
DISS. ETH NO. 17731
TIK-Schriftenreihe Nr. 96

Dynamics and Cooperation

Algorithmic Challenges in Peer-to-Peer Computing

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Sciences

presented by

STEFAN SCHMID

MSc in Computer Science, ETH Zürich

born 31.07.1978

citizen of

Hedingen ZH

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, ETH Zurich, examiner
Prof. Dr. Boaz Patt-Shamir, Tel Aviv University, co-examiner
Prof. Dr. Tim Roughgarden, Stanford University, co-examiner

2008

Abstract

Peer-to-peer (p2p) computing is one of the most intriguing new network-
ing paradigms of the last ten years, and many applications today use peer-to-
peer technology, e.g. for large distributed computations, for file sharing, or
for live media streaming. At the heart of the paradigm lies the idea of lever-
aging the resources of the system’s participants. Thus, potentially scalable
and robust architectures can be built.

However, making use of the decentralized resources is challenging. The
peers are under the control of the individual users who may only connect to
the network for a short period of time. Consequently, there are frequent mem-
bership changes and p2p systems are highly dynamic. In addition to regular
joins and leaves, the participating machines (often unreliable desktops) may
crash. Peer-to-peer solutions are also faced with the fact that it is not always
in the (anonymous) users’ interest to contribute their resources. Rather, a
user may be selfish and seek to exploit the system without reciprocating.

This dissertation studies the challenges of the dynamics in p2p computing
and of cooperation. We describe a system which is based on a hypercubic
topology and which applies algorithms that maintain desirable network prop-
erties despite worst-case joins and leaves; these algorithms can also be used
for pancake graphs. Besides membership dynamics, we investigate dynamic
changes of the available bandwidth between two peers, and we analyze the
throughput of different transfer protocols. In order to emphasize the impor-
tance of the cooperation challenge, we conduct a case study of BitTorrent—
one of the most traffic intensive applications on the Internet—, and show
that today’s peer-to-peer networks still fail to fend off uncooperative peers.
A game-theoretic analysis of a p2p network creation game is presented which
estimates the impact of selfish behavior. We find that both the performance
and the stability of a system can suffer severely. In addition, this dissertation
introduces a mathematical framework which allows us to evaluate a system’s
robustness to malicious attacks; the framework is also useful for the analysis
of social networks. The theoretic findings are complemented by a case study
which identifies vulnerabilities in the popular Kad network.

Zusammenfassung

Peer-to-peer Computing ist eines der faszinierensten Paradigmen im Net-
working Bereich des letzten Jahrzehnts. Bereits gibt es zahlreiche Anwen-
dungen, beispielsweise die Berechnung schwieriger mathematischer Probleme,
der Austausch grosser Dateien oder live Übertragungen von Sportveranstal-
tungen. Dem Paradigma liegt die Idee zugrunde, dass durch Ausnutzung
der Resourcen der teilnehmenden Rechner potentiell skalierbare und robuste
Architekturen möglich werden.

Die Abhängigkeit von den dezentralen Resourcen der Teilnehmer bringt
aber auch gewisse Schwierigkeiten mit sich. Benutzer verbinden sich oft nur
für kurze Zeit zum Netzwerk, weshalb das System oft sehr dynamisch ist.
Meist sind die beteiligten Maschinen auch unzuverlässig und können jederzeit
ausfallen. Des weiteren ist es häufig nicht im Interesse eines (anonymen)
Benutzers, selber Resourcen zum System beizutragen.

Diese Dissertation befasst sich mit den Herausforderungen, die sich aus
der Dynamik und aus der Notwendigkeit zur Kooperation ergeben. Insbeson-
dere werden wir ein auf einem Hyperwürfel basierendes System vorstellen,
das trotz ununterbrochenen und schlimmstmöglichen Topologieänderungen
nützliche Eigenschaften sicherstellt. Unsere Algorithmen können auch auf
andere Topologien angewandt werden, beispielsweise auf Pancake Graphen.
Neben der sogenannten Knotendynamik betrachten wir auch dynamische
Änderungen der verfügbaren Bandbreite zwischen zwei Peers und analysieren
die Effizienz verschiedener Übertragungsprotokolle. Unsere Fallstudie in Bit-
Torrent – eine der beliebtesten Anwendungen im Internet – zeigt auf, dass
heutige peer-to-peer Systeme noch keine wirksamen Mechanismen gegen un-
kooperatives Verhalten anwenden. Mittels einer spieltheoretische Analyse
der Topologien unstrukturierter peer-to-peer Netzwerke kommen wir zum
Schluss, dass ein strategisches Verhalten aber einen wesentlichen Einfluss
auf die Effizienz eines Systems haben kann. Diese Arbeit führt ausserdem
einen mathematischen Formalismus ein, der es ermöglicht, den potentiellen
Schaden durch böswillige Teilnehmer abzuschätzen; dieser Formalismus ist
auch bei der Analyse von sozialen Netzwerken einsetzbar. Die theoretischen
Erkenntnisse werden ergänzt durch ein Fallbeispiel, welches Schwachstellen
in Kad, einem populären peer-to-peer Netzwerk, identifiziert.

Acknowledgements

Many people have contributed to this dissertation. First of all, I am
grateful to my advisor Roger Wattenhofer for his support, and for giving
me the opportunity to pursue a number of different and exciting projects
during my PhD time. I benefitted from his excellent knowledge—and critical
view—of past and current developments in the field, and I feel lucky that the
European Space Agency chose another candidate three years ago!

I am honored that two well-known researchers, Boaz Patt-Shamir and
Tim Roughgarden, agreed to read through my dissertation and to serve on
my committee board. I would like to acknowledge their work and thank for
their comments which helped to improve the thesis.

Parts of this thesis have been presented on various occasions. I am
obliged to the following people for their invitations and their feedback: Aaron
Zollinger (UC Berkeley), David Parkes (Harvard University), Bobby Klein-
berg and Emin Gün Sirer (Cornell University), Stephan Eidenbenz (Los
Alamos National Laboratories), and Christian Scheideler (TU München).
In particular, I would like to thank Sven Kosub for pointing me to [233].

Many thanks go to my colleagues in the Distributed Computing Group.
First of all, I would like to thank Roland Flury for having been a super office
mate—and Zurich marathon competitor! I am grateful for the generous help
he offered on so many occasions, and I will never forget the SOLA Duo race.
Special thanks go to Fabian Kuhn, who was my diploma thesis advisor; his
marvelous way of tackling problems and his enthusiasm was certainly a mo-
tivation for me to continue my studies as a PhD student. I thank Thomas
Moscibroda for the fruitful collaboration which broadened my scientific hori-
zon, for having been a pleasant Discrete Event Systems co-assistant, and for
his sense of humor in various situations. Thanks also go to my—without loss
of generosity !—most productive peer-to-peer collaborator Thomas “T.Lo.”
Locher for having been an arch-accomplice in stealing bits, for the Happy
Times with time-shifted subtitles, and for making the publications he co-
authored a pleasure to read. I thank Yvonne Anne Oswald for her interest in
Al Capone, the families, Gaussian ski rental on trees—and Suannai, for hav-
ing been a great traveling companion in Australia, China, Japan—and MMP,
and for challenging the all-time science quiz record on the plane to Bangkok.
I also thank Remo Meier for making Pulsar better than the SIGCOMM re-
viewers were prepared to and for inviting me to the “Kanonenrohr Piste”,
Michael Kuhn for challenging discrete logarithm cryptography not only at
the university of Berne and for the diligent use of the “rote Telefon”, Pascal
von Rickenbach for sorting out the Highway to Hell problem with me and
for shedding light on the mysteries of the Piazza del Popolo, Aaron Zollinger
for introducing me to the YMCA in Berkeley—and to a popular web search
company, Keno Albrecht for the computer support and for the time2climb in
the Gaswerk, Nicholas Burri for having been the only Töggeli partner with
whom I could improve my ranking, Olga Goussevskaia for telling me when
to “eat!” the opponent’s queen at the TIK institute’s (chess) summer fight,
and Johannes Schneider for organizing, among many others things, the Indian
Ooty trip and the Swiss 3 a.m./4190 m.a.s.l. Strahlhorn expedition. I would

also like to thank the following former and new DCG members, office mates,
people from the institute, collaborators, visitors, etc.: Andi Wetzel, Beat
Futterknecht, Bernard Mans, Carmine Ventre, Caterina Sposato, Christoph
Lenzen, Jin Li, Lino Sevcik, Marco Cicolini, Mario Strasser, Martin May,
Miriam Fritz, Mirjam Wattenhofer, Monica Fricker, Philipp Sommer, Rainer
Baumann, Regina O’Dell, Reto Spöhel, Roland Mathis, Simon Heimlicher,
Simon Schlachter, Thierry Dussuet, Thomas Steingruber, Uri Nadav, and
Yves Weber.

A number of student projects have been conducted in the context of
this dissertation. It is great that (so far) four students, Raphael Eiden-
benz, Thomas Locher, Remo Meier, and Yvonne Anne Oswald, have decided
to start a PhD in our group as well. Moreover, it was interesting to wit-
ness how Dominik Grolimund and Luzius Meisser’s Kangoo/Wuala system
evolved from a student project into a business plan. I wish the two of them
an exciting future! Special thanks go to Joest Smit for his appetite for pan-
cakes (not only on the Üetliberg!), to Patrick Moor who did a great job
implementing BitThief, to Dominic Meier for analyzing the “family factor”
in all situations of life (good luck for the next “Dreikönigskuchen competi-
tion”!), and to David Mysicka for reverse-engineering eMule and giving the
WebSheriff no reasons to complain. I offer my thanks to: Adrian Moos, Bak-
shi Nikhil, Baptiste Prêtre, Christoph Renner, David Huber, David Mysicka,
Dennis Rietmann, Dominic Meier, Dominik Egger, Dominik Grolimund, Do-
rian Kind, Fabian Hugelshofer, Georgios Katsikatsos, Henrique Säuberli,
Jan Kostka, Jean-Luc Geering (thanks for the multilingual post!), Jelan
Ong, Joest Smit, Jun Li, Lukas Füllemann, Luzius Meisser, Martin Kos,
Matthias Hobi, Mirwais Tayebi, Patrick Moor, Philip Frey, Raphael Eiden-
benz, Raphael Schmid, Rashid Waraich, Remo Meier, Samuel Willimann,
Sandra Brockmann, Serkan Bozyigit, Stefan Sieber, Stefan Weber, Thibaut
Britz, Thomas Locher, and Yvonne Anne Oswald.

Last but not least, I am grateful to my family (especially to my parents
Irma and Severin, and to my nonni Alfred and Romana la befana—“basta
contare fino a cento!”) who supported me during my entire education, to
Markus Kern for the interest in my work and for providing me with lo-
cal information on so many destinations—also outside the Kremlin on the
Charles, and to Helen Kurukulasuriya for rendering stop-overs in Manhattan
extremely healthy and for proof-reading this dissertation. Finally, I thank
Christiane Baumann for inviting me to this momentous computer science
“Schnuppervorlesung” roughly ten years ago.

Contents

1 Introduction 1
1.1 The Peer-to-Peer Computing Paradigm 1
1.2 Some Applications . 2
1.3 Algorithmic Challenges . 5
1.4 Thesis Overview . 8

I Dynamics 11

2 Introduction 13

3 Worst-Case Churn 15
3.1 Algorithmic Components . 16
3.2 The Dynamic Hypercube System 23
3.3 The Dynamic Pancake System 28
3.4 Concluding Remarks . 40

4 Dynamic Throughput Maximization 41
4.1 Background . 41
4.2 The Optimization Problem 43
4.3 Multiplicative Adversary . 44
4.4 Network Calculus Adversary 47
4.5 Concluding Remarks . 50

5 Related Work 51

6 Conclusion 57

II Cooperation 61

7 Introduction 63

8 Free Riding Case Study: BitTorrent 65
8.1 BitTorrent Background . 66
8.2 BitThief and Analysis . 67
8.3 Sophisticated Exploits . 74
8.4 Concluding Remarks . 76

9 Impact of Selfish Players 79
9.1 A P2P Network Creation Game 80
9.2 Price of Anarchy . 81
9.3 Existence of Nash Equilibria 85
9.4 Complexity of Nash Equilibria 87
9.5 Concluding Remarks . 102

10 Impact of Malicious Players 103
10.1 Framework . 105
10.2 Virus Game Analysis . 109
10.3 Stability Considerations . 120
10.4 Concluding Remarks . 122

11 Impact of Social Players 123
11.1 Framework . 124
11.2 Windfall of Friendship . 126
11.3 Clique and Star . 130
11.4 Concluding Remarks . 135

12 Attacks Case Study: Kad 137
12.1 Kad Background . 138
12.2 Attacks and Measurements 138
12.3 Implications . 143
12.4 Concluding Remarks . 145

13 Related Work 147

14 Conclusion 155

Chapter 1

Introduction

1.1 The Peer-to-Peer Computing Paradigm

The peer-to-peer (p2p) computing paradigm has drawn much attention from
both Internet users and research communities in the past few years, and a
large fraction of today’s Internet traffic is due to p2p communication. Prin-
ciples of peer-to-peer computing also play a role in the discussions for the
design of a future Internet. The paradigm has its roots in local area network
(LAN) file sharing which became popular in the mid-1970s and many mul-
tiuser games have operated in a p2p model [64]. In contrast to traditional
client/server architectures, each machine, or peer, in the p2p network acts
both as a consumer as well as a contributor of resources. Therefore, a net-
work’s capacity increases with the number of participants. In addition to
scalability, due to the decentralized and self-organizing nature, p2p systems
are potentially robust and feature a high availability.

Peer-to-peer technology is used in a plethora of applications today, most
prominently in the Skype Internet telephony application [220] and in file
sharing tools such as eMule [86] or BitTorrent [50]. Also many compa-
nies have started investing into this technology. It is interesting how p2p
applications have evolved over time. A fundamental problem in p2p com-
puting is to discover and search the decentralized resources which often do
not have permanent IP addresses. The first file sharing tool Napster [171]
was based on servers. While the downloads were peer-to-peer, the lookup
operation was still centralized: upon a file request, the server returned a list
of remote computers storing this file. Early unstructured peer-to-peer ar-
chitectures such as Gnutella [102] introduced distributed lookup operations.
These systems have only a few constraints on the overlay topology and the
mapping of data items to peers. However, albeit Gnutella’s success, there
have been concerns about its scalability from the beginning; indeed, when
Napster was unplugged in 2001, Gnutella broke down soon afterwards due
to the inrush of former Napster users. Currently there is a trend towards
structured peer-to-peer systems which actively maintain desirable network

1

2 CHAPTER 1. INTRODUCTION

properties such as low diameter and low peer degree by connecting peers
in a smart manner. Both file lookup and download are fully decentralized.
Most of the so-called distributed hash table (DHT) systems today, for in-
stance CAN [198], Chord [226], Pastry [207], or Tapestry [248], are based
on two influential seminal works, namely the paper by Plaxton, Rajaraman,
and Richa on locality-preserving data management in distributed environ-
ments [193], and the paper by Karger, Lehman, Leighton, Levine, Lewin,
and Panigrahi on consistent hashing [122]. Each peer in the DHT acts as
a server for a subset of data items. Peers have overlay identifiers—these
IDs are sometimes computed by applying a hash function on the peers’ IP
addresses—which define the logical connections between the peers, that is,
each peer maintains a routing table which includes the addresses of peers
located in different areas of the ID space. The data items (e.g., files) have
keys which are typically chosen from the same space as the peer identifiers.
A data item is stored on the peer whose ID is closest to the item’s key. Thus,
data items can be found by a targeted routing on the overlay network de-
fined by the peers’ routing tables. For a more detailed introduction to the
foundations of p2p computing, the reader is referred to the corresponding
literature [18, 116, 158, 224, 229].

1.2 Some Applications

Besides Internet telephony and file sharing, we currently witness the emer-
gence of many other applications, for instance live or on demand media
streaming (e.g., Joost [117], PPLive [194], or Zattoo [247]). In the follow-
ing, some sample applications are presented which we have implemented
ourselves.

Pulsar P2P Streaming System

Peer-to-peer technology can be an attractive solution for streaming content
providers: as the downloading clients help to distribute the stream to other
clients by contributing their upload bandwidth to the system, there is no
need for an expensive infrastructure at the content distributor. The p2p
paradigm has the potential to democratize the streaming world in that it
enables everyone to broadcast her own media content—similarly to how the
world wide web revolutionized the distribution of information more than a
decade ago: nowadays, everyone can publish her thoughts on her own blog
or website at virtually no cost.

