where C := maxi∈{1,...,n} ci.
This approach suffers from several drawbacks: It takes at
least O(D2) time just to find a partitioning, and the time
complexity depends on the structure of the spanning tree.

Our proposed algorithm Adet solves these issues in the
following manner. In any phase i, the algorithm splits the
entire graph into O(

√
D) groups, each of size O(n(i)/

√
D).

Recursively, in each of those groups a particular node ini-
tiates the same partitioning into O(

√
D) groups as long as

the group size is larger than O(
√

D). Groups of size at most

O(
√

D) simply report all their elements to the node that
initiated the grouping at this recursion level. Once such
an initiating node v has received all O(

√
D) elements from

each of the O(
√

D) groups it created, it sorts those O(D)
elements, and subsequently issues a request to count the
nodes in each of the O(D) intervals induced by the received
elements. Assume that all the groups created by node v

together contain n
(i)
v nodes in phase i. The intervals can

locally be merged into O(
√

D) intervals such that each in-

terval contains at most O(n
(i)
v /

√
D) nodes. These O(

√
D)

elements are recursively sent back to the node that created
the group to which node v belongs. Upon receiving the O(D)

elements from its O(
√

D) groups and counting the number
of nodes in each interval, the root can initiate phase i + 1
for which it holds that n(i+1) < n(i)/O(

√
D). The proce-

dure getPartitionInRange that computes this partitioning is
depicted in Algorithm 2.

We will now study each part of the function getPartition-
InRange in greater detail. In a first step, groups are created
using the function createGroups. This operation includes
the counting of the number of remaining candidate nodes
in phase i by accumulating the updated counters from each
subtree. Simultaneously, the groups are built using the fol-
lowing procedure. The leaf nodes return 0 if their elements
do not fulfill the predicate of the current phase, and 1 oth-
erwise. Any inner node v with children c1, . . . , cp whose



Algorithm 2 getPartitionInRange(g, (xj−1, xj))

1: n′ := countElementsInRange((xj−1, xj))
2: if n′ > g then
3: {v1, . . . , vl} := createGroups(g, (xj−1, xj))
4: for i = 1, . . . , l in parallel do
5: {xi1, . . . , xim} := getPartitionInRange(g, (xj−1, xj))

from vi

6: od
7: X :=

⋃
i=1,...,l{xi1, . . . , xim}

8: {x1, . . . , xs} := sort(X )
9: for i = 1, . . . , s− 1 in parallel do

10: ri := countElementsInRange((xi, xi+1])
11: od
12: {x′1, . . . , x′m} := reduce({x1, . . . , xs}, {r1, . . . , rs−1})
13: else
14: {x′1, . . . , x′m} := getElementsInRange((xj−1, xj))
15: fi
16: return {x′1, . . . , x′m}

subtrees contain n
(i)
1 , . . . , n

(i)
p candidates in phase i creates

groups g1, . . . , gt, where ∀h ∈ {1, . . . , t} : gh ⊆ {1, . . . , p},⋃
h∈{1,...,t} gh = {1, . . . , p}, and ∀h, l ∈ {1, . . . , t} : gh ∩ gl =

∅. The size of a group gh is defined as s(gh) :=
∑

j∈gh
n

(i)
j .

The groups are created such that s(gh) ≤ dn(i)
v /

√
De for

all h, and t is minimal. Unless all groups have exactly size

dn(i)
v /

√
De, node v adds itself to any suitable group if its

element is still of interest. For each group gh not includ-
ing node v, v selects a leader which is any node cl, where
l ∈ gh. This particular node is informed about its duty to
find a partitioning within its group in the next step. Subse-
quently, all nodes are informed about their group member-
ship. Let s denote the size of the group to which v belongs,

including v. If s = dn(i)
v /

√
De or v is the root node, v

becomes the leader of this group as well. Otherwise, s is
propagated to the parent node in order to further enlarge
the group and to find a suitable leader. Note that, while in-
ner nodes can act as relay nodes for group communication,
any edge at a specific recursion level is used strictly by at
most one group. All the selected leaders report to the root
which concludes the operation createGroups. As the size of

each group is larger than dn(i)
v /

√
De/2, otherwise at least

two groups could be merged, the total number of groups is
bounded by l ≤ g := 2

√
D.