Peer-to-peer live streaming faces several challenges which do not exist in
classic file-sharing applications. For instance, real-time playback deadlines
have to be met, and there are increased demands on robustness under joins
and leaves of peers. Our Pulsar [151] (cf Figure 1.1) live streaming proto-
col applies a data distribution scheme which seeks to minimize both delays
and redundant transmissions. Concretely, the protocol combines low-latency
push operations (where data is forwarded actively to adjacent peers) along
a structured overlay with the flexibility of pull operations (where missing

1.2. SOME APPLICATIONS 3

Figure 1.1: Screenshot of Pulsar applet.

data is requested explicitly by peers). In addition, the protocol incorpo-
rates mechanisms for locality awareness, incentive compatibility, and data
integrity. Due to its small playback buffers, Pulsar can be emulated for up
to 100,000 peers on a single desktop computer.

Pulsar is being extended for on-demand streaming. It is planned to use
Pulsar to transmit video clips offered by the tilllate.com portal, and to broad-
cast DJ events.

Wuala P2P Online Storage

Wuala [80] (cf Figure 1.2) is a global, distributed storage system that exploits
idle disk space and bandwidth of participating computers to provide its users
with a free and personal online storage. Files can be accessed from any
computer. Besides storing private data on Wuala, a user can grant her friends
access for certain files, or even share her holiday pictures with the entire
community. Wuala’s distributed hash table is based on principles of the
small world phenomenon [234].

Wuala is not a pure p2p system as it relies on a server component for
some operations, e.g., for certain security aspects. In addition, in order to
prevent the unlikely case of data loss, the server maintains an encrypted copy
of each file. However, much peer-to-peer technology is used to mitigate the
load and cost at the server, and to boost download performance. Wuala
also includes social networking features such as buddy lists. The system’s
fairness mechanism and its cryptographic file system have been described in
[104, 105]. Wuala started as a student project and already has more than
12,000 users. Wuala is now marketed by the Caleido [56] company.

BitThief BitTorrent Client

BitThief [153] is a file sharing client for the BitTorrent system. In contrast
to alternative clients, BitThief successfully avoids contributing resources to
the p2p system. With this client, entire files can be obtained without up-

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Screenshot of Wuala.

loading any useful data. This thesis argues that the design of mechanisms to
enforce collaboration among peers is an important research challenge today.
BitThief is a proof-of-concept software that demonstrates that today’s Bit-
Torrent system does not fend off non-cooperative peers effectively. BitThief
is described in detail in Chapter 8.

Distributed Compilation at CERN

The European Organization for Nuclear Research (CERN) builds large amounts
of software for its experiments at the Large Hadron Collider (LHC), and it
can be useful to distribute the compilation jobs in order to shorten project
build times. This is possible by taking advantage of idle desktop machines
available as a virtual build cluster [23]. Due to the clear distinction between
the compilation server and the compiling desktop clients, the proposed so-
lution is not a p2p system in the classic sense. However, there are several
commonalities; for instance, the participating clients are heterogeneous and
can join and leave frequently, e.g., whenever the screensaver is switched on
or off, respectively.

1.3. ALGORITHMIC CHALLENGES 5

Peer-to-Peer XPilot

Multi-player games can make use of peer-to-peer technology as well, as tra-
ditionally, powerful and expensive game servers are needed to manage the
large number of players. However, designing p2p multi-player games is chal-
lenging: it is crucial that the peers have a consistent and synchronous view
of the game’s state, and that the latency in the game be minimized. Ad-
ditionally, the game must be cheater-resistant. These properties are often
difficult to achieve in a purely distributed environment. We have gained first
experiences by porting XPilot to the post-client/server world [115].

Crypto-Cracker for BOINC

The grid computing paradigm has many similarities with the peer-to-peer
paradigm. Grids aggregate the computational power of thousands of ma-
chines to solve large mathematical problems. The computational tasks or
units are typically distributed to the clients by a central server. Similarly to
the peers in p2p networks, the grid’s clients are often under the control of
individual users and may therefore be dynamic and behave selfishly. In fact,
such strategic behavior has already occurred in computational peer-to-peer
settings; for instance, users of the SETI project of UC Berkeley’s Space Sci-
ences Laboratory have modified their software to make it appear as if they
were doing more work [216].

We have implemented a client for the Berkeley Open Infrastructure for
Network Computing (BOINC) framework [15]. Our client allows us to attack
hard crypto-puzzles such as the discrete logarithm problem in large elliptic
curves [61, 62]. We have extended the BOINC server software such that the
participants can verify each other’s results [137]. This checking is needed to
unmask cheaters returning wrong results, for instance, to earn credit points
without actually contributing any CPU cycles.

1.3 Algorithmic Challenges

Peer-to-peer computing today still faces many challenges. In contrast to
other multi-computer architectures which are typically quite static and where
faulty machines may sometimes even be repaired manually without much loss
of availability, peer-to-peer networks are typically highly dynamic. While tra-
ditional systems were based on fixed infrastructures and were under a single
administrative domain (e.g., owned and maintained by a single company or
corporation), the participating machines in p2p networks are under the con-
trol of individual (and to some extent: anonymous) users who can join and
leave at any time and concurrently. The peer-to-peer computing paradigm
heralded a new era in the sense that faults in and extensions/additions to
the network were no longer considered a cumbersome problem but a main
design principle, and a means to gather idling resources on the “edge of the
Internet”. Therefore, in p2p networks, many system components have to in-
corporate mechanisms to cope with (or even exploit) these dynamic changes
of the available resources.

6 CHAPTER 1. INTRODUCTION

Peers in a p2p network do not only join and leave arbitrarily, but they
can also crash. In p2p parlor, these frequent membership changes are called
churn. As an example, consider our live streaming tool Pulsar. Shortly
before the start of a soccer event, many users will join the system. During
the transmission, there is less churn, but some users still join and some leave,
e.g., because their favorite team plays poorly, or because their computer loses
access to the Internet. At the end of the game, it is likely that many peers
disconnect from the network in a short time period.

We believe that ensuring a seamless system operation despite churn is a
key challenge in p2p computing. As churn is a new phenomenon in computer
science, not many results from classic CS literature are directly applicable,
making p2p research a field of its own merit.

A second implication of the autonomy of the machines in p2p networks
is that the system consists of different stakeholders. Users can have various
reasons for joining the network. For instance, an (anonymous) user may not
voluntarily contribute her bandwidth, disk space, or CPU cycles to the sys-
tem, but prefer to free ride. Hence, the fact that the peers are under the
control of individual users adds a socio-economic aspect to peer-to-peer com-
puting. As the p2p paradigm relies on the contributions of the participating
machines, effective incentive mechanisms have to be designed which foster
cooperation and punish free riders.

We regard cooperation as a crucial challenge in peer-to-peer computing.
Economic models have only recently gained the attention of the CS commu-
nity. However, due to the topic’s importance—not only for p2p computing
but for the Internet in general—much research has been conducted over the
last years. This research could build upon the foundations developed by
mathematicians and economists earlier in the century. In this thesis, we seek
to apply these techniques to peer-to-peer systems. Our tools help to identify
weaknesses in a given system which could potentially be exploited by self-
interested users; armed with this knowledge, appropriate countermeasures
can be designed.

The cooperation challenge goes beyond the free rider problem, and there
are many other forms of non-cooperation. For instance, some users may try
to harm the system, independently of their cost. In the following, we will
call such participants “malicious”, and we will regard robustness against ma-
licious attacks as desirable.1 Coping with malicious users is in some sense
simple as pure p2p systems are fully decentralized and do not have any bot-
tlenecks or single points of failure. On the other hand, however, unlike in
the real world or society, a single malicious user can increase her influence in
the network by creating a large number of (virtual) identities or by hijacking
and taking control over other machines in the system. For instance, a par-
ticipant could try to censor contents in a p2p network by actively removing
all network pointers to it.

This thesis focuses on the two arguably most intriguing challenges in p2p
computing: dynamics and cooperation. Of course, there are additional in-

1Of course, we are aware that p2p technology can also be abused, e.g., to illegally
distribute copyrighted material or to organize botnets. However, in the following, we
will assume a system designer’s perspective.

1.3. ALGORITHMIC CHALLENGES 7

teresting and novel aspects. For instance, peers are typically geographically
distributed all over the planet and latencies must not be neglected. An-
other crucial implication of the p2p paradigm is that—unlike in traditional
systems—participating machines can be very heterogeneous (e.g., [49, 162]
or [213]): peers can be located in different countries, have different hardware
and different Internet connections, run different operating system, and so
on. A successful p2p system must be able to deal with these heterogeneous
resources and exploit them optimally. Note that, in general, it is difficult
to define what “dealing with heterogenous resources” means. It could mean
that peers which contribute more should also get a better service from the
system. Alternatively, a system designer could aim at providing the same
service to all peers by using extra resources of “strong” peers to compensate
for the lack of resources of “weak” peers. The goal of dealing effectively with
heterogeneous participants can also conflict with the cooperation goal: how
can we distinguish a weak peer, which is not able to contribute more re-
sources, from a selfish peer which seeks to free ride? For instance, in Pulsar,
we have decided not to distinguish these two kinds of peers, but to exclude
any peer which seems to be incapable of uploading at the rate of the currently
streamed media. Apart from attacks by malicious participants or insiders, a
p2p network can be threatened by entities outside the network. Such attacks
also constitute an important research challenge. Another challenge in p2p
computing is the interplay between p2p users and ISPs [7]. On the one hand,
p2p systems have resulted in an increase in revenue for ISPs, as users have
upgraded their Internet access to broadband. On the other hand, p2p appli-
cations pose a traffic engineering challenge at the ISPs, as the peers’ overlay
network is largely independent of the Internet topology, and as without coun-
termeasures, traffic often crosses network boundaries multiple times. Since
most Internet bottlenecks are assumed to be either in the access network or
on links between ISPs, this is problematic [10]. User anonymity is also an
interesting problem in p2p computing (cf also the Freenet system [65]): e.g.,
a system designer could try to ensure freedom of speech by protecting the
identities of bloggers living under an undemocratic regime. Many challenges
in the area of distributed computing are also present in p2p systems. Besides
well-known impossibility results such as achieving consensus among dynamic
players (e.g., on the current state of a p2p game such as XPilot), many cryp-
tographic protocols are more complex in the absence of any trusted and
centralized party. Last but not least, p2p computing faces some “soft” chal-
lenges. Many companies jumped on the “free bandwidth with BitTorrent”
bandwagon2 passing on costs to Internet service providers and eventually
consumers, which (economically) threatens the paradigm. Additionally, to-
day’s p2p systems have to compete with inexpensive server solution (e.g.,
Amazon’s Simple Storage Service S3). Despite the importance of all these
challenges, we will not further investigate them in this thesis but refer the
reader to the corresponding literature.

2BitTorrent Inc.’s partners include 20th Century Fox, MTV, Paramount, Warner
Brothers, among many others.

8 CHAPTER 1. INTRODUCTION

1.4 Thesis Overview

The thesis is organized in two parts. Part I addresses the challenge of dy-
namics in p2p systems. After a short introduction in Chapter 2, Chapter 3
presents algorithms which provably maintain desirable properties of peer-to-
peer networks despite ongoing churn. We assume a worst-case perspective
and consider an adversary who can add and remove peers at arbitrary places
in the network. Unlike in traditional algorithmic research, joins and leaves
occurring in a worst-case manner in p2p systems are hardly considered in
the literature so far. Although membership changes in reality may be less
biased and follow probabilistic distributions, our conservative approach gives
stronger guarantees; moreover, our model also includes scenarios where the
peers’ joins and leaves are orchestrated by an attacker or virus. Chapter 3
describes algorithms to maintain a hypercubic p2p network. It is shown that
although our system may never be fully repaired in such a scenario, it is
always fully functional. Concretely, we prove that despite an adversary who
can add and remove Θ(logn) peers per round, both the peer degree (i.e.,
the number of neighbors of a peer in the overlay network) and the network
diameter are bounded by O(logn), where n is the total number of peers in
the system. This is asymptotically optimal in the sense that no p2p system
can have a lower peer degree in the presence of such an adversary. The algo-
rithms can be generalized for alternative network topologies, and Chapter 3
also sketches how to adapt the algorithms for pancake graphs. The resulting
p2p system maintains peer degree and network diameter O(logn/ log log n)
against an adversary who performs Θ(logn/ log logn) membership changes
per round. This is also asymptotically optimal.

Chapter 4 then looks at a different form of dynamics, namely dynamic
changes of the available bandwidth between two peers. A transfer proto-
col is described which seeks to maximize throughput in this environment.
Again, we assume a conservative perspective and consider a scenario where
the available bandwidth is changed by an adversary. We also assume that
the transfer protocol does not know the available bandwidth in the future
and has to decide on the transmission rate online. We are hence in the realm
of online algorithms and competitive analysis. The contributions of Chap-
ter 4 are twofold: first, a new and simple analysis is presented for an existing
adversary model. Second, a new model for the dynamics is introduced. It
is based on network calculus concepts and allows for bursty changes of the
available bandwidth. We believe that this model can be instructional in
many other disciplines also dealing with dynamics. After reviewing related
literature on p2p dynamics in Chapter 5, we conclude Part I in Chapter 6.

Part II of this thesis studies the challenge of cooperation in p2p comput-
ing. After a short introduction (Chapter 7), we motivate the topic’s impor-
tance with a case study of BitTorrent in Chapter 8. BitTorrent is widely
believed to incorporate effective means to fend off selfish peers. Contrary to
such belief, we show that BitTorrent’s tit-for-tat incentive mechanism can be
cheated and that it is possible to free ride. Our proof-of-concept client Bit-
Thief achieves good download rates without uploading any real data, even
in the absence of seeder peers. It is also shown in Chapter 8 that sharing

1.4. THESIS OVERVIEW 9

communities can be exploited. We believe that the distribution of such a
client can be harmful for BitTorrent’s performance.

In order to study the impact of selfish behavior in p2p computing, we
give a game-theoretic analysis in Chapter 9. We assume an unstructured
p2p network and analyze the effects if peers selfishly select to which other
peers they connect. The analysis reveals that the so-called Price of Anarchy
is Θ(min(α, n)), where α is a parameter that captures the tradeoff between
lookup performance (low stretches) and the cost of neighbor maintenance,
and n is the number of peers in the system. In other words, the efficiency of
the resulting p2p topologies suffers for large networks if α is large. Chapter 9
also shows that selfishness can cause the system to become instable, and that
deciding whether a given p2p system has a so-called pure Nash equilibrium
is NP-hard, i.e., it is computationally at least as hard a solving a special
type of a Boolean satisfiability problem. In Chapter 10, a mathematical
framework is introduced which extends the concepts used in game theory
to take malicious behavior into consideration. Our framework allows us to
quantify the effect of malicious peers in a network. We give a sample analysis
for a virus inoculation game. It turns out that in a scenario where peers
are not aware of the presence of malicious players, the system performance
deteriorates. Intriguingly, however, we observe that in a non-oblivious model
where peers are risk-averse, adding malicious players may be beneficial to the
system compared to purely selfish environments. Our tools of Chapter 10
allow to quantify the so-called Fear Factor, and an upper bound for this
factor is derived. As a short excursion, Chapter 11 demonstrates how the
framework of Chapter 10 can be used also in other contexts, namely in social
networks. In these networks, nodes (individuals or organizations) are tied
by a specific type of interdependency, e.g., friendship, economic trade, or
disease transmission. We again study the virus inoculation game, but now in
an environment where players care about the well-being of their direct social
contacts, e.g., their friends stored in Skype’s contact lists. We introduce the
notion of a Windfall of Friendship and show that a system can never suffer
if users act socially. However, interestingly, the social costs do not decrease
monotonically in the extent to which players care about each other.

In Chapter 12, our theoretic insights into the effects of malicious behavior
are complemented by a study of possible attacks in today’s Kad network—
currently the most widely deployed p2p system based on a DHT, with more
than a million simultaneous users. Several protocol exploits are described
which prevent peers from accessing certain files, e.g., by hijacking file re-
quests. Alternatively, we show that it is possible to overwhelm publishing
peers with bogus information such that pointers to the original files can no
longer be accessed. It is even possible in Kad to eclipse certain peers, i.e., to
fill up their routing tables with information about malicious peers. We will
also briefly discuss how our attacks can be used to harm machines outside
the Kad network, e.g. web servers, by tricking the peers into performing a
Kad-steered distributed denial of service (DDoS) attack. Related work on
the threat of non-cooperation is discussed in Chapter 13. Finally, Part II is
concluded in Chapter 14.

Part I

Dynamics

Chapter 2

Introduction

Distributed systems appear in many different forms and are well-known also
outside the CS world. For instance, the human brain can be regarded as a
distributed system, or the actors on a given economic market, or even soci-
ety in general. A common property of such networks is that they are often
complex already in the static case. However, in reality, these systems are
typically highly dynamic in various dimensions: connections between cells in
the brain change over time, new actors enter a market while others leave,
bubbles emerge in a financial sector and subsequently implode, shifts in so-
ciety can lead to the election of a new party or the adoption of a new form
of government, and so on. This renders the analysis of a distributed system
more difficult, and currently—and probably still in the near future—much
research is conducted to gain deeper insights into these dynamic aspects.
For instance, in a recent study by Leskovec, Kleinberg, and Faloutsos [143]
of different types of social networks, such as email graphs, patents citation
graphs, or autonomous systems graph, it has been discovered that most of
these networks intensify over time, with the number of edges growing su-
perlinearly in the number of nodes. Moreover, the average distance between
nodes shrinks over time.

Understanding and coping with dynamics is particularly important in
peer-to-peer computing as p2p networks are often large and peers can con-
nect for short time periods only. For example, in a network consisting of one
million peers and where each peer remains in the system for one hour, we ex-
pect roughly 300 membership changes per second. Any p2p system therefore
needs a maintenance protocol which continuously repairs the network. Due
to the churn, the system is almost never in its “ideal state”, and it has to be
ensured that peer-to-peer services like lookup operations are correct even on
imperfect topologies. Besides the membership dynamics, other properties of
a p2p network change over time as well—for instance the bandwidth available
between two peers.

So far, only few fundamental principles have been found which help to
render p2p networks robust to churn. One such principle is the use of a

14 CHAPTER 2. INTRODUCTION

meaningful amount of redundancy. Only a data item which is replicated
on other peers can survive the departure of the hosting peer. Moreover, in
contrast to classic parallel computers which were often based on constant-
degree topologies such as butterfly networks [141], there is a trend towards
logarithmic-degree topologies which are more fault-tolerant in the sense that
it is harder to separate a set of peers from the rest of the network. Another
important principle is locality [187]: a peer should decide on its future actions
solely depending on the states of the peers in its vicinity. Only such locality-
sensitive distributed algorithms where communication is restricted to close
neighborhoods are fast enough to allow peers to react quickly to changing
environments.

Part I of this thesis studies how to cope with dynamics in p2p systems.
In Chapter 3, we will develop algorithms which provably maintain desirable
properties of peer-to-peer networks despite ongoing churn. These algorithms
are based on a so-called token distribution algorithm which uniformly dis-
tributes peers on the identifier space, and on an aggregation algorithm which
estimates the total number of peers in the system. It is first shown how
to apply our techniques to a hypercubic p2p network with peer degree and
network diameter O(logn). Chapter 3 also describes how to adapt the algo-
rithms to maintain a pancake graph with peer degree and network diameter
O(logn/ log log n). Chapter 4 then considers an optimization problem aris-
ing in the context of p2p file downloads and devises transfer protocols which
selfishly seek to maximize throughput despite dynamic changes of the avail-
able bandwidth. This chapter also introduces a novel adversarial model for
dynamic systems exhibiting changes with bursts.

Chapter 3

Worst-Case Churn

Due to the rise of peer-to-peer systems, sensor networks, and mobile ad
hoc networks, logical networks, or overlay networks, are becoming more and
more wide spread. A major complication in these networks is that they can
be highly dynamic, which requires fast and robust recovery mechanisms.

Today, the analysis of fault tolerance of p2p systems usually only covers
random faults of some kind. Contrary to traditional algorithmic research,
faults as well as joins and leaves occurring in a worst-case manner in p2p
systems are hardly considered. Moreover, most fault tolerance analyses are
static in the sense that only a functionally bounded number of random peers
can be crashed. After removing a few peers the system is given sufficient
time to recover again. The much more realistic dynamic case where faults
steadily occur has not found much attention.

This chapter studies dynamic worst-case joins and leaves. We think of an
adversary1 who cannot be fooled by any kind of randomness. The adversary
can choose which peers to crash and how peers join. Moreover, the adversary
does not have to wait until the system is recovered before crashing the next
batch of peers. Instead, the adversary can constantly crash peers while the
system is trying to stay alive. Indeed, the (structured) peer-to-peer system
presented in this chapter is never fully repaired but always fully functional.
Our system is resilient against an adversary who continuously attacks the
“weakest part” of the system. Such an adversary could for example insert a
crawler into the p2p system, learn the topology, and then repeatedly crash
selected peers, in an attempt to partition the network. Our system counters
such an adversary by continuously moving the remaining or newly joining
peers towards the sparse areas.

Of course, we cannot allow our adversary to have unbounded capabilities.
In any constant time interval, the adversary can at most add and/or remove
O(logn) peers, n being the total number of peers currently in the system.
This model covers an adversary who repeatedly takes down machines by a

1Note that henceforth, we will use the term “adversarial” to denote worst-case behav-
ior.

16 CHAPTER 3. WORST-CASE CHURN

distributed denial of service attack, however only a logarithmic number of
machines at each point in time. Our maintenance algorithm relies on mes-
sages being delivered timely, in at most constant time between any pair of
operational peers. In distributed computing, such a system is called syn-
chronous. Note that if nodes are synchronized locally, our algorithm also
runs in an asynchronous environment. In this case, the propagation delay
of the slowest message defines the notion of time which is needed for the
adversary model. In our synchronous message passing model, each peer can
send a message to all its neighbors in each round. In the following, we will
refer to an adversary who can perform J arbitrary joins and and L arbitrary
leaves (crashes) in each interval of λ rounds by A(J, L, λ).

The basic structure of our p2p system is a (simulated) hypercube: each
peer is part of a distinct hypercube node; each hypercube node consists of
Θ(logn) peers. Peers have connections to other peers of their hypercube node
and to peers of the neighboring hypercube nodes. After a number of joins
and leaves, some peers may have to change to another hypercube node such
that up to constant factors, all hypercube nodes have the same cardinality
at all times. If the total number of peers grows or shrinks above or below a
certain threshold, the dimension of the hypercube is increased or decreased
by one, respectively.

The balancing of peers among the nodes can be seen as a dynamic token
distribution problem on the hypercube. Each node of a graph (hypercube)
has a certain number of tokens, and the goal is to distribute the tokens along
the edges of the graph such that all nodes end up with the same or almost
the same number of tokens. While tokens are moved around, an adversary
constantly inserts and deletes tokens.

Our p2p system builds on two basic components: i) an algorithm which
performs the described dynamic token distribution and ii) an information
aggregation algorithm which is used to estimate the number of peers in the
system and to adapt the hypercube’s dimension accordingly.

Based on the described structure, we get a system which tolerates O(logn)
worst-case joins and/or crashes per constant time interval. As in other p2p
systems, peers have O(logn) neighbors, implying that the achieved fault-
tolerance is asymptotically optimal. The usual operations (e.g. search) take
time O(logn).

3.1 Algorithmic Components

Our maintenance algorithm for the simulated hypercube system ensures that
each node always contains at least one peer which stores the node’s data.
Further, it adapts the hypercube dimension to the total number of peers
in the system. This is achieved by a dynamic token distribution algorithm
on the hypercube and an information aggregation scheme which allows the
nodes to simultaneously change the dimension of the hypercube. These two
components are described in turn.

3.1. ALGORITHMIC COMPONENTS 17

3.1.1 Dynamic Token Distribution

The problem of distributing peers uniformly throughout a hypercube is a
special instance of a token distribution problem, first introduced by Peleg
and Upfal [188]. The problem has its origins in the area of load balancing,
where the workload is modeled by a number of tokens or jobs of unit size; the
main objective is to distribute the total load equally among the processors.
Such load balancing problems arise in a number of parallel and distributed
applications including job scheduling in operating systems, packet routing,
large-scale differential equations and parallel finite element methods. More
applications can be found in [215].

Formally, the goal of a token distribution algorithm is to minimize the
maximum difference of tokens at any two nodes, denoted by the discrepancy
φ. This problem has been studied intensively; however, most of the research
is about the static variant of the problem, where given an arbitrary initial
token distribution, the goal is to redistribute these tokens uniformly. In the
dynamic variant on the other hand, the load is dynamic, that is, tokens can
arrive and depart during the execution of the token distribution algorithm.
In our case, peers may join and leave the hypercube at arbitrary times, so the
emphasis lies on the dynamic token distribution problem on a d-dimensional
hypercube topology.

We study two types of the token distribution problem: in the fractional
token distribution, tokens are arbitrarily divisible, whereas in the integer
token distribution, tokens can only move as a whole. In our case, tokens
represent peers and are inherently integer. However, it turns out that the
study of the fractional model is useful for the analysis of the integer model.

Our token distribution algorithm is based on the dimension exchange
method [70, 192]. Basically, the algorithm cycles continuously over the d
dimensions of the hypercube. In step s, where i = s mod d, every node
u = β0...βi...βd−1 having a tokens balances its tokens with its adjacent node
in dimension i, v = β0...βi...βd−1, having b tokens, such that both nodes end
up with a+b

2
tokens in the fractional token distribution. On the other hand,

if the tokens are integer, one node is assigned da+b
2
e tokens and the other

one gets ba+b
2
c tokens.

It has been pointed out in [70] that the described algorithm yields a perfect
discrepancy φ = 0 after d steps for the static fractional token distribution.
In [192], it has been shown that in the worst case, φ = d after d steps in the
static integer token distribution.

In the following, the dynamic integer token distribution problem is stud-
ied, where a “token adversary” A(J, L, 1) adds at most J and removes at
most L tokens at the beginning of each step. In particular, we will show that
if the initial distribution is perfect, i.e., φ = 0, our algorithm maintains the
invariant φ ≤ 2J + 2L+ d at every moment of time.

For the dynamic fractional token distribution, the tokens inserted and
deleted at different times can be treated independently and can be super-
posed. Therefore, the following lemma holds.

18 CHAPTER 3. WORST-CASE CHURN

Lemma 3.1. For the dynamic fractional token distribution, the number of
tokens at a node depends only on the token insertions and deletions of the
last d steps and on the total number of tokens in the system.

Proof. Assume that a total amount of T tokens are distributed in two differ-
ent ways on the d-dimensional hypercube. According to [70], in the absence
of the adversary, each node has exactly T/2d tokens after d steps. On the
other hand, the token insertions and removals of the adversary that happen
in-between can be treated as an independent superposition, as the corre-
sponding operations are all linear.

We can now bound the discrepancy of the integer token distribution al-
gorithm by comparing it with the fractional problem.

Lemma 3.2. Let v be a node of the hypercube. Let τv(t) and τv,f (t) denote
the number of tokens at v for the integer and the fractional token distribution
algorithm at time t, respectively. We have ∀t : |τv(t)− τv,f (t)| ≤ d/2.

Proof. For t = 0, we have τv(t) = τv,f (t). For symmetry reasons, it is
sufficient to show the upper bound τv(t) ≤ τv,f (t) + d/2. We first prove by
induction that τv(t) ≤ τv,f (t) + t/2 at time t.

For the induction step, we consider two neighbors u and v which exchange
tokens. We have

τv(t+ 1) ≤
⌈
τv(t) + τu(t)

2

⌉
≤

⌈⌊
τv,f (t) + t

2

⌋
+
⌊
τu,f (t) + t

2

⌋
2

⌉

≤
⌊
τv,f (t) + t

2

⌋
+
⌊
τu,f (t) + t

2

⌋
2

+
1

2

≤ τv,f (t+ 1) +
t+ 1

2
.

The second inequality follows from the induction hypothesis and the fact
that τv(t) and τu(t) are integers. Note that adding or removing tokens has
no influence on the difference between τv and τv,f because it modifies τv and
τv,f in the same way.

So far, we have seen that the number of integer tokens can deviate from
the number of fractional tokens by at most d/2 after the first d steps. In
order to show that this holds for all times t, we consider a fractional token
distribution problem τ̂v,f for which τ̂v,f (t− d) = τv(t− d). Using the above
argument, we have τv(t) ≤ τ̂v,f (t) + d/2 and by Lemma 3.1, we get τ̂v,f (t) =
τv,f (t). This concludes the proof.

Lemma 3.3. In the presence of an adversary A(J, L, 1), for the integer
discrepancy, it always holds that φ ≤ 2J + 2L+ d.

3.1. ALGORITHMIC COMPONENTS 19

Proof. We show that the fractional discrepancy φf is bounded by 2J + 2L.
Since Lemma 3.2 implies that for the integer discrepancy φi it holds that
φi − φf ≤ d, the claim follows. Let Jt ≤ J and Lt ≤ L be the insertions and
deletions that happen at the beginning of step t. First, we consider the case
of joins only, i.e., Lt = 0. Assume that all Jt tokens are inserted at node v =
β0...βi...βd−1 where i = t mod d. In the upcoming paragraph, all indices are
implicitly modulo d. In step t, according to the token distribution algorithm,
v keeps Jt/2 tokens and sends Jt/2 to node u = β0...βi...βd−1. In step t+ 1,

Jt/4 tokens are sent to nodes β0...βiβi+1...βd−1 and β0...βiβi+1...βd−1, and
so on. Thus, after step t+ d− 1, every node in the d-dimensional hypercube
has the same share of Jt/2

d tokens from that insertion. We conclude that a
node can have at most all insertions of this step, half of the insertions of the
last step, a quarter of all insertions two steps ago, and so on:

Jt +
Jt−1

2
+
Jt−2

4
+ ...+

Jt−(d−1)

2d−1︸ ︷︷ ︸
< 2J

+
Jt−d
2d

+
Jt−(d+1)

2d
+
Jt−(d+2)

2d
+ ...︸ ︷︷ ︸

shared by all nodes

Since Jt−i ≤ J for i = 0, 1, 2, . . ., we have φf ≤ 2J . For the case of only
token deletions, the same argument can be applied, yielding a discrepancy of
at most 2L. Finally, if there are both insertions and deletions which do not
cancel out each other, we have φf ≤ 2J + 2L.

3.1.2 Remark on Random Token Distribution
Observe that if the decision to which node to assign da+b

2
e tokens and to

which node to assign ba+b
2
c tokens is made uniformly at random with prob-

ability .5, the final (static) integer discrepancy of our algorithm is even con-
stant in expectation.

Theorem 3.4. Let X be the random variable for the final discrepancy in a
d-dimensional hypercube. It holds that E[X] < 3.

Proof. In our randomized rounding scheme, the rounding direction of each
edge it determined by a perfect coin flip. Let Xi be the random variable
denoting the number of incoming edges of a (d − 1 − i)-dimensional sub-
cube. Since there are 2d−1−i edges connecting two (d − 1 − i)-dimensional
sub-cubes H0 and H1, Xi is binomially distributed: Xi ∼ Bin(2d−1−i, 1/2).
If rounding happens on every edge, the sub-cubes H0 and H1 differ by δi
tokens after balancing, where δi = 2 · |Xi−E[Xi]|, and the random variables
δi are mutually independent.

Assume that in the final distribution, the maximum node v has a tokens.
We show that the average number of tokens in the system is at least a −∑d−1
i=0 2iE[δi]/2

d, by counting the average number of tokens in the biggest
i-dimensional sub-cubes which contain v for i ∈ [0, d]. Obviously, the 0-
dimensional sub-cube consists only of v and has a tokens in total. In the next

20 CHAPTER 3. WORST-CASE CHURN

step, this sub-cube is combined with another 0-dimensional sub-cube having
a − δd−1 tokens. The resulting 2-dimensional hypercube having 2a − δd−1

tokens is combined with a hypercube having δd−2 tokens less, hence there are
4a− 2δd−1− δd−2 tokens in total, and so forth. After d steps, we have a2d−∑d−1
i=0 2iδi tokens in the whole d-dimensional hypercube, a −∑d−1

i=0 2iδi/2
d

on average.
It remains to calculate E[δi], which is twice the mean deviation of the

binomial distributed random variable Xi. In the following, we will first give
a proof using a Chernoff argument, and then derive a better bound by a
Stirling approximation.

We will first derive this upper bound on the mean of δi:

E[δi] = 2 · 1

22d−1−i ·
2d−1−i∑
j=0

(
2d−1−i

j

)∣∣∣∣j − 2d−1−i

2

∣∣∣∣ (1)

≤ 2
√
π2d−1−i

Inequality (1) is a Chernoff approximation. In fact, we need the following
two facts, Fact 3.1 and Fact 3.2, plus Lemma 3.5.

Fact 3.1 (Chernoff Lower Tail). Let X1, ..., XN be independent Bernoulli
variables with P[Xi = 1] = pi. Let X =

∑
iXi denote the sum of the Xi and

let µ = E[X] =
∑
i pi be the expected value for X. For ε ∈ (0, 1],

P[X < (1− ε)µ] <

(
e−ε

(1− ε)(1−ε)

)
< e−µε

2/2.

Fact 3.2. ∫ ∞
0

e−x
2
dx =

√
π

2
.

Lemma 3.5. Let X ∼ Bin(n, 1/2) be binomially distributed with parameters
n and p = 1/2. The expectation of the deviation from the mean n/2 is upper
bounded by

E[|X − n/2|] ≤ √πn.