Once these groups are set up, getPartitionInRange is called
recursively at each leader in order to further partition the
groups. The return value of this function call at a par-
ticular node v is a subset of the elements stored at can-
didate nodes belonging to the subtree rooted at v. If its
group consists of less than g = 2

√
D candidates, all ele-

ments are returned to the node that issued this request for
a further partitioning. In case the group is larger, the re-
sulting sets of the recursive calls are accumulated and sorted
using the function sort. Afterwards, the number of elements
belonging to candidate nodes that are part of this group
are counted for each induced interval. The function reduce
merges adjacent intervals as long as each interval contains

at most n
(i)
v /

√
D elements, and the reduced set of elements

{x′1, . . . , x′m} ⊂ {x1, . . . , xs−1} inducing these new intervals
is returned. The following lemma bounds the number of ele-
ments returned and the number of elements in each interval.

Lemma 4.3. At any node v in phase i, getPartitionIn-
Range returns a set of at most 2

√
D + 1 elements which

induce intervals containing at most n
(i)
v /

√
D elements each.

Proof. We will prove the lemma by induction. Both
claims are obviously true if the group is of size smaller than
g = 2

√
D. Assume now that the subtree rooted at node v

contains more than g candidates, and that, by the induction
hypothesis, both claims hold for all l returned sets of ele-

ments. Let n
(i)
vj denote the number of elements in the group

containing node vj in phase i. As any interval {xj , xj+1} for
j ∈ {1, . . . , s−2} contains elements from at most one interval
from each of the l groups, we have that the total number of

elements in this interval is bounded by
∑l

j=1 n
(i)
vj /

√
D ≤

n
(i)
v /

√
D. If two adjacent intervals together contain less

than n
(i)
v /

√
D elements, they are combined into one interval.

Once no more intervals can be merged, any two consecutive

segments contain more than n
(i)
v /

√
D elements and it there-

fore holds that 2n
(i)
v = 2

∑l
j=1 n

(i)
vj > (l−1)n

(i)
v /

√
D. Hence

it follows that l is upper bounded by 2
√

D + 1.

The root uses the elements returned by getPartitionIn-
Range to narrow down the range of potential candidates as
described in Section 4.1. Similarly to Arand, the algorithm
Adet takes two parameters which are the group size g and
the value k. We are now in the position to prove the follow-
ing theorem.

Theorem 4.4. In a connected graph of diameter D ≥
2 consisting of n nodes, the time complexity of algorithm
Adet(2

√
D, k) is O(D log2

D n).

Proof. From Lemma 4.3 it follows that n(i+1) ≤ n(i)/
√

D,
thus the number of phases is bounded by O(logD n). The
groups can be created in O(D) time. The only other non-
local operations are the collection of the sets from all sub-
groups and the counting of all elements in each interval
within the entire group. As l is bounded by 2

√
D and

each group returns at most 2
√

D + 1 elements according
to Lemma 4.3, at most 4D + 2

√
D elements have to be col-

lected at the initiating node which can be done in O(D)
time. Consequently, the number of elements in each inter-
val can also be counted in O(D) time. Let T : IN → IN
where T (n) denotes the time complexity of getPartition-
InRange if there are n candidate nodes. We have that
T (n) ≤ T (n/

√
D) + cD for a suitable constant c, imply-

ing that T (n) ∈ O(D logD n). The time complexity of Adet

is therefore bounded by O(D log2
D n).

5. LOWER BOUND
In this section, we prove a time lower bound for generic

distributed selection algorithms which shows that the time
complexity of the simple randomized algorithm of Section
4.1 for finding an element of rank k is asymptotically op-
timal for most values of k. Informally, we call a selection
algorithm generic if it does not exploit the structure of the
element space except for using the fact that there is a global
order on all the elements. Formally, this means that the only
access to the structure of the element space is by means of
the comparison function. Equivalently, we can assume that
all elements assigned to the nodes are fixed but that the or-
dering of elements belonging to different nodes is determined
by an adversary and initially not known to the nodes. For



the lower bound, we use a simpler synchronous communica-
tion model where time is divided into rounds and in every
round each node can send a message to each of its neighbors.
Note that since the synchronous model is strictly more re-
strictive than the asynchronous model, a lower bound for the
synchronous model directly carries over to the asynchronous
model. We show that if in any round only B ≥ 1 elements
can be transmitted over any edge, such an algorithm needs
at least Ω(D logD n) rounds to find the median with reason-
able probability. A lower bound for finding an element with
an arbitrary rank k can then be derived by using a simple
reduction.