Proof. Let pδ denote the probability that the deviation from the mean is at
least δ, that is, pδ = P[|X −n/2|] ≥ δ. By symmetry, we have pδ = 2 ·P[X ≤
n/2− δ]. For the expected deviation of the mean, we have

E[|X − n/2|] =

n/2∑
δ=1

δ · P[|X − n/2| = δ] =

n/2∑
δ=1

pδ. (3.1)

We can bound pδ using Chernoff:

pδ = 2 · P[X ≤ n/2− δ] ≤ 2e−δ
2/n. (3.2)

3.1. ALGORITHMIC COMPONENTS 21

Combining (3.1) and (3.2), we can bound the mean deviation by

E[|X − n/2|] =

n/2∑
δ=1

pδ ≤ 2 ·
n/2∑
δ=1

e−δ
2/n

< 2 ·
∞∑
δ=1

e−δ
2/n

< 2 ·
∫ ∞
δ=1

e−δ
2/ndδ

=
√
πn.

The integral after the last inequality can be calculated using Fact 3.2 and
the substitution t = δ

√
n and dδ =

√
ndt. This concludes the proof.

Remarks: There are two minor details which are neglected for readability
of the above proof. First, although the Chernoff inequality gives an upper
bound only for P[X < (1 − ε)µ], we use it for P[X ≤ (1 − ε)µ]. Second, the
first equation in the proof holds for even n. For odd n, the deviation from
the mean is not integral. Both issues can easily be solved.

Given the bound on E[δi], we can compute the token sum

d−1∑
i=0

2iE[δi] = 2
√
π

d−1∑
i=0

2i2
d−1−i

2 = 2
√
π2

d−1
2

d−1∑
i=0

2
i
2

= 2
√
π2

d−1
2

d−1∑
i=0

(
√

2)i = 2
√
π2

d−1
2

(
√

2)d − 1√
2− 1

≤
√
π√

2− 1
2d

Thus, having a node with a tokens, the average number of tokens is at least

a−
√
π√

2−1
, and by symmetry, the expected final discrepancy is twice as much.

We obtain an even better bound by using Stirling’s approximation rather
than applying Chernoff. In the following, we show that we overestimated by

a factor of at least π, and therefore the total discrepancy is 2· 1
π
·
√
π√

2−1

.
= 2.73.

The mean deviation MD of the symmetrical binomial distribution is given
by:

MD = 2−n
n∑
k=0

(
n

k

)∣∣∣k − n

2

∣∣∣ =

{
n!!

2(n−1)!!
, if n odd

(n−1)!!
2(n−2)!!

, if n even

where n!! is a double factorial, i.e.

n!! ≡

n · (n− 2) · ... · 5 · 3 · 1 = (n+1)!

2(n+1)/2(n+1
2)!

, if n > 0 is odd

n · (n− 2) · ... · 6 · 4 · 2 = 2n/2(n
2

)! , if n > 0 is even

1 , if n = −1, 0

22 CHAPTER 3. WORST-CASE CHURN

According to Stirling’s approximation2 we have

√
2πnn+1/2e−n+1/(12n+1) < n! <

√
2πnn+1/2e−n+1/(12n) (3.3)

After some calculations, the following conjecture emerges, whose correct-
ness can easily be verified:

MD = 2−n
n∑
k=0

(
n

k

)∣∣∣k − n

2

∣∣∣ ≤√n

π
.

However, note that these results do not influence our asymptotic bounds.
Hence, in the following, we will not consider random rounding.

3.1.3 Information Aggregation
Our second component is an information aggregation algorithm. Distributed
aggregation is an interesting field of research, and there exist many papers
on the subject [129, 136, 167, 186] (cf also the excellent introductory book by
Peleg [187]). In the following, we concentrate on aggregation on hypercubes.

When the total number of peers in the d-dimensional hypercube system
exceeds a certain threshold, all nodes β0 . . . βd−1 have to split into two new
nodes β0 . . . βd−10 and β0 . . . βd−11, yielding a (d+1)-dimensional hypercube.
Analogously, if the number of peers falls beyond a certain threshold, nodes
β0 . . . βd−20 and β0 . . . βd−21 have to merge their peers into a single node
β0 . . . βd−2, yielding a (d − 1)-dimensional hypercube. Based on ideas also
used in [13, 235, 236], we present an algorithm which provides the same
estimated number of peers in the system to all nodes in every step allowing
all nodes to split or merge synchronously, that is, in the same step. The
description is again made in terms of tokens rather than peers.

Assume that in order to compute the total number of tokens in a d-
dimensional hypercube, each node v = β0...βd−1 maintains an array Γv[0...d],
where Γv[i] for i ∈ [0, d] stores the estimated number of tokens in the sub-cube
consisting of the nodes sharing v’s prefix β0...βd−1−i. Further, assume that
at the beginning of each step, an adversary inserts and removes an arbitrary
number of tokens at arbitrary nodes. Each node v = β0...βd−1−i...βd−1 then
calculates the new array Γ′v[0...d]. For this, v sends Γv[i] to its adjacent node

u = β0...βd−1−i...βd−1, for i ∈ [0, d−1]. Then, Γ′v[0] is set to the new number
of tokens at v which is the only node with prefix β0...βd−1. For i ∈ [1, d],
the new estimated number of tokens in the prefix domain β0...βd−1−(i+1)

is given by the total number of tokens in the domain β0...βd−1−i plus the
total number of tokens in domain β0...βd−1−i provided by node u, that is,
Γ′v[i+ 1] = Γv[i] + Γu[i].

2The double Inequality (3.3) is actually an extended version of Stirling’s approxima-
tion.

3.2. THE DYNAMIC HYPERCUBE SYSTEM 23

Lemma 3.6. Consider two arbitrary nodes v1 and v2 of the d-dimensional
hypercube. The algorithm guarantees that Γv1 [d] = Γv2 [d] at all times t.
Moreover, it holds that this value is the correct total number of tokens in the
system at time t− d.

Proof. We prove by induction that at time t + k, all nodes v sharing the
prefix β0...βd−1−k for k ∈ [0, d] store the same value Γv[k] which represents
the correct state of that sub-domain in step t.

k = 0: There is only one node having the prefix β0...βd−1, so the claim
trivially holds.

k → k+1: By the induction hypothesis, nodes v with prefix β0...βd−1−(k+1)

βd−1−k share the same value Γv[k] corresponding to the state of the system k

steps earlier; the same holds for all nodes u with prefix β0...βd−1−(k+1)βd−1−k.
In step k+1, all these nodes having the same prefix β0...βd−1−(k+1) obviously
store the value Γ′v[k + 1] = Γ′u[k + 1] = Γv[k] + Γu[k].

3.2 The Dynamic Hypercube System

Based on the components presented in the previous sections, both the topol-
ogy and the maintenance algorithm are now described in detail. In particular,
we show that, given an adversary A(d+ 1, d+ 1, 6) who inserts and removes
at most d + 1 peers in any time interval of 6 rounds, 1) the out-degree of
every peer is bounded by Θ(log2 n) where n is the total number of peers in
the system, 2) the network diameter is bounded by Θ(logn), and 3) every
node of the simulated hypercube has always at least one peer which stores
its data items, and hence no data item will ever be lost.

3.2.1 Topology

We start with a description of the overlay topology. As already mentioned,
the peers are organized to simulate a d-dimensional hypercube, where the
hypercube’s nodes are represented by a group of peers. A data item with
identifier ID is stored at the node whose identifier matches the first d bits of
the hash-value of ID.

The peers of each node v are divided into a core Cv of at most 2d + 3
peers and a periphery Pv consisting of the remaining peers; all peers within
the same node are completely connected (intra-connections). Moreover,
every peer is connected to all core peers of the neighboring nodes (inter-
connections). Figure 3.1 shows an example for d = 2.

The data items belonging to node v are replicated on all core peers, while
the peripheral peers are used for the balancing between the nodes according
to the peer distribution algorithm and do not store any data items. The
partition into core and periphery has the advantage that the peers which
move between nodes do not have to replace the data of the old node by the
data of the new node in most cases.

24 CHAPTER 3. WORST-CASE CHURN

8

5.1 Topology

We start with a description of the overlay topology. As already mentioned, the
peers are organized to simulate a d-dimensional hypercube, where the hyper-
cube’s nodes are represented by a group of peers. A data item with identifier id
is stored at the node whose identifier matches the first d bits of the hash-value
of id .

The peers of each node v are divided into a core Cv of at most 2d+3 peers and
a periphery Pv consisting of the remaining peers; all peers within the same node
are completely connected (intra-connections). Moreover, every peer is connected
to all core peers of the neighboring nodes (inter-connections). Figure 1 shows
an example for d = 2.

Fig. 1. A simulated 2-dimensional hypercube with four nodes, each consisting of a
core and a periphery. All peers within the same node are completely connected to
each other, and additionally, all peers of a node are connected to all core peers of the
neighboring nodes. Only the core peers store data items, while the peripheral peers
may move between the nodes to balance biased adversarial changes.

The data items belonging to node v are replicated on all core peers, while
the peripheral peers are used for the balancing between the nodes according to
the peer distribution algorithm and do not store any data items. The partition
into core and periphery has the advantage that the peers which move between
nodes do not have to replace the data of the old node by the data of the new
nodes in most cases.

5.2 6-Round (Maintenance) Algorithm

The 6-round (maintenance) algorithm maintains the simulated hypercube topol-
ogy described in the previous section given an adversary A(d + 1, d + 1, 6). In
particular, it ensures that 1) every node has at least one core peer all the times
and hence no data is lost; 2) each node always has between 3d+10 and 45d+86
peers; 3) only peripheral peers are moved between nodes, thus the unnecessary
copying of data is avoided.

Figure 3.1: A simulated 2-dimensional hypercube with four nodes, each con-
sisting of a core and a periphery. All peers within the same node are com-
pletely connected to each other, and additionally, all peers of a node are
connected to all core peers of the neighboring nodes. Only the core peers
store data items, while the peripheral peers move between the nodes to bal-
ance biased adversarial changes.

3.2.2 6-Round (Maintenance) Algorithm

The 6-round (maintenance) algorithm maintains the simulated hypercube
topology described in the previous section given an adversaryA(d+1, d+1, 6).
In particular, it ensures that 1) every node has at least one core peer all the
time, and hence no data is lost; 2) each node has between 3d + 10 and
45d+ 86 peers; 3) only peripheral peers are moved between nodes, thus the
unnecessary copying of data is avoided.

In the following, we refer to a complete execution of the six rounds (Round
1 – Round 6) of the maintenance algorithm as a phase. Basically, the 6-round
algorithm balances the peers across one dimension in every phase according to
the token distribution algorithm as described in Chapter 3.1.1; additionally,
the total number of peers in the system is computed with respect to an earlier
state of the system by the information aggregation algorithm of Chapter 3.1.3
to expand or shrink the hypercube if the total number of peers exceeds or
falls below a certain threshold. In our system, we use the lower threshold
LT = 8d+ 16 and the upper threshold UT = 40d+ 80 for the total number
of peers per node on average.3

While peers join and leave the system at arbitrary times, the 6-round
algorithm considers the (accumulated) changes only once per phase. That
is, a snapshot of the system is made in Round 1; Rounds 2 – 6 then ignore
the changes that might have happened in the meantime and depend solely
on the snapshot at the beginning of the phase.

3Note that since we consider the threshold on average, and since these values are
provided with a delay of d phases in a d-dimensional hypercube (see Lemma 3.6), the
number of peers at an individual node can lie outside the threshold interval.

3.2. THE DYNAMIC HYPERCUBE SYSTEM 25

Round 1

Outline: Each node v makes a snapshot of the currently active peers, de-
noted by the ID set Sv. The later rounds will only be based on these sets.
Sent Messages: Each peer of a node v sends a packet with its own ID and
the (potentially empty) ID set of its joiners to all adjacent peers within v.

Round 2

Outline: Based on the snapshot of Round 1, the core peers of a node v know
the total number of peers in the node, size(v) = |Sv|. This information is
needed for the peer distribution algorithm and for the estimation of the total
number of peers in the system.
Local Computations: The core peers compute size(v) = |Sv|.
Sent Messages: Each peer informs its joiners about Sv. The core peers
Cv additionally send the number size(v) to their neighboring core Cu, where
node u is v’s neighbor in dimension i—the node with which v has to balance
its peers in this phase. The core also exchanges the new estimated total
number of peers in its domains with the corresponding adjacent cores.

Round 3

Outline: At the beginning of this round, every peer within a node v knows
Sv, and the transfer for the peer distribution algorithm can be prepared. Let
v again be an arbitrary node and u its adjacent node in dimension i. We
assume that size(v) > size(u); the case where size(v) ≤ size(u) is analogous
and not described further here. The ID set T of peers that have to move
from node v to node u are the (size(v) − size(u))/2 (arbitrarily rounded)
peers in the periphery Pv having the smallest identifiers.
Local Computations: The peers in each node v compute the new periphery
Pv = Sv \ Cv. The core remains the same.
Sent Messages: All cores forward the information about the new estimated
total number of peers in the system to their peripheral peers. Moreover, the
core of the larger node Cv sends the identifiers of the to be transferred peers
T to Cu, and the number (size(v)− size(u))/2 to the new periphery Pv.

Round 4

Outline: The transfer for the peer distribution algorithm is continued.
Moreover, this round prepares the dimension reduction if necessary.
Sent Messages: The core Cu informs the peers in T about all neighboring
cores Cuj , where uj is the neighbor of u in dimension j for j ∈ [0, d − 1],
about Cu itself, about Su and about its peripheral peers Pu. Additionally,
Cu informs its own periphery Pu about the newcomers T .

If the estimated total number of peers in the system is beyond the thresh-
old, the core peers of a node v which will be reduced send their data items
plus the identifiers of all their peripheral peers (with respect to the situation
after the transfer) to the core of their adjacent node v.

26 CHAPTER 3. WORST-CASE CHURN

Round 5

Outline: This round finishes the peer distribution, establishes the new pe-
ripheries, and prepares the building of a new core. If the hypercube has to
grow in this phase, the nodes start to split, and vice versa if the hypercube
is going to shrink.
Local Computations: Given the number (size(v) − size(u))/2, the pe-
ripheral peers Pv can compute the set T selecting the (size(v)− size(u))/2
smallest elements in Pv. From this, the new periphery Pv = Pv \ T is com-
puted. Analogously, the peers in node u (including T) can compute the new
periphery Pu = Pu ∪ T .

Then, all peers of each node v calculate the new core Cnewv : it consists
of the peers of the old core which have still been alive in Round 1, i.e.,
Coldv = Cv ∩ Sv, plus the 2d+ 3− |Cv ∩ Sv| smallest IDs in the new periphery
Pv, denoted by C4v . Hence, the new core is given by Cnewv = Coldv ∪ C4v , and
the new periphery by Pnewv = Pv \ C4v .

If the hypercube has to grow in this phase, the smallest 2d + 3 peers in
the new periphery Pnewv become the new core of the expanded node, Cv. Half
of the remaining peripheral peers, the ones with the smaller identifiers, build
the new periphery Pv, and the other half becomes Pv. All these operations
can be computed locally by every peer.
Sent Messages: The old core Coldv informs all its neighboring nodes (i.e.,
their old cores) about the new core Cnewv . Moreover, Coldv sends its data items
to the peers in C4v .

If the hypercube is about to grow, Coldv sends the necessary data items to

the core peers of the new node, Cv. Moreover, Coldv informs its neighboring
(old) cores about the IDs of its expanded core Cv.

If the hypercube is about to shrink, all cores Coldv inform their periphery
about the peers arriving from the expanded node and the peers in the ex-
panded node about the new core Cnewv and its periphery. Coldv also copies the

data items of Coldv to the peers C∆
v .

Round 6

Outline: The new cores are built and the dimension change is accomplished
if necessary.
Local Computations: If the hypercube has been reduced, every peer can
now compute the new periphery Pv.

Sent Messages: The old core Coldv forwards the information about the new
neighboring cores to the peers C∆

v ∪ Pv.
If the hypercube has grown, Coldv forwards the expanded cores of its neigh-

boring nodes to all peers in its expanded node v. Note that this requires
that Coldv remembers the peripheral peers that have been transferred to v in
Round 5.

Theorem 3.7. Given an adversary A(d+1, d+1, 6) who inserts and removes
at most d + 1 peers per phase, the described 6-round algorithm ensures that
1) every node always has at least one core peer and hence no data is lost;

3.2. THE DYNAMIC HYPERCUBE SYSTEM 27

2) each node has between 3d+ 10 and 45d+ 86 peers, yielding a logarithmic
network diameter; 3) only peripheral peers are moved between nodes, thus the
unnecessary copying of data is avoided.

Proof. We first consider a simpler system without the separation into core
and periphery, where the maintenance algorithm simply runs the peer dis-
tribution algorithm and the information aggregation algorithm to count the
total number of peers in the system, and expands or reduces the hypercube
with respect to the thresholds LT = 8d+ 16 and UT = 40d+ 80. Moreover,
we assume that these operations are performed in quiet phases, where the
adversary removes at most d+1 and adds at most d+1 peers only in-between.

For this simpler system, it holds that every node in the simulated d-
dimensional hypercube has at least 3d + 10 and at most 45d + 86 peers
at every moment of time. Moreover, after the hypercube has changed its
dimension from dold to dnew, the dimension will remain stable for at least
2dnew + 1 phases.

The cases where the average number of peers per node µ falls beyond
the lower threshold 8dold + 16 or exceeds the upper threshold 40dold + 80
are studied in turn. According to Lemma 3.6, such an event will lead to a
dimension change with a delay of dold phases only. We prove that after the
change, µ ∈[8dnew + 16, 40dnew + 80] for at least dnew + 1 phases. The di-
mension remains stable for at least 2dnew+1 phases which implies—together
with Lemma 3.3—that the discrepancy before the next change is limited by
2(dnew + 1) + 2(dnew + 1) + dnew = 5dnew + 4.

Case µ < 8d+ 16: At time t− dold, it held that µ < 8dold + 16 while at
time t− dold− 1 we had µ ≥ 8dold + 16. In dold + 1 phases, there are at most

(dold+1)(dold+1) = d2
old+2dold+1 leaves, so µ ≥ 8dold+16− d2old+2dold+1

2dold
>

8dold + 14 before merging. Clearly, there must be a node with more than
8dold + 14 peers, hence, given the discrepancy of 5dold + 4 (cf Lemma 3.3),
every node has more than 3dold + 10 peers before merging.

What about the maximum? At time t−dold, µ < 8dold+16, and there have

been at most dold(dold+1) joins in dold steps, so µ < 8dold+16+ dold(dold+1)

2dold
<

8dold + 18 before merging, and µ < 16dold + 36 afterwards. The maximum
node has less than 21dnew + 61 peers.

We now show that µ ≥ 8dnew + 16 for the next dnew + 1 phases after a
reduction. At time t− dold − 1, µ ≥ 8dold + 16 = 8dnew + 24. The reduction
doubles the average number of peers per node, hence µ ≥ 16dnew + 48.
Further, there are at most (dold+1)(dold+1)+(dnew+1)(dnew+1) = 2d2

new+

6dnew + 5 leaves in the meantime, hence µ ≥ 16dnew + 48− 2d2new+6dnew+5

2dnew
>

16dnew + 41 > 8dnew + 16.
Finally, µ ≤ 40dnew + 80 for dnew + 1 phases. At time t − dold, µ <

8dnew + 24, so µ < 16dnew + 48 after the reduction. There are at most
dold(dold + 1) + (dnew + 1)(dnew + 1) = 2d2

new + 5dnew + 3 joins, therefore

µ < 16dnew + 48 +
2d2new+5dnew+3

2dnew
< 16dnew + 54 < 40dnew + 80.

Case µ > 40d + 80: At time t− dold, µ > 40dold + 80 = 40dnew + 40, so
µ > 20dnew+20 after splitting; there are at most dold(dold+1) = d2

new−dnew

28 CHAPTER 3. WORST-CASE CHURN

leaves in dold steps, so µ > 20dnew+20− d2new−dnew
2dnew

> 20dnew+19. According
to Lemma 3.3, the minimum node has more than 15dnew + 15 peers after
splitting. At time t − dold − 1, µ ≤ 40dold + 80, and there are at most
(dold + 1)(dold + 1) = d2

old + 2dold + 1 joins. Hence, before splitting, µ ≤
40dold+80+

d2old+2dold+1

2dold
< 40dold+82, and the maximum node has at most

45dold + 86 peers.
Next, we show that µ ≥ 8dnew + 16 for the dnew + 1 phases after the

expansion. At time t − dold, µ > 40dold + 80 = 40dnew + 40, hence µ >
20dnew + 20 after the expansion. Moreover, there are at most dold(dold +
1) + (dnew + 1)(dnew + 1) = 2d2

new + dnew + 1 leaves, and µ > 20dnew + 20−
2d2new+dnew+1

2dnew
> 20dnew + 17 ≥ 8dnew + 16. Finally, µ ≤ 40dnew + 80 for

the next dnew + 1 steps: at time t − dold − 1, µ ≤ 40dold + 80 = 40dnew +
40, so µ ≤ 20dnew + 20 after the expansion; moreover, there are at most
(dold + 1)(dold + 1) + (dnew + 1)(dnew + 1) = 2d2

new + 2dnew + 1 joins, thus

µ ≤ 20dnew + 20 +
2d2new+2dnew+1

2dnew
< 20dnew + 24 < 40dnew + 80.

In reality, the repairing operations will run concurrently to the adversary.
However, as all operations are based on the state of Round 1, a phase can be
considered as running uninterruptedly, that is, as if the adversary inserted
d+ 1 and removed d+ 1 peers only between the phases. Thus, the properties
shown above remain valid. However, we additionally have to postulate that
there is always at least one core peer. We know that it is always possible to
select 2d + 3 core peers in Round 5 with respect to the state of Round 1.
These peers have to survive until Round 6 of the next phase, so for twelve
normal rounds in total; however, as the adversary Aadv(d+1, d+1, 6) removes
at most 2d+ 2 peers in twelve rounds, this clearly holds.

Finally, we show that there are indeed enough peripheral peers in Round 3
such that core peers do not have to change the node for the peer distribution,

that is: in Round 3, it holds that |Pv| > size(v)−size(u)
2

. We know that
size(v) ≥ 3d+ 10 and size(u) ≥ 3d+ 10. As v has at most 2d+ 3 core peers,

we have |Pv| ≥ size(v)− (2d+ 3) ≥ size(v)− size(u) > size(v)−size(u)
2

.

Finally, observe that we can replace the complete bipartite graphs between
adjacent hypercube nodes by bipartite matchings, reducing the peer degree
from O(log2 n) to O(logn). Apart from the lower degrees, all our results still
hold up to constant factors.

3.3 The Dynamic Pancake System

The previous section has presented algorithms to maintain a hypercube topol-
ogy with diameter O(logn) and where each peer has at most O(logn) neigh-
bors. The topology is resilient to O(logn) worst-case changes per time unit
which is asymptotically optimal. In this section we sketch how our construc-
tion can be adapted for another interesting network topology, namely for the
pancake graph of order d defined in Definition 3.1. The pancake graph has

3.3. THE DYNAMIC PANCAKE SYSTEM 29

1234

2134

4321

3124

1324
3142

3214

2314

4132

1432

3412

4312

1342

3421 2341

32412431

4213 1423

1243

2143

4123

4231
2413

Figure 3.2: A pancake graph of order 4 (P4).

the interesting property that it is a graph with minimal maximum of peer
degree and network diameter.

Definition 3.1. A pancake graph of order d is a graph Pd = (V,E), with
V (Pd) = {l1l2...ld |li ∈ {1, ..., d},∀i 6= j : li 6= lj}, i.e., V (Pd) is the set of
all permutations on the set [1, d]. Let ρi denote a prefix-inversion of length
i: ρi(l1...li...ld) = lili−1...l1li+1...ld. For u, v ∈ V (Pd), it holds that {u, v} ∈
E(Pd)⇔ v = ρi(u) for i ∈ {2, ..., d}. Pd is a (d−1)-regular graph of diameter
smaller than 2d.

Henceforth, we will refer to the set {a, a+1, ..., b−1, b} as [a, b]. Moreover,
the number li at the ith position of a node with label v = l1...ld will be called
the ith entry.

Again, we simulate the pancake graph in our p2p system: each peer is
part of a distinct pancake node, and each pancake node consists of O(d2)
peers. A data item is redundantly stored by the peers of the node to which
its identifier hashes. Peers have connections to other peers of their pancake
node; additionally, some peers of neighboring pancake nodes are connected
to each other. In case of joins or leaves, some of the peers have to change
to another pancake node such that up to constant factors, all pancake nodes
own the same number of peers at all times. If the total number of peers
grows or shrinks above or below a certain threshold, the order of the pancake
is increased or decreased by one, respectively.

The balancing of peers among the pancake nodes is again done by a dy-
namic token distribution algorithm. Moreover, we have a distributed infor-
mation aggregation algorithm which estimates the number of peers in the sys-
tem and adapts the order accordingly. Based on the described structure, we
get a p2p system with peer degree and network diameter O(logn/ log logn),
implying time complexity O(logn/ log log n) for the usual operations such as
search. At the same time, our system tolerates Θ(logn/ log logn) worst-case
joins and/or crashes per constant time interval.

30 CHAPTER 3. WORST-CASE CHURN

3.3.1 Dimension Change
The order of the pancake graph is changed according to the total number of
peers in the system. For the expansion, node l1...ld ∈ V (Pd) splits into d+ 1
new nodes {(d+1)l1l2...ld, l1(d+1)l2...ld, ..., l1l2...ld(d+1)} of Pd+1, and vice
versa for the reduction.

To be useful for our application, the pancake’s order change from dold to
dnew has to fulfill a requirement: a node in Pdnew must be able to compute
its new neighbors locally, i.e., based on the information about the neighbors
in Pdold . We will now describe the expansion and the reduction of the order
in turn and show that this criterion is indeed met in both cases.

Expansion

If the total number of peers in the system exceeds a certain threshold,
each node v = l1...ld ∈ V (Pd) splits into d + 1 new nodes {vexp(1) = (d +

1)l1l2...ld, v
exp
(2) = l1(d + 1)l2...ld, ..., v

exp
(d+1) = l1l2...ld(d + 1)} of Pd+1. The

following lemma states that the new neighbors of a node vexp(i) ∈ V (Pd+1) can

easily be computed given the knowledge about the neighbors of the original
node v ∈ V (Pd).

Lemma 3.8. Consider two arbitrary nodes u and v of Pd. It holds that if
{uexp(i) , v

exp
(j) } ∈ E(Pd+1) for some i, j ∈ {1, ..., d+ 1}, then {u, v} ∈ E(Pd) or

u = v.

Proof. If {uexp(i) , v
exp
(j) } ∈ E(Pd+1) there is a k ∈ {2, ..., d+1} such that uexp(i) =

ρk(vexp(j)). If d+ 1 appears among the first k entries of uexp(i) (and thus also of

vexp(i)), the original nodes—having no entry (d + 1)—are related by a prefix-

inversion of length k − 1: u = ρk−1(v). If on the other hand the entry
(d+1) appears among the remaining entries, u and v are related by the same
prefix-inversion: u = ρk(v).

Reduction

If the total number of peers in the system falls below a certain threshold, all
nodes l1...li(d + 1)li+1...ld ∈ V (Pd+1) for i ∈ [0, d] merge into a single node
l1...ld ∈ V (Pd). Unfortunately, we cannot reverse the expansion directly.
Instead, the reduction works as follows. First, the following Dominating
Set [101] on Pd+1 is computed: every node v = l1...ld+1 having l1 = d + 1
becomes a dominator. We will call a dominator plus its adjacent (dominated)
nodes a cluster. In the following, let vdom(1) = (d+1)l1...ld be a dominator and

vdom(i) = ρi(v
dom
(1)) = li−1li−2...(d+1)li...ld its neighbor with prefix-inversion of

length i, for i ∈ [1, d+1]. The idea is to contract each cluster with dominator
vdom(1) = (d+1)l1...ld to a single node v = l1...ld ∈ V (Pd). Mind, however, that
our clusters do not yield the desired reduction yet: in order to get the inverse
operation of the expansion, each cluster has to exchange one dominated node
with each of its adjacent clusters.

3.3. THE DYNAMIC PANCAKE SYSTEM 31

Before we explain the exchange of the dominated nodes in detail, we first
prove that the set of nodes having l1 = d+ 1 indeed forms a dominating set,
that every dominated node is adjacent to exactly one dominator, and that
dominators are independent.

Lemma 3.9. Consider the graph Pd+1. The d! nodes of Pd+1 with first entry
l1 = d+ 1 build a dominating set, i.e., each node is either a dominator itself
or adjacent to a dominator. Moreover, clusters are disjoint.

Proof. Consider an arbitrary node v = l1l2...ld+1. Assume that li = d+1 for
some i ∈ {1, ..., d + 1}. If i = 1, v is a dominator itself. Two nodes having
l1 = d + 1 cannot be adjacent because of the prefix-inversion changes the
first entry. If i 6= 1, there is exactly one neighbor of v which is a dominator,
namely node u = ρi(v).

According to Lemma 3.9, each node belongs to exactly one cluster, hence
the contraction operation is well-defined. However, as already mentioned, we
additionally need to exchange dominated nodes between adjacent clusters.
This is done as follows: the cluster with dominator vdom(1) = (d+1)l1...ld sends

its dominated node vdom(i+1) to the cluster with dominator (d+ 1)ρi(l1...ld), for

i ∈ [2, d].
It holds that after the exchange of the dominated nodes, (i) each clus-

ter with dominator vdom(1) = vexp(1) = (d + 1)l1...ld which will contract to

node v = l1...ld consists of the nodes vexp(1) = (d + 1)l1...ld, v
exp
(2) = l1(d +

1)...ld, ..., v
exp
(d+1) = l1...ld(d + 1), and (ii) the dominated node vexp(i) for i ∈

[3, d+1]—before being transferred to the cluster dominated by vdom(1) —belonged

to the cluster that will form the new node ρi(v). To see this, note that
node vdom(i) is replaced by ρi−1(vdom(i)) = ρi−1(li−1...l1(d + 1)li...ld) = vexp(i) ,

and that before the transfer, vexp(i) belonged to the cluster dominated by

ρi(v
exp
(i)) = (d + 1)li−1...l1li...ld which will reduce to node ρi−1(v). Thus,

after the exchange, the following lemma holds.

Lemma 3.10. The cluster contracting to node v consists of those nodes
which v would also expand to, and the cluster has information about each of
v’s neighbors.

3.3.2 Information Aggregation
Our algorithm AIA allows to count the total number of peers in the pancake’s
nodes. Let Pi(v) denote the sub-graph of the pancake graph Pd consisting
of those nodes which share a postfix of length d − i with a given node v.
(Note that the graph induced by Pi(v) is a pancake graph of order i.) The
algorithm runs in d − 1 phases and accumulates the total number of tokens
in sub-graphs of increasing size.

Each phase consists of two rounds. In the first round of phase i, a node
v sends the total number of tokens in its sub-graph Pi(v)—which is known

32 CHAPTER 3. WORST-CASE CHURN

by induction—to its neighbor ρi+1(v). Thus, since prefix-inversion is a sym-
metric operation, v receives the total number of tokens in the sub-graph
Pi(ρi+1(v)) from node ρi+1(v). In the second round, node v sends this infor-
mation to all neighbors ρj(v) for j < i+ 1. Given the information about all
Pi(ρi+1(ρj(v))) (for j < i+ 1), the total number of tokens in the sub-graph

Pi+1(v) can be computed: τ(Pi+1(v)) = τ(Pi(v)) +
∑i
j=1 τ(Pi(ρi+1(ρj(v)))),

where τ(·) denotes the number of tokens in the corresponding sub-graph.
Hence, by induction, after d − 1 phases, every node can compute the total
number of tokens in the system.

Theorem 3.11. AIA provides all nodes with the correct total number of
tokens in the system after d− 1 phases.

Proof. By induction over the phases we show that after phase i, it holds that
each node v knows the total number of tokens in Pi+1(v).

i = 0 : Before the first phase, a node v only knows its own tokens, and as
there is only one node in P1(v), the claim holds trivially.

i→ i+1 : By the induction hypothesis, after phase i, each node v = l1...ld
knows the total number of tokens in the sub-graph Pi+1(v). In phase i + 1,
node v learns the total number of tokens in the sub-graphs Pi+1(ρi+2(ρj(v)))
for j < i+ 2. This facilitates the computation of the total number of tokens
in Pi+2(v).

Note that the nodes ρj(v) for j < i + 2 all have a different first entry
and share the postfix li+2li+3...ld with v. Performing a ρi+2 prefix-inversion
yields a member for each sub-graph with postfix li+3li+4...ld of length d −
(i + 2). Therefore, combining the information of the sub-graphs gives the
total number of tokens in Pi+2(v).

AIA is executed all the time and in a pipelined fashion, i.e., all phases
run concurrently. This way, all nodes always get a consistent result even if
the adversary concurrently adds and removes tokens (peers). Moreover, the
result always corresponds to the exact state of the system d− 1 phases ago.

3.3.3 Token Distribution

Our goal is again to minimize the maximum difference of the number of
tokens of any two pancake nodes, denoted by the discrepancy φ. Analogously
to the information aggregation algorithm, our token distribution algorithm
ATD exploits the recursive structure of the pancake graph. In a first step,
all pancakes of order 2 balance their tokens. Then, the pancakes of order
3, 4, . . . exchange tokens. Pancakes of order i can thereby build on the fact
that all pancakes of order i− 1 have balanced the token levels of their nodes.
A detailed description of ATD is given in Algorithm 3.1. We assume that we
have a dominating set for each pancake Pi(v). For example, the dominators
could again be all nodes of Pi(v) having the largest of the first i entries at
the first position. Note that, by definition, entries i+ 1 to d are fixed for all
nodes of Pi(v).