We prove the lower bound in two steps. First we prove
a Ω(log2B n

)
time lower bound for protocols between two

nodes if each of the nodes starts with half of the elements. In
a second step, we construct a graph T (D) for every diameter
D ≥ 3 such that every median algorithm on T (D) can be
simulated by two nodes to compute the median in a two-
party protocol. For simplicity, we prove the lower bound for
deterministic algorithms and use Yao’s principle to obtain a
lower bound for randomized algorithms.

Let us therefore first consider protocols between two nodes
u and v such that u and v each have N ≥ 1 elements
u0 ≺ u1 ≺ · · · ≺ uN−1 and v0 ≺ v1 ≺ · · · ≺ vN−1, re-
spectively, where ≺ is the global order according to which
we want to find the median. We denote the sets of elements
of u and v by Su and Sv, respectively. Without loss of gener-
ality, assume again that no element occurs twice, i.e., there
is a total of 2N distinct elements. Each message M = (S, X)
between the two nodes is further assumed to contain a set
S of at most B elements and some arbitrary additional in-
formation X. Assume M is a message from u to v. In this
case, X can be everything which can be computed from the
results of the comparisons between all the elements u has
seen so far, as well as all the additional information u has
received so far. The only restriction on X is that it cannot
be used to transmit information about additional elements.
We call a protocol between u and v which only sends mes-
sages of the form M = (S, X) as described above, a generic
two-party protocol.

The time needed to compute the median in the above
model of course depends on the way in which the 2N ele-
ments are distributed among u and v. Therefore, we first
need to determine this distribution. Equivalently, we need
to determine the outcomes of comparisons between two el-
ements ui ∈ Su and vj ∈ Sv. Let us first describe the
general idea. We construct N different distributions of ele-
ments (i.e., N different orders between the elements in Su

and Sv) in such a way that the N distributions result in
N different elements for the median. We choose one of the
N distributions uniformly at random and show that in each
communication round, the probability for reducing the num-
ber of possible distributions by more than a factor of λB is
exponentially small in λ.

For simplicity, we assume that N = 2` is a power of 2. Let
X0, . . . , X`−1 ∼ Bernoulli(1/2) be ` independent Bernoulli
variables, i.e., all Xi take values 0 or 1 with equal probabil-
ity. The distribution of the 2N elements among u and v is
determined by the values of X0, . . . , X`−1. If X`−1 = 0, the
N/2 smallest of the 2N elements are assigned to u and the
N/2 largest elements are assigned to v. If X`−1 = 1, it is
the other way round. In the same way, the value of X`−2

determines the assignment of the smallest and largest N/4

of the remaining elements: If X`−2 = 0, u gets the elements
with ranks N/2 + 1, . . . , 3N/4 and v gets the elements with
ranks 5N/4 + 1, . . . , 3N/2 among all 2N elements. Again,
the remaining elements are recursively assigned in the same
way depending on the values of X`−3, . . . , X0 until only the
two elements with ranks N and N + 1 (i.e., the two median
elements) remain. The element with rank N is assigned to
u and the element with rank N + 1 is assigned to v. For-
mally, the resulting global order can be defined as follows.
Let uα and vβ be two elements of u and v, respectively. Re-
call that uα is the (α + 1)-smallest element of u and that
vβ is the (β + 1)-smallest element of v. Let α`−1 . . . α0 and
β`−1 . . . β0 be the base 2 representations of α and β, i.e.,
α =

∑`−1
i=0 αi2

i and β =
∑`−1

i=0 βi2
i. Assume that there is

an index i for which αi = Xi or βi 6= Xi. Let i∗ be the
largest such index. If Xi∗ = 0, we have uα ≺ vβ , whereas
if Xi∗ = 1, we obtain vβ ≺ uα. If there is no index i for
which αi = Xi or βi 6= Xi, uα ≺ vβ . In this case, uα and
vβ are the elements with ranks N and N + 1 among all 2N
elements, i.e., uα and vβ are the median elements. Since the
median elements uα and vβ are those elements for which
αi 6= βi = Xi for all i ∈ {0, . . . , ` − 1}, it immediately fol-
lows that finding the median is equivalent to determining
the values of Xi for all i.