3.3. THE DYNAMIC PANCAKE SYSTEM 33

1: for i := 2 to d do
2: send all tokens to ρi(v);
3: send all tokens to dominator in Pi(v);
4: dominators send tokens to nodes of their clusters;
5: end for

Algorithm 3.1: Token Distribution ATD (node v)

Let Pi(v) be the pancake of order i. After the ith iteration of ATD, for
all v, all nodes of Pi(v) have the same number of tokens. Hence, at the end
(i = d) all nodes of the pancake have the same number of tokens. In Line 4 of
ATD, it is not specified how many tokens to send to which nodes if the number
of tokens at a node is not divisible by i. There is also no explicit notion of
tokens which are added or removed by an adversary during the algorithm. In
the following, we will prove that the algorithm perfectly distributes tokens
if tokens are fractional, that is, if they can be divided arbitrarily and if no
tokens are added or removed during the algorithm (static token distribution).
We will then analyze the effects of adversarial insertions and deletions and
of integer tokens.

Lemma 3.12. ATD perfectly solves the static fractional token distribution
problem on a pancake of order d.

Proof. As outlined above, we prove the lemma by induction over i. Since
P1(v) is a single node, clearly at the beginning all nodes of P1(v) have
the same number of tokens. Let us therefore assume that for all nodes u,
each node of Pi−1(u) has the same number of tokens τi−1(u). The pancakes
Pi−1(u) of order i − 1 belonging to Pi(v) can be characterized by their ith

entry. Let li be the ith entry of the nodes of Pi−1(u). In Line 2 of ATD, a
node u of Pi−1(u) moves all tokens to ρi(u), that is, all tokens are moved to
a node with li as its first entry. Hence, after Line 2, all nodes of Pi(u) with
first entry li have τi−1(u) tokens.

In Lines 3 and 4, each cluster (dominator plus neighbors) distributes all
its tokens equally among the members of the cluster. It therefore remains
to show that each cluster of Pi(u) has the same number of tokens. However,
since in each cluster, every possible first entry occurs exactly once, this is
clear from the discussion of the first step of the algorithm (Line 2).

We will now show how dynamic insertions and deletions of tokens affect
the fractional token distribution of ATD. For the dynamic token distribution
algorithm, we assume that the d−1 iterations of the algorithm are repeated,
that is, after i = d, we start again at i = 2.

Lemma 3.13. If in every iteration of ATD at most J tokens are added and
at most L tokens are removed, the algorithm guarantees that at all times
t ≥ d − 1, the maximal difference between the numbers of fractional tokens
between any two nodes is 3(J + L).

34 CHAPTER 3. WORST-CASE CHURN

Proof. To start, we only consider insertions and neglect deletions. Because
all operations of the algorithm are linear, we can look at each token indepen-
dently. By Lemma 3.12, each token which is added before the first iteration of
the algorithm is distributed equally among i! ≥ 2i nodes after iteration i. A
token which is added after iteration j is distributed among i!/j! ≥ 2i−j nodes
after iteration i. All tokens which were inserted before the last complete ex-
ecution of ATD are equally distributed among all nodes of the pancake. We
therefore only have to look at the last complete execution and at the current
execution of the algorithm. All tokens which are inserted in the current exe-
cution of ATD are distributed among at least 2t nodes, t iterations after the
insertion. Therefore, by a geometric series argument, there are at most 2J to-
kens per node which were inserted in the current iteration. All tokens which
were inserted before the end of the last complete execution of the algorithm,
were distributed among at least d nodes after the last complete execution.
Since in iteration i, each node distributes its tokens among i different nodes
and each node receives tokens from i different nodes, all the tokens from the
last complete execution of the algorithm remain distributed among at least
d nodes. Because there are at most (d− 1)J such tokens, each node has less
than one of them. Together, the difference between the number of tokens at
the heaviest and the lightest node becomes 3J . For deleted tokens the same
argumentation as for inserted tokens holds.

We have analyzed the token distribution algorithm for the idealized case
where tokens can be divided arbitrarily. In our application, tokens correspond
to peers, and we again have to extend the analysis to integer tokens. We
assume that in Line 4, tokens are distributed as equally as possible. That is,
if there are k tokens in a cluster, some of the nodes receive bk/ic tokens and
some nodes receive dk/ie tokens.

Lemma 3.14. The (absolute) difference between the number of integer tokens
and the number of fractional tokens at any node is always upper bounded by
2d.

Proof. We start the proof by looking at iteration i of ATD. Assume that
before iteration i, the difference between the number of integer tokens and
the number of fractional tokens is at most ξ at each node. If there are token
insertions or deletions at a node, this difference does not change because
insertions and deletions affect the numbers of fractional and integer tokens
in the same way. In Line 2, all tokens are moved and therefore ξ remains
unchanged. In Lines 3 and 4, tokens are distributed equally among i nodes
of a cluster. If there are k tokens in such a cluster, each node gets between
bk/ic and dk/ie tokens. If every node got exactly k/i tokens, the difference
between fractional and integer would remain at most ξ. Due to the rounding,
the difference can therefore grow to at most ξ + 1 after iteration i. Hence,
after t iterations, the absolute difference between the numbers of fractional
and integer tokens is at most t.

To prove that at each node, the number of integer tokens cannot deviate
from the number of fractional tokens by more than 2d, we need the following

3.3. THE DYNAMIC PANCAKE SYSTEM 35

observation. By Lemma 3.12, fractional tokens are distributed equally among
all nodes after their first complete execution of ATD, that is, after less than
2d iterations. Therefore, the number of fractional tokens at each node only
depends on the insertions and deletions of the last 2d iterations and on the
total number of tokens in the system. Therefore, the distribution of fractional
tokens is the same if we assume that before the last 2d iterations, the number
of fractional tokens at each node was equal to the number of integer tokens.
By the above argumentation, the difference between the numbers of integer
and fractional tokens at a node can have grown to at most 2d in those 2d
iterations.

By combining Lemmas 3.12, 3.13, and 3.14, we obtain the following the-
orem about the dynamic integer token distribution algorithm.

Theorem 3.15. The discrepancy φ of the dynamic integer token distribution
algorithm is at most φ ≤ 4d+ 3(J + L).

The algorithm ATD is formulated in the form which makes the proofs of
this section as simple as possible. It is of course not desirable that all nodes
first have to move all tokens to dominator nodes which then redistribute the
tokens. Especially in the case where no insertions or deletions occur, we
would like the system to stabilize to a point where no tokens have to be
moved around. It is not difficult to implement ATD in a way which has this
property. In Line 2, two nodes u and ρi(u) exchange all their tokens. They
can of course obtain the same effect by computing the difference between
the number of tokens and by only moving this number of tokens in the
appropriate direction. A similar trick can be applied for Lines 3 and 4.
The dominator nodes can collect all the necessary information and decide
about the necessary movements of tokens.

3.3.4 Node Representation
The algorithms so far have all been described on the level of pancake graphs.
In this section, we take a more detailed look at the internals of the system.
We first present the representation of the pancake’s nodes and edges and then
give an algorithm which allows to maintain these structures against a con-
current adversary. We omit the peer-level description of some components,
for example the token distribution or the information aggregation algorithm.
These operations are straight-forward and can be done with similar tech-
niques.

The Grid

The peers of a node v ∈ V (Pd) are arranged to form a 2-dimensional grid Gv
consisting of exactly d + 1 columns, while the number of rows R may vary
depending on the total number of peers in v.

Let τ(v) be the total number of peers in node v and letR = bτ(v)/(d+ 1)c.
The first R · (d + 1) peers are arranged in a 2-dimensional grid with d + 1
columns and R complete rows, such that every peer occupies exactly one

36 CHAPTER 3. WORST-CASE CHURN

Fig. 2. The peers of a pancake node are arranged as a grid with
d + 1 columns. A peer has connections to all peers in its row plus
to all peers in its column. The pancake’s edges are represented by a
matching between the peers of the bottom row.

detailed look at the internals of our system. As stated, our
system simulates the pancake topology and a pancake node
consists of several peers. But how are peers of the same node
connected to each other (intra-connections)? And how are
peers connected to peers in adjacent nodes (inter-connections)?

In Section IV-D.1, we present the representation of the
pancake’s nodes and edges. Section IV-D.2 then gives an
algorithm which allows to maintain these structures against
a concurrent adversary. Finally, we give the algorithms for
expansion and reduction of the pancake’s order (Sections IV-
D.3 and IV-D.4). Note that—due to space constraints—we
omit the peer-level description of some components, for exam-
ple the token distribution or also the information aggregation
algorithm. However, these operations are straight-forward and
can be done with similar techniques.

1) The Grid: The peers of a node v ∈ V (Pd) are arranged
to form a 2-dimensional grid Gv consisting of exactly d + 1
columns, while the number of rows R may vary depending on
the total number of peers in v.

Let τ(v) be the total number of peers in node v and
let R := �τ(v)/(d + 1)	. The first R · (d + 1) peers are
arranged in a 2-dimensional grid with d + 1 columns and
R complete rows, such that every peer occupies exactly one
position Gv[x, y] for x ∈ [0, d] and y ∈ [0, R − 1]. The
remaining τ(v) mod (d+1) peers—from now on called extra
peers—are located in an incomplete additional row Gv[i, R]
for i ∈ [0, τ(v) mod (d + 1)]. Inside a row or column, the
peers are completely connected (“intra-connections”): A peer
at Gv[x, y] is connected to the peers Gv[x, i] for i ∈ [0, R]
and Gv[i, y] for i ∈ [0, d]. As the extra peers do not form a
complete row, they are more vulnerable; thus, they additionally
participate in row R−1, i.e., we also have connections between
Gv[i, R] for i ∈ [0, d + 1] and all peers Gv[j, R − 1] for
j ∈ [0, τ(v) mod (d + 1)].

Additionally, we need to specify the representation of the
pancake’s edges (“inter-connections”). The idea is as follows:
If two nodes u and v are connected in the pancake graph Pd,
i.e., {u, v} ∈ E(Pd), then each peer Gu[i, 0] is connected to
the peer occupying Gv[i, 0], for i ∈ [0, d]. In the following,
we will call the peers in the lowest row (row 0) the core of
the corresponding node. Thus, two nodes are connected by a
matching between their cores.

The representation of the pancake’s nodes is depicted in
Figure 2.

2) Grid Maintenance: In this section, we describe how to
maintain the grid against concurrent adversarial churn. Our
algorithm AGRID needs several rounds. The idea is as follows:
At the beginning, a snapshot of the state (living peers, etc.) of
the system is made. The following rounds are then solely based
on this information—ignoring the fact that some peers may
have crashed by the concurrent adversary in the meantime.
That is, by using enough redundancy, we do not have to take
the crashed and newly joined peers into consideration until the
maintenance algorithm restarts with the first round.
AGRID consists of two phases. In the first phase, the

following information is broadcast throughout the grid: (1)
the positions where peers have left, (2) the IP addresses of
the peers that have joined, (3) the IP addresses of the extra
peers, and (4) the IP addresses of the peers in row R − 1.
The second phase is based on this information and works
as follows: Every surviving peer can locally compute which
peers will take the positions of the peers that left (gaps in
the grid). Thereby, newly joined peers are taken into account
first, and if this is not enough the extra peers are used. If
there are still gaps in the grid, the peers of the top row are
used, and if necessary, the number of rows is decremented
(R := R − 1). If on the other hand there are still joining
peers left after all gaps have been filled, these peers are
added to the top row, creating a new top row if necessary
(R := R+1). After this local computation, the peers that have
to fill the gaps are provided with the information about their
new neighbors. We can guarantee that no row may be removed
completely and that there is always a complete column in
the presence of a concurrent adversary AADV (d

2 , d
2 , 5) which

may add and remove at most d
2 peers in any time period of 5

rounds. Moreover, also the pancake’s edges may be repaired in
constant time since we ensure that two adjacent pancake nodes
always have at least two living adjacent core peers which may
reestablish the matching between the cores.

We now give the detailed description of AGRID. We write
Gv[·, y] and Gv[x, ·] to denote all (surviving) peers in the yth

row and in the xth column respectively. In the following, we
assume the extra peers to participate in both rows R and R−1,
i.e., they send and receive messages for both rows.
Round 1: The snapshot is made: A surviving peer at position
Gv[x, y] sends its IP address and the IP addresses of its joiners
to all peers in Gv[·, y].
Round 2: Each peer at position Gv[x, y] sends the addresses
of its joiners plus the information in which column of its row
peers have left to Gv[x, ·].
Round 3: Each peer at position Gv[x, y] forwards the infor-
mation received in Round 2 to the peers Gv[·, y].
Round 4: Now the new form of Gv is computed locally: If a
peer at Gv[x, y] has missing neighbors on its row or column, it
computes which joiner or—if necessary—which extra peer or
which peer in the top row has to replace it. If there are enough
new peers, the number of rows is incremented, and vice versa
if more than all extra peers are used for repairing. Each peer
having a missing neighbor on its row sends the information
about all neighbors of this row or column directly to the peer

1-4244-0476-2/06/$20.00 ©2006 IEEE. 17

Figure 3.3: The peers of a pancake node are arranged as a grid with d + 1
columns. A peer has connections to all peers in its row plus to all peers in
its column. The pancake’s edges are represented by a matching between the
peers of the bottom row.

position Gv[x, y] for x ∈ [0, d] and y ∈ [0, R − 1]. The remaining τ(v) mod
(d+ 1) peers—from now on called extra peers—are located in an incomplete
additional row Gv[i, R] for i ∈ [0, τ(v) mod (d+ 1)]. Inside a row or column,
the peers are completely connected (“intra-connections”): a peer at Gv[x, y]
is connected to the peers Gv[x, i] for i ∈ [0, R] and Gv[i, y] for i ∈ [0, d]. As
the extra peers do not form a complete row, they are more vulnerable; thus,
they additionally participate in row R − 1, i.e., we also have connections
between Gv[i, R] for i ∈ [0, d + 1] and all peers Gv[j, R − 1] for j ∈ [0, τ(v)
mod (d+ 1)].

Additionally, we need to specify the representation of the pancake’s edges
(“inter-connections”). The idea is as follows: if two nodes u and v are con-
nected in the pancake graph Pd, i.e., {u, v} ∈ E(Pd), then each peer Gu[i, 0]
is connected to the peer occupying Gv[i, 0], for i ∈ [0, d]. In the following,
we will call the peers in the lowest row (row 0) the core of the corresponding
node. Thus, two nodes are connected by a matching between their cores.
The representation of the pancake’s nodes is depicted in Figure 3.3.

Grid Maintenance

Algorithm AGRID needs several rounds. The main theme is similar to the
one proposed for the hypercube graph: at the beginning, a snapshot of the
state (living peers, etc.) of the system is made. The following rounds are
then solely based on this information—ignoring the fact that some peers have
been crashed by the concurrent adversary in the meantime. That is, by using
sufficient redundancy, we do not have to take the crashed and newly joined
peers into consideration until the maintenance algorithm restarts with the
first round.
AGRID consists of two phases. In the first phase, the following information

is broadcast throughout the grid: (1) the positions where peers have left, (2)
the IP addresses of the peers that have joined, (3) the IP addresses of the
extra peers, and (4) the IP addresses of the peers in row R− 1. The second

3.3. THE DYNAMIC PANCAKE SYSTEM 37

phase is based on this information and works as follows: every surviving peer
can locally compute which peers will take the positions of the peers that left
(gaps in the grid). Thereby, newly joined peers are taken into account first,
and if this is not enough, the extra peers are used. If there are still gaps in the
grid, the peers of the top row are used, and if necessary, the number of rows is
decremented (R := R−1). If on the other hand there are still joining peers left
after all gaps have been filled, these peers are added to the top row, creating
a new top row if necessary (R := R + 1). After this local computation,
the peers that have to fill the gaps are provided with the information about
their new neighbors. We can guarantee that no row is removed completely
and that there is always a complete column in the presence of a concurrent
adversary AADV (d/2, d/2, 5) who adds and removes at most d/2 peers in any
time period of 5 rounds. Moreover, also the pancake’s edges are repaired in
constant time since we ensure that two adjacent pancake nodes always have
at least two living adjacent core peers which can reestablish the matching
between the cores.