Let A be a deterministic, generic two-party algorithm be-
tween u and v which computes the median. Consider the
state of u and v after the first t rounds of an execution of
A. Let Suv(t) ⊆ Su and Svu(t) ⊆ Sv be the sets of el-
ements that u and v have sent to each other in the first
t rounds. After t rounds, everything u and v can locally
compute has to be a function of the results of comparisons
between elements in Su∪Svu(t) and of comparisons between
elements in Sv ∪ Suv(t), respectively. Note that except for
the elements themselves, everything u and v can send to
each other can be computed from comparisons between el-
ements within these two sets. Let us therefore define the
combined state stateu,v(t) of u and v at time t as the partial
order which is induced by comparing all pairs of elements
in Su ∪ Svu(t) and by comparing all pairs of elements in
Sv ∪ Suv(t). Because knowledge of the median implies the
knowledge of the values of Xi for all i, it follows that if after
t rounds, u and v know the median, the values of all Xi can
be computed as a function of stateu,v(t). For an element
uα ∈ Su let I(uα) := max

{
i ∈ {0, . . . , ` − 1}

∣∣Xi = αi

}
where αi is defined as above. If there is no i for which
Xi = αi, we define I(uα) := −1. Similarly, for an element
vβ ∈ Sv let J(vβ) := max

{
j ∈ {0, . . . , ` − 1}

∣∣Xj 6= βj

}
.

Again, J(vβ) := −1 if Xj = βj for all j. The following
lemma quantifies how much we can deduce about the val-
ues of the random variables Xi from a given combined state
stateu,v(t).

Lemma 5.1. Let Suv(t) and Svu(t) be defined as above.
Further, we define I∗(t) = minuα∈Suv(t) I(uα), J∗(t) =
minvβ∈Svu(t) J(vβ), and H∗(t) = min{I∗(t), J∗(t)}. The

combined state stateu,v(t) of u and v at time t is statis-
tically independent of Xi for i < H∗(t).

Proof. We prove that stateu,v(t) can be computed if
we know Xi for all H∗(t) ≤ i ≤ ` − 1. The lemma then
follows because we have chosen the random variables Xi to
be independent of each other.

In order to prove that we can compute stateu,v(t) from
the values of Xi for i ≥ H∗(t), we have to show that the re-



sults of all comparisons between two elements in Su∪Svu(t)
and between two elements in Sv ∪ Suv(t) can be deduced
from the knowledge of these Xi. Let us therefore consider
an element uα ∈ Su and an element vβ ∈ Svu(t). Assume
that there is an index i for which αi = Xi or βi 6= Xi and let
i∗ be the largest index for which this holds. We have seen
that in this case uα ≺ vβ if Xi∗ = 0 and vβ ≺ uα if Xi∗ = 1,
i.e., the outcome of the comparison between uα and vβ is
determined by the value of Xi∗ . However, by the definition
of J(vβ), we have i∗ ≥ J(vβ) ≥ J∗(t) ≥ H∗(t). If there
is no index i for which αi = Xi or βi 6= Xi, H∗(t) = −1
and the lemma trivially holds. Symmetrically, we can show
that every comparison between two elements in Sv ∪ Suv(t)
is determined by the value of a variable Xi′ with i′ ≥ H∗(t)
if H∗(t) ≥ 0. This concludes the proof.

Based on Lemma 5.1, we are able to prove a time lower
bound for finding the element with rank k by a two-party
protocol when each node starts with N elements.

Theorem 5.2. Let h = min{k, 2N − k}. Every, pos-
sibly randomized, generic two-party protocol needs at least
Ω(log2B h) rounds to find the element with rank k in expec-
tation and with probability at least 1/hδ for any constant
δ < 1/2.

Proof. For simplicity, we assume that B is a power of 2.
We first prove the lower bound for k = N , i.e., for find-
ing the median. For the state after t rounds, we define
I∗(t) = minuα∈Suv(t) I(uα), J∗(t) = minvβ∈Svu(t) J(vβ),

and H∗(t) = min{I∗(t), J∗(t)} as above and let H∗(0) = `.
Assume that a given protocol A needs T rounds to find the
median. We then have H∗(0) = ` and H∗(T ) = 0. We define
the progress of round t as progress(t) := H∗(t)−H∗(t− 1).
In the following, we show that the progress of every round
is at best geometrically distributed:

∀t : P
[
progress(t) ≥ ξ

] ≤ 2B

2ξ
. (1)

Consider stateu,v(t − 1) and stateu,v(t). By the defini-
tion of H∗(t), in round t, either one of the B elements uα

which u sends to v satisfies I(uα) = H∗(t) or one of the
B elements vβ which v sends to u satisfies J(vβ) = H∗(t).
If I(uα) = H∗(t), the (` − H∗(t))-highest priority bits of
the base-2 representation of α equal XH∗ , . . . , X`−1. Simi-
larly, if I(vβ) = H∗(t), the (`−H∗(t))-highest priority bits
of the base-2 representation of β equal the complements of
XH∗ , . . . , X`−1. Therefore at least one of the 2B elements
sent in round t contains all information about the values of
Xi for i ≥ H∗(t). Because by Lemma 5.1, the combined
state stateu,v(t− 1) after round t− 1 is independent of the
random variables Xi for H∗(t) ≤ i < H∗(t− 1), the proba-
bility to have H∗(t) ≤ H∗(t−1)− ξ is at most 2B/2ξ which
proves Inequality (1).

Let Pt :=
∑t

i=1 progress(t). If A finds the median in T
rounds, we have PT = `. For t 6= t′, the random variables
progress(t) and progress(t′) are not independent. However,
by Lemma 5.1 and the above observation, it is possible to
upper bound the random variables progress(t) by indepen-
dent random variables Zt with P[Zt = log 2B + i−1] = 1/2i

for i ≥ 1. That is, we can define independent random vari-
ables Zt such that progress(t) ≤ Zt, and for which

∀t : P
[
Zt ≥ ξ

] ≤ 2B

2ξ
. (2)

We can bound the probability that the number of rounds T
to compute the median is lower bounded by some value τ
by using a generalized Chernoff-type argument:

P[T ≤ τ ] = P

[
τ∑

t=1

progress(t) ≥ `

]

≤ P

[
τ∑

t=1

Zt ≥ `

]

=
γ>0

P
[
eγ·∑τ

t=1 Zt ≥ eγ·`
]

(3)

≤
E

[
eγ·∑τ

t=1 Zt

]

eγ·` =
E

[∏τ
t=1 eγ·Zt

]

eγ·` (4)

=

∏τ
t=1 E

[
eγ·Zt

]

eγ·` (5)

=
1

eγ·` ·
τ∏

t=1

∞∑

ξ=0

P[Zt = ξ] · eγ·ξ

=
1

eγ·` ·
τ∏

t=1

(
P[Zt ≥ 0] +

∞∑

ξ=1

P[Zt ≥ ξ] ·
(
eγ·ξ − eγ·(ξ−1)

) )

≤ 1

eγ·` ·
(

1 +

blog(2B)c∑

ξ=1

(
eγ·ξ − eγ·(ξ−1)

)
+

∞∑

ξ=blog(2B)c+1

2B

2ξ
·
(
eγ·ξ − eγ·(ξ−1)

) )τ

(6)

=
1

eγ·` ·
(

eγ·blog(2B)c +

∞∑

ξ=blog(2B)c+1

2B

2ξ
· eγ·ξ ·

(
1− 1

eγ

) )τ

.

Equation (3) holds for all γ > 0, the inequality in (4) is
obtained by applying the Markov inequality, Equation (5)
follows from the independence of different Zt, and Inequal-
ity (6) is a consequence of Inequality (2). By setting γ =
ln(
√

2), we obtain

P[T ≤ τ ] ≤ 1

2`/2
·
(√

2B +
2
√

2B

2−√2
·
(

1− 1√
2

))τ

=
(8B)τ/2

2`/2
.

If we substitute τ = log8B(N)/c for a constant c > 1, we
then get

P
[
T ≤ 1

3c
· log2B(N)

]
≤

B≥1
P

[
T ≤ log8B(N)

c

]

≤ (8B)1/2·log8B(N)/c

2log(N)/2

=
1

N
1−1/c

2

,

which proves the claimed lower bound for finding the median
by a deterministic algorithm. The lower bound for random-
ized algorithms follows by applying Yao’s principle. Note
that the lower bound for randomized algorithms could also



be proven directly in exactly the same way as the determin-
istic lower bound. This would however require to include
randomness in all the definitions.

To obtain the lower bound for selecting an element with
arbitrary rank k < N , we show that finding the element with
rank k < N is at least as hard as finding the median if both
nodes start with k instead of N values. To do so, we assign
elements u1, . . . , uk and v1, . . . , vk to u and v as described
above such that finding the median of the 2k elements is
difficult. The remaining elements are assigned such that
ui ≺ uj , ui ≺ vj , vi ≺ uj , and vi ≺ vj for all i ≤ k and
j > k. If k > N , we get the lower bound by lower bounding
the time to find the kth smallest element with respect to the
complementary ordering relation.