We now give the detailed description of AGRID. We write Gv[·, y] and
Gv[x, ·] to denote all (surviving) peers in the yth row and in the xth column
respectively. In the following, we assume the extra peers to participate in
both rows R and R− 1, i.e., they send and receive messages for both rows.
Round 1: The snapshot is made: a surviving peer at position Gv[x, y] sends
its IP address and the IP addresses of its joiners to all peers in Gv[·, y].
Round 2: Each peer at position Gv[x, y] sends the addresses of its joiners
plus the information in which column of its row peers have left to Gv[x, ·].
Round 3: Each peer at position Gv[x, y] forwards the information received
in Round 2 to the peers Gv[·, y].
Round 4: Now the new form of Gv is computed locally: if a peer at Gv[x, y]
has missing neighbors on its row or column, it computes which joiner or—if
necessary—which extra peer or which peer in the top row has to replace it.
If there are enough new peers, the number of rows is incremented, and vice
versa if more than all extra peers are used for repairing. Each peer having a
missing neighbor on its row sends the information about all neighbors of this
row or column directly to the peer which will replace it. Additionally, the
information required to establish the top rows is provided to the responsible
peers. Finally, in order to repair the matching between adjacent nodes, the
peers of the old core which are still alive send the addresses of the new core
peers to the old neighboring cores.
Round 5: The old core broadcasts the new partners of the matchings within
Gv[·, 0]; this ends the repairing operation with respect to the snapshot’s state.

Expansion

When the pancake graph’s order is incremented from d to d+ 1, each node v
must split into d+ 1 new nodes. Since the grid Gv consists of d+ 1 columns,
there is a simple way to perform the expansion on the grid level: every column
becomes one new node.

According to Chapter 3.3.1, two neighboring expanded nodes have already
been adjacent in Pd (or originate from the same node). Assume that two

38 CHAPTER 3. WORST-CASE CHURN

columns, one in Gv and the other one in Gu, for two expanding adjacent
nodes u, v ∈ V (Pd), become neighbors in Pd+1. With the grid as described
so far, these two columns have only one connection to each other (one pair of
core peers). In order to increase the fault-tolerance the following mechanism
is applied: as soon as there are enough peers in the system and there are at
least d+ 2 complete rows in each node, adjacent nodes u, v ∈ V (Pd) start to
establish a matching between the columns in Gu and Gv which will become
neighbors if the graph is expanded. In order to limit the information that is
sent, we establish this matching stepwise, ensuring that it is finished before
the node actually has to split. This is done in d + 1 phases, in phase i for
the matching to neighbor ρi(v). The idea is that each peer at Gv[x, y] with
y ∈ [1, d+ 2] sends its IP address to the peer Gv[y− 1, 0]. Peer Gv[y− 1, 0] is
then responsible to transfer the yth row to the corresponding peers Gρi(v)[y, 0]
for i ∈ [2, d+2]. From there, the information is broadcast to Gρi(v)[·, y]. This
mechanism guarantees that between two neighboring columns, at least one
connection will be finished, even in the presence of a concurrent adversary.
Once the matching is established, it is maintained as long as there are at
least d+ 2 rows.

The expansion then works as follows. We consider a node v = l1...ld with
grid Gv. The column Gv[i, ·] for i ∈ [1, d+ 1] will form the new node vexp(i) =

l1...li−1(d + 1)li...ld. Since peers of the ith column Gv[i, ·] are completely
connected, the expansion can be performed in two rounds: it is straight-
forward to locally compute the form of the new grids Gvexp(i)

, including cores

and inter-connections, and send this information to nodes ρj(v
exp
(i)) for j ∈

[2, d+ 1].

Round 1: The peers of the ith column Gv[i, ·] which will form the new node
vexp(i) are completely connected, and each peer in vexp(i) can locally compute the

form of Gvexp(i)
. The information about the new core is sent to nodes ρj(v

exp
(i))

for j ∈ [2, d+ 1], using the connections of the matching.
Round 2: The peers in vexp(i) send the information about the neighboring

cores received in Round 1 to their own new core.

Reduction

The reduction of the pancake’s order is more elaborate: reducing the order
from d + 1 to d requires d + 1 grids to merge into one. Additionally, some
peers are bound to change nodes (cf Chapter 3.3.1).

Similarly to the notation introduced in Chapter 3.3.1, let vdom(1) ∈ V (Pd+1)

be the dominator of a cluster that contracts to v ∈ V (Pd) and let vdom(i) =

ρi(v
dom
(1)). To reduce the order of the pancake graph, we must exchange the

nodes vdom(i+1) with udom(i+1) for i ∈ [2, d] where u = ρi(v), and then merge the

clusters into one node v (cf Chapter 3.3.1).
On the grid level, a constant number of rounds is needed for this order

reduction. Basically, the procedure is as follows. First we turn Gvdom(i)
for

3.3. THE DYNAMIC PANCAKE SYSTEM 39

i ∈ [1, d + 1] into a clique and the information about the core of Gvdom(1)
is

sent to ρi−1(vdom(i)) (node exchange, cf Chapter 3.3.1). Now, the new grid of

node v will be formed. For this, let again vexp(i) for i ∈ [1, d+ 1] be the nodes

which will form v after the node exchange, vexp(1) being the dominator. After

vexp(1) learned about its new dominated nodes, it sends all its peers’ addresses

to vexp(i) for i ∈ [2, d + 1]. With this information, a first version of Gv can

be computed, where column i is given by vexp(i) . Based on this structure, the

final grid can be obtained by a rearrangement.

3.3.5 The System
The n peers in our system are arranged in a simulated pancake topology
of order d. The data of the DHT is stored as follows. Let hash(·) be a
hash function which, given an identifier ID, outputs a random permutation
on some set [1, N], where N is a sufficiently large global integer constant.
A data item with identifier ID is stored on the node v ∈ V (Pd) which is
determined by the ordering of the smallest d numbers of hash(ID). A data
item is not copied to all peers in that node, but only replicated on the core at
the bottom row. Recall that this has the advantage that—if we use peers in
topmost rows for the peer distribution—unnecessary copying of data can be
avoided when peers move between nodes, while we are still able to tolerate
the same powerful adversary. Finally, observe that routing is simple in the
pancake system: assume that a peer in a node u = l1l2...ld wants to find a

data item which hashes to a node v = l̂1 l̂2...l̂d. The lookup operation proceeds
by correcting one “coordinate” at a time, starting at the back: from node

u = l1l2...ld the request is forwarded to node ld...lj+1l1l2...lj−1 l̂d, etc.
We now describe how to assemble the components to form a p2p system

resilient to an adversary AADV (Θ(logn/ log logn),Θ(logn/ log log n), 1). We
permanently run AIA to estimate the total number of peers in the system and
adapt the pancake’s order accordingly, ATD to distribute the peers evenly
among the pancake’s nodes, and AGRID to maintain the grid. When the
order of the pancake is changed, both AIA and ATD are restarted. This is
possible because our system guarantees that after a change of the pancake’s
order, there are sufficiently many rounds without another order change such
that the estimations of the total number of peers are up-to-date.

Taking into account that AIA delivers the estimated number of peers with
a delay of d − 1 phases, and that according to Theorem 3.15, the difference
between the total number of peers at any two nodes is bounded by O(d) if
there are O(d) joins and leaves per time unit, we have the following theorem.

Theorem 3.16. The pancake p2p system guarantees peer degree and network
diameter O(d) in the presence of an adversary who inserts and deletes Θ(d)
peers per unit time. Each node always has at least one living core peer and
no data is lost. Moreover, it holds that d = Θ(logn/ log logn), where n is
the total number of peers in the system.

The proof of Theorem 3.16 is similar to the deduction of Theorem 3.7,
and is omitted here.

40 CHAPTER 3. WORST-CASE CHURN

3.4 Concluding Remarks

This chapter presented algorithms to maintain p2p networks under worst-
case joins and leaves. Two systems have been described which are optimal in
the sense that there cannot exist topologies with a smaller peer degree which
are robust to the same amount of churn.

It is often justified to study alternative churn models, e.g., probabilistic
models [73] where peers join and leave according to a Poisson process. How-
ever, here we pursue a more conservative approach as this gives stronger
guarantees. In addition, more optimistic models do not take attackers or
viruses into account which exploit the p2p topology and propagate along
the p2p system’s links, indeed harming certain parts of the network more
severely than others.

We believe that our algorithms can be applied to other topologies as
well. All that is needed is a token distribution and information aggregation
algorithm on the graph. In particular, it would be interesting to maintain
alternative hypercubic structures similar to the ones used in Pastry or skip
graphs [25, 112], where there is no global dimension change but where the
graph can evolve more locally.

So far, our algorithms have not been implemented on a real system. How-
ever, it would be interesting to apply some of our findings to our p2p tools
Pulsar and Wuala, or to the xPilot game.

Chapter 4

Dynamic Throughput
Maximization

While the last chapter was mainly concerned with dynamic joins and leaves
of peers, we now study another source of dynamism: the available bandwidth
between two peers. The predominant transmission protocol of today’s Inter-
net is TCP, and many p2p applications use TCP for their transfers. In the
following, we will use the terms “(Internet) host” and “peer” interchangeably
to refer to a sender or receiver of a transmission

We will devise and analyze a transmission protocol which seeks to maxi-
mize throughput between a sending and a receiving peer, while the Internet
congestion varies over time. Again, a worst-case scenario is considered: our
analysis assumes that the changes of the available bandwidth are controlled
by an adversary.

4.1 Background

Congestion avoidance in the Internet has been studied with zeal for many
years. The TCP congestion control mechanism of today’s Internet success-
fully employs a window-based scheme to prevent the network from being
overloaded. Thus, the size of the so-called TCP congestion window is an
approximation of the available network capacity. When a TCP sender suf-
fers a packet loss, it assumes that the network is congested and reduces the
window’s size. Consequently, the sending rate is cut down, and the Internet
hosts collaboratively alleviate the load.

In the past, the transport layer and in particular the congestion problem
was first studied empirically, and later embraced by the queuing theory and
control theory communities. In order to analyze and compare protocols the-
oretically, a traffic model is needed. Queuing and control theory researchers
have refined their early Poisson traffic models to an astonishing level of detail.
However, probabilistic models are intricate to analyze. Probabilistic models

42 CHAPTER 4. DYNAMIC THROUGHPUT MAXIMIZATION

that are simple enough to be analytically tractable might never model traffic
accurately enough, as the nature of network traffic is self-similar and bursty.

In their paper Karp, Koutsoupias, Papadimitriou, and Shenker [126] have
proposed to study congestion control from a worst-case perspective instead.
Karp et al. model congestion control as an online game between a flow and an
adversarial network. In particular, the available bandwidth of the network
changes over time and the flow gets only a limited feedback—namely, whether
packets have been lost or not—about the currently available bandwidth.

In this chapter, we follow the algorithmic online approach proposed by
Karp et al. [126]. We build upon [126] by focusing on the dynamics of conges-
tion; in particular, we integrate a notion of bursts happening in a worst-case
manner. We first present a new analysis of a model by Karp et al., and then
introduce a burst model: instead of considering an adversary who can always
change the available bandwidth to the same extent in each round, our adver-
sary can accumulate power in quiet rounds and then change the congestion
more abruptly in later rounds. The definition of this adversary is based on
network calculus concepts.

Network Calculus In A Nutshell

We give a short introduction to those concepts of network calculus which
are relevant to our work. Network calculus is a relatively new technique
to analyze deterministic queuing systems found in communication networks.
For a detailed introduction to network calculus, the reader is referred to the
introductory book by Le Boudec and Thiran [139].

In network calculus, there exists the notion of arrival curves which pro-
vide deterministic limitations to the network traffic sent by sources. Given
that the data flows correspond to these limitations, it is possible to make
statements about the deterministic behavior of the network (maximal de-
lays, maximal queue lengths, etc.).

Arrival curves are defined as follows. Let R be a data flow, and let R(t)
be the total number of bits R has sent until time t. Let α be an increasing
function defined for all times t ≥ 0. We say that R has an arrival curve α if
and only if for all s ≤ t:

R(t)−R(s) ≤ α(t− s)

In other words, the total number of bits sent until time t by flow R may
never exceed the bits sent by R until some time s plus α(t − s). We look
at a so-called leaky bucket arrival curve defined as α(t) = c1t + c2 for some
non-negative constants c1, c2.

Note that such an arrival curve incorporates a limited form of amortiza-
tion: if flow R only sends a few bits for several rounds, the constraints of
earlier rounds get weaker and allow R to send up to c2 bits at once in later
rounds.

4.2. THE OPTIMIZATION PROBLEM 43

4.2 The Optimization Problem

In the Internet, there is no central authority allocating bandwidth to hosts.
On the contrary, individual hosts are responsible for setting their sending
rate.1 In this chapter, we consider the problem of regulating the rate of a
unicast flow from one peer to another such that the throughput is maxi-
mized. The bandwidth available to the flow thereby fluctuates according to
the varying requirements for bandwidth of other competing flows. A peer is
not provided direct information about the competing demands for bandwidth
or the Internet topology, but does receive some limited feedback as to whether
the flow is experiencing packet drops. The peer is bound to determine its
transmission rate solely on the basis of this information.

We assume that time is divided into infinitely many successive rounds.
We consider a worst-case model where in every round t, an adversary ADV
selects the available bandwidth ut representing the maximum rate at which
a sender can transmit without experiencing packet drops. The sending peer
runs an algorithm ALG which decides the transmission rate xt for each round
t. The peer receives immediate feedback as to whether packet drops have
occurred, i.e., whether xt > ut. ALG can subsequently choose the rate xt+1

depending on the obtained feedback.
We assume a severe cost model [126] where a host cannot transmit any-

thing in round t if xt > ut, but can transmit at a rate xt if xt ≤ ut. Formally,
the gain of ALG in round t is defined as follows:

gainALG(xt, ut) :=

{
xt , if xt ≤ ut
0 , otherwise

An optimal offline algorithm OPT knows the sequence {ut} in advance and
achieves a gain of

gainOPT (xt, ut) = ut

in round t. These gains take into consideration two major aspects of transmis-
sions in bandwidth-limited environments: the online algorithm experiences
an opportunity cost if its sending rate is smaller than the available bandwidth
(case xt < ut), and a retransmission overhead if its packets are dropped due
to congestion (case xt > ut).

We are in the realm of competitive analysis [52] and define the (strict)
competitive ratio ρ achieved by ALG as the total amount of data (over all
rounds) sent by OPT divided by the total amount of data sent by ALG (cf
Definition 4.1).

1Usually, this is done automatically by TCP. However, by using the User Datagram
Protocol (UDP), selfish programs can try to maximize their own throughput and may
have no incentive to reduce congestion collaboratively. Although it is generally believed
that routers are configured to give priority to TCP packets [107]—with the consequence
that UDP packets are dropped first if the Internet gets congested—at least in theory it
is possible to design networking software from scratch that circumvents this restriction
by sending UDP packets which look like TCP packets.

44 CHAPTER 4. DYNAMIC THROUGHPUT MAXIMIZATION

Definition 4.1 (ρ-competitive). We say that an algorithm ALG is (strictly)
ρ-competitive compared to an optimal offline algorithm OPT if for all input
sequences I, it holds that

gainOPT (I) ≤ ρ · gainALG(I).

The goal of the online algorithm designer is to minimize ρ. Henceforth,
we will assume that ALG knows the initial bandwidth, i.e., x0 = u0.

Observe that an unrestricted adversary could frustrate every online algo-
rithm by always selecting ut := xt − ε for some arbitrary small ε > 0. The
natural solution proposed by Karp et al. [126] is to assume that the available
bandwidth does not change too drastically over time. In this chapter, we
study different ways to restrict the adversary. In Chapter 4.3, we consider
the multiplicative model proposed by Karp et al. In Chapter 4.4, we extend
this model to allow for changes with bursts.

We will call rounds t where the online algorithm successfully transmits
its packets without loss good rounds, and rounds t where xt > ut bad rounds,
cf Definition 4.2.

Definition 4.2 (Good and Bad Rounds). A round t where xt ≤ ut is called
good, a round t where xt > ut is called bad.

We defer the description of the different adversaries to the corresponding
sections. However, we now define the following class of online algorithms.

Definition 4.3 (ALG(G,B)). Let ALG(G,B) be the online algorithm which
chooses

xt+1 :=

{
G · xt , if xt ≤ ut
B · xt , otherwise

for some G ≥ 1 and B ≤ 1. That is, the algorithm ALG(G,B) increases the
rate by a factor G after a good round, and decreases it by a factor B after a
bad round.

The sending rate xt+1 of an algorithm ALG(G,B) depends solely on the
binary feedback whether its probing rate xt was larger than the available
bandwidth ut in the previous round or not.

4.3 Multiplicative Adversary

In this section, we look at multiplicative changes of the available bandwidth.
We first consider a model where the adversary can increase the bandwidth
by a factor of at most µ ≥ 1 per round and can decrease it arbitrarily (cf
Definition 4.4). Later, we will study a model where also the reduction is
constrained by multiplicative factors (cf Definition 4.5).

The adversary ADVmult proposed by Karp et al. is defined as follows.