Based on the above lower bound for generic two-party
protocols, we can now prove a lower bound for generic se-
lection algorithms on general graphs. In the following, we
assume that every node of a graph with n nodes starts with
one element and that we have to find the kth smallest of
all n elements. In every round, every node can send B ele-
ments to each of its neighbors. The next theorem shows how
to reduce the problem on general graphs to the two-party
problem.

Theorem 5.3. For every n ≥ D ≥ 3, there is a graph
G(D) with n nodes and diameter D such that
Ω(D logD min{k, n − k}) rounds are needed to find the kth

smallest element in expectation and with probability at least
1/(min{k, n−k})δ for every constant δ < 1/2. In particular,
finding the median requires time at least Ω(D logD n).

Proof. We can certainly assume that n = ω(D) since
even finding the minimum of two elements or the median
of three values requires Ω(D) rounds. Without loss of gen-
erality, we can also assume that k ≤ n/2. For k > n/2,
the theorem then follows by symmetry. As in the two-party
case, we first consider only deterministic algorithms and ap-
ply Yao’s principle to obtain the lower bound for randomized
algorithms.

For simplicity, assume that n−D is an odd number. Let
N = (n−D +1)/2. We consider the graph G(D) defined as
follows: The graph G(D) consists of two nodes u and v that
are connected by a path of length D − 2 (i.e., it contains
D − 1 nodes). In addition, there are nodes u1, . . . , uN and
v1, . . . , vN such that ui is connected to u and vi is connected
to v for all i ∈ {1, . . . , N}.

We can assume that only the leaf nodes ui and vi for
i ∈ {1, . . . , N} hold an element and that we need to find the
kth smallest of these 2N elements. We can simply assign
dummy elements which are larger than these 2N elements to
all other nodes. Since only the leaves start with an element,
we can assume that in the first round, all leaves ui send their
element to u and all leaves vi send their element to v, as this
is the only possible useful communication in the first round.
By this, the problem reduces to finding the kth smallest
element of 2N elements on a path of length D−2 if initially
each of the two end nodes u and v of the path holds N
elements. Note that the leaf nodes ui and vi of G(D) do not
need to further participate in a distributed selection protocol
since u and v know everything their respective leaves know
and can locally simulate all actions of their leaf nodes.

Let w be any node on the path and letMw(t) be a message
that w sends in round t. Because we consider deterministic

algorithms and because only u and v initially hold elements,
Mw(t) can be computed when knowing the elements u and
v send to their neighbors in rounds prior to t. In fact, since
information needs time d(w, w′) to be transmitted from a
node w to a node w′, Mw(t) can be computed when knowing
all elements u sends in rounds prior to t − d(u, w) + 1 and
all elements v sends in rounds prior to t−d(v, w)+1, where
d(w, w′) denotes the distance between two nodes w and w′

of the path connecting u and v. In particular, u and v can
compute their own messages of round t when knowing the
elements sent by v and u in rounds prior to t− (D− 2) + 1,
respectively.

Let us consider the following alternative model. A round
lasts D − 2 time units. In every round, u and v can send
a message containing D − 2 elements to all other nodes of
the path (they need to send the same message to all nodes).
By the above observation, u and v can send all messages of
rounds r for (i − 1) · (D − 2) < r ≤ i · (D − 2) in round i
of the alternative model. Additionally, after round i in the
alternative model, u and v can locally compute all commu-
nication on the path in rounds r ≤ i · (D − 2). The time
needed to find the kth smallest element in the alternative
model is therefore upper bounded by the time needed in the
original model. Hence, a lower bound for the alternative
model implies a lower bound for the original model. How-
ever, the time needed in the alternative model is exactly
the time needed by a two-party protocol if every round lasts
D−2 time units and if in every round D−2 elements can be
transmitted. Applying Theorem 5.2, n = ω(D), and there-
fore 2N = n(1− o(1)), this completes the proof.

Remark: We assumed that every node starts the algo-
rithm with exactly one element. Note that results can easily
be generalized to more general settings. If the total num-
ber of elements in the system is N ≥ n, we then obtain an
Ω(D logD min{k, N − k}) time lower bound for finding the
kth smallest value.
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