4.3. MULTIPLICATIVE ADVERSARY 45

Definition 4.4 (ADVmult). ADVmult chooses the new bandwidth ut+1 in
the interval [0, ut · µ], i.e.,

ADVmult : ut+1 ∈ [0, ut · µ],

for some given µ ≥ 1.

First, we restate the lower bound given in [126].

Theorem 4.1. [126] Against ADVmult, no online algorithm can achieve a
competitive ratio smaller than µ.

Proof. Consider the following adversary ADV : in every round t, he chooses

ut :=

{
µ , if xt ≤ 1

1 , otherwise

Thus, whenever an online algorithm ALG sends at a rate larger than one, all
its packets are dropped because of congestion. On the other hand, if ALG
transmits at a rate of 1 or less, the rate of OPT is at least a factor µ larger.
Moreover, since ADV changes the available bandwidth at most by a factor
of µ per round, he is indeed of type ADVmult.

In [126], it is shown that the algorithm ALG(µ,
√
µ√

µ+
√
µ−1

) yields a com-

petitive ratio of

ρ = (
√
µ+

√
µ− 1)2

against ADVmult. However, [126] uses a different definition for the compet-
itive ratio which allows for additive constants. By our strict definition (cf
Definition 4.1), the ratio can be much larger. To see this, assume an adver-
sary who reduces the available bandwidth in every round by a factor slightly

larger than
√
µ+
√
µ−1√
µ

. In this case, ALG(µ,
√
µ√

µ+
√
µ−1

) is only successful in

the first round, and hence gainALG = u0, while

gainOPT ≈ u0 ·
∞∑
i=0

(

√
µ√

µ+
√
µ− 1

)i.

Therefore, the (strict) competitive ratio is

ρ =
gainOPT
gainALG

≈
√
µ+
√
µ− 1√

µ− 1
.

For small µ, ρ is large (for instance ρ > 100 if µ = 1.0001).
In the following, we will give a simple proof that the algorithmALG(µ, 1/2)

has a strict competitive ratio 4µ. According to Theorem 4.1, this is asymp-
totically optimal.

Theorem 4.2. ALG(µ, 1/2) is 4µ-competitive against ADVmult.

46 CHAPTER 4. DYNAMIC THROUGHPUT MAXIMIZATION

Proof. First, we show by induction that in every good round t, ut ≤ 2µxt.
For t = 0, u0 = x0 and the claim holds. For the induction step, consider
the round t − 1 before the good round t. There are two possibilities: either
round t−1 has been bad (xt−1 > ut−1) or good (xt−1 ≤ ut−1). If round t−1
has been bad, we have xt = xt−1/2 and ut ≤ ut−1µ < xt−1µ = 2µxt, hence
ut/xt < 2µ, and the claim holds. If on the other hand round t− 1 was good,
the algorithm increases the bandwidth at least as much as the adversary.
Together with the induction hypothesis, the claim also follows in this case.

Having studied the gain in good rounds, we now consider bad rounds.
We show that in the bad rounds following a good round t, the adversary
can increase his gain at most by 2µxt. So let t be the good round preceding
a sequence of bad rounds, i.e., xt ≤ ut, xt+1 > ut+1, xt+2 > ut+2, etc.
We know that xt+1 = µxt, so—because it is a bad round—ut+1 must be
smaller than µxt. Furthermore, we have xt+2 = xt+1/2 = µxt/2 and hence
ut+2 < µxt/2, xt+3 = µxt/4 and hence ut+3 < µxt/8, and so on. By a
geometric series argument, the gain of the adversary in the bad rounds is
upper bounded by 2µxt.

Therefore,

ρ =
gainOPT (good) + gainOPT (bad)

gainALG(good)

<
2µ · gainALG(good) + 2µ · gainALG(good)

gainALG(good)

= 4µ.

To conclude this section, we give another type of proof to show that
the algorithm ALG(µ, 1/µ3) has a good competitive ratio for small µ. For
our analysis, we assume a slightly more restricted adversary ADV∗mult (cf
Definition 4.5).

Definition 4.5 (ADV∗mult). ADV∗mult chooses the new bandwidth ut+1 from
the interval [ut/µ, ut · µ], i.e.,

ADV∗mult : ut+1 ∈ [ut/µ, ut · µ].

Theorem 4.3. ALG(µ, 1/µ3) is (µ4 + µ)-competitive against ADV∗mult.
Proof. The fact that ALG reduces its rate by a factor µ3 after a bad round
implies that the next round is always good: assume, for the sake of contra-
diction, that round t+ 1 is the first bad round following another bad round
t, which—by the induction hypothesis—follows a good round t − 1. Hence,
xt−1 ≤ ut−1. Moreover, observe that ut+1 ≥ ut/µ ≥ ut−1/µ

2, but on the
other hand, xt+1 = xt/µ

3 = µxt−1/µ
3 = xt−1/µ

2. Therefore, xt+1 ≤ ut+1.
Contradiction!

We now first analyze the gain of a good round t and show that ut < µ4xt.
There are two cases: either round t − 1 has also been good, or not. If it

4.4. NETWORK CALCULUS ADVERSARY 47

has been a good round, then round t is at least as competitive as round
t − 1 because xt = µxt−1. If on the other hand round t − 1 has not been
good, we have ut−1 < xt−1, xt = xt−1/µ

3 and ut ≤ µut−1. Therefore,
xt = xt−1/µ

3 > ut−1/µ
3 ≥ ut/µ4, and the claim follows.

Next, we study the gains in a bad round t. In this case, it holds that ut <
µxt−1: since xt−1 ≤ ut−1, xt = µxt−1 and ut < xt, and hence ut < µxt−1.

Therefore,

ρ =
gainOPT (good) + gainOPT (bad)

gainALG(good)

<
µ4 · gainALG(good) + µ · gainALG(good)

gainALG(good)
= µ4 + µ.

Since ADV∗mult is a special case of ADVmult, Theorem 4.2 also applies
for ADV∗mult. Hence, it is possible to run ALG(µ, 1/µ3) against ADV∗mult if
µ is small, and ALG(µ, 1/2) otherwise, which yields the following corollary.

Corollary 4.4. There is a deterministic algorithm which is min {µ4 + µ, 4µ}-
competitive against ADV∗mult.

4.4 Network Calculus Adversary

4.4.1 Description of ADVnc

We now introduce the adversary ADVnc whose definition is based on network
calculus concepts. We will extend the model introduced in Chapter 4.3 by a
form of limited amortization which allows for more drastic bandwidth changes
after times of quiescence.
ADVnc has two parameters: a rate µ ≥ 1 and maximum burst factor

B ≥ 1. In every round, the available bandwidth ut varies according to these
parameters in a multiplicative manner. More formally, ADVnc selects the
new bandwidth ut+1 from the interval

ADVnc : ut+1 ∈ [
ut
βtµ

, ut · βt · µ],

that is, the available bandwidth can change by a factor of at most βtµ. Here,
βt is the burst factor at time t. This factor is explained next.

On average, the available bandwidth can change by a factor µ per round.
However, there may be times of only small changes, after which the available
bandwidth can change by factors larger than µ. This is modeled with the
burst factor βt: at the beginning, βt equals B, i.e., β0 = B. For t > 0, the
burst factor βt is computed depending on βt−1 and the actual bandwidth
change ct−1 that has happened in round t− 1. More precisely,

βt = min{B, βt−1
µ

ct−1
},

48 CHAPTER 4. DYNAMIC THROUGHPUT MAXIMIZATION

where

ct :=

{
ut+1
ut

, if ut+1 > ut
ut
ut+1

, otherwise

This means that if the congestion has changed by a factor less than µ in
round t, i.e., ct < µ, the burst factor increases by a factor µ/ct, and hence
the available bandwidth can change more in the next round—and vice versa
if ct > µ.

Hence, the adversary can save power for forthcoming rounds. However,
this amortization is limited as βt is never larger than B for all rounds t. Also
note that ∀t : βt ≥ 1, as ct ≤ µβt by the definition of ADVnc.

4.4.2 Analysis
At first sight, it seems that ADVnc has roughly the same power as ADV∗mult:
in order to change the available bandwidth by a factor larger than µ, ADVnc
must have changed the bandwidth by a factor smaller than µ in previous
rounds.2 However, as we will show in the following, an online algorithm
cannot exploit these quiet rounds sufficiently, and the competitive ratio can
grow for larger B.

Theorem 4.5. The competitive ratio is at least Ω
(
µ
√
B/ logB

)
against

ADVnc.

Proof. Consider the following adversary ADV . ADV selects ut = 1 whenever
the burst factor βt is not maximal in a round t, i.e., if βt < B. If βt = B,
ADV continues choosing ut = 1 until xt ≤ 1 for the first time. Then,
if xt ≤ 1 and βt = B, he selects ut = µ

√
B but immediately resets the

available bandwidth to ut+1 = 1 in the next round. Therefore, no online
algorithm can ever transmit at a rate larger than 1. Since ADV must be
of type ADVnc, he can do this trick at most every dlogB/ logµe rounds:

after these two bursts (from 1 to µ
√
B and from µ

√
B back to 1), the burst

factor becomes 1, and it takes dlogB/ logµe rounds to increase it again to
B: µi ≥ B ⇔ i ≥ logB/ logµ.

Let us call the time period between two rounds where ADV raises the
bandwidth from 1 to µ

√
B a phase. In every phase, ALG has a gain of at most

gainALG ≤ 2 + dlogB/ logµe . On the other hand, the optimal algorithm’s

gain is at least gainOPT ≥ 1 + dlogB/ logµe+ µ
√
B. Hence,

ρ =
gainOPT
gainALG

≥ 1 + dlogB/ logµe+ µ
√
B

2 + dlogB/ logµe ∈ Ω

(
µ

√
B

logB

)
.

2Except for the first rounds of course, where a burst B comes “for free”. However, as
mentioned in Chapter 4.2, we consider infinite games only.

4.4. NETWORK CALCULUS ADVERSARY 49

Note that the lower bound given in Theorem 4.5 even holds for online
algorithms which get perfect (instead of only binary) feedback about the
bandwidth of the previous round.

Although we were not able to find an algorithm which yields a tight upper
bound, it can be shown that ALG(µ 3

√
B, 1/2) comes close to the bound of

Theorem 4.5.

Theorem 4.6. The competitive ratio of ALG(µ 3
√
B, 1/2) is O

(
µ3/2B2/3

)
against ADVnc.

Proof. We apply the proof technique of Chapter 4.3. First, we analyze the
missed gain in bad rounds:

gainOPT (bad) ≤
∞∑
i=0

(
1

2

)i
· µ 3
√
B · gainALG(good)

≤ 2µ
3
√
B · gainALG(good)

∈ O
(
µ

3
√
B
)
· gainALG(good).

Next, the good rounds are tackled. Let t be the last bad round before a
good round t+1. Hence, xt > ut, xt+1 = xt/2 ≤ ut+1, and xt+2 = µ 3

√
Bxt/2.

There are two cases: either round t+ 2 is also good, or not. If round t+ 2
is good, ut+2 ≤ µ2Bxt. We have

ρ ≤ ut+1 + ut+2

xt+1 + xt+2
≤ µB + µ2B

1/2 + µ 3
√
B/2

∈ O
(
µB2/3

)
.

More good rounds would reduce this ratio, because ALG grows faster than
ADV .

If round t+ 2 is not good, it holds that xt > ut and xt+2 = µ 3
√
Bxt/2 >

ut+2. Now observe that ut+1 < µ3/2B2/3xt. Assume, for the sake of contra-
diction, that ut+1 ≥ µ3/2B2/3xt. Then the burst factor in round t + 1 is at
most βt+1 ≤ 3

√
B/
√
µ, and thus

ut+2 ≥ ut+1

µβt+1
≥ µ3/2B2/3 · √µ

3
√
B · µ xt = µ

3
√
Bxt > xt+2.

Contradiction. Hence,

ρ ≤ ut+1

xt+1
≤ µ3/2B2/3xt

xt/2
∈ O

(
µ3/2B2/3

)
.

50 CHAPTER 4. DYNAMIC THROUGHPUT MAXIMIZATION

Thus,

ρ =
gainOPT (good) + gainOPT (bad)

gainALG(good)

≤
O
(
µ3/2B2/3

)
· gainALG(good) +O

(
µ 3
√
B
)
· gainALG(good)

gainALG(good)

∈ O
(
µ3/2B2/3

)
.

4.5 Concluding Remarks

We have given an analysis of different transfer protocols which seek to selfishly
maximize throughput between a sender and a receiver. In doing so, we made
the realistic assumption that peers do not know the bandwidth available
to them in the future, and showed that it is still possible to be worst-case
competitive against an offline algorithm which has perfect knowledge of the
system’s state. In addition, we introduced a new way to model dynamic
phenomena which are bursty in nature.

Many questions remain open. An obvious question is whether the lower
bound and the upper bound can be made tight. Another challenge is the
design of randomized online algorithms. In fact, Arora and Brinkman [22]
have addressed this problem for the multiplicative adversary ADVmult and
presented an algorithm with competitive ratio O(logµ). By using Yao’s
minimax principle [52], it can be shown that this is asymptotically opti-
mal. However, the authors assume a weak oblivious adversary: their scheme
uses randomization only in the first round, while all later rounds are de-
terministic. But the adversary is not allowed to be adaptive even in these
deterministic rounds. The case of a stronger adversary is still an open prob-
lem. It is straight-forward to extend the algorithm by Arora and Brinkman
for ADVnc. However, also here, it would be interesting to study a more
powerful adversary who can be adaptive in deterministic rounds.

Chapter 5

Related Work

Part I of this thesis has studied p2p networks where the topology and the
bandwidth is dynamically changing. This chapter compares our work to
related literature. We first review papers on churn, and subsequently discuss
literature in the area of congestion control.

On the one hand, p2p systems are potentially more resilient compared to
alternative systems as they do not rely on central servers which constitute a
single point of failure. On the other hand, in p2p networks, there are frequent
joins and leaves, and hence failures are more common. When designing robust
p2p applications such as online storage systems like Wuala, it is beneficial to
have an idea of the dynamic nature of transient and permanent failures the
system will be confronted with in order to optimize system performance and
to include appropriate levels of redundancy.

Unfortunately, measuring the dynamics of existing p2p systems is not al-
ways simple [108]; moreover, in this emerging area where the space of possible
applications is still not well understood, it is difficult to generalize a given
measurement to entire application classes [232]. Nevertheless, there have
been several measurement studies of p2p churn. Already in 2002, Saroiu et
al. [210] reported on the dynamic nature of Napster and Gnutella, and Sen
et al. [214] analyzed flow-level data of a large ISP to estimate churn. The
availability of the Overnet system has been studied in [47] by probing crawled
hosts; the authors showed that previous works had underestimated host avail-
ability due to a methodological limitation. Qiao et al. [195] reported a similar
level of dynamics in Gnutella and Overnet. Recently, based on Maze [245]
measurements—one of the largest p2p systems over the China education and
research network—Tian and Dai [232] pointed out that our understanding of
peer dynamics is far from adequate, and that previous crawler based mea-
surements can only yield inaccurate results. Moreover, their data reveals
that newly registered peers generally have a higher turnover rate than elder
ones. This observation has been confirmed by measurements on the Kad
network [223, 227]: peer arrivals do not follow a Poisson distribution and
session times are typically not distributed exponentially. It has also been

52 CHAPTER 5. RELATED WORK

discovered that the levels of churn vary depending on the application. For
instance, Guha et al. [106] showed that Skype has a higher host availability
than other p2p systems.

The effects of churn have been reported in several papers. The price
of churn manifests itself in terms of dropped messages, data inconsistency,
increased user-experienced latencies or increased bandwidth use [103, 144,
200]. It has been shown that even in stable and managed infrastructures
like PlanetLab1, there can be a significant rate of node failure due to nodes
becoming extremely slow suddenly and unpredictably [199].

Scant attention is devoted to theoretic questions on the dynamics of p2p
networks. Protocols such as Pastry [207] and CAN [198] allow for unexpected
failures, and it is shown that they remain well-structured after failures occur.
However, for this analysis, an ideal initial state is assumed, and it is not
shown how a system can return to the initial state after the membership
changes [147]. Moreover, maintenance costs can be unnecessarily high. For
example, in CAN, a background stabilization process is used which introduces
a constant overhead [1].

Two parameters play an important role in the robustness analysis of
graphs. The so-called expansion of a topology measures the impact peer
failures can have on disconnecting intact peers from the rest of the network
(e.g., [42]). Interestingly, the expansion of a graph cannot be used to predict
how well a network can sustain random faults. The span parameter [42] has
recently been introduced as a good alternative for stochastic analyses.

In the last few years, Awerbuch and Scheideler have proposed several
interesting algorithms to render today’s peer-to-peer systems more robust.
In [34], searchable concurrent data structures are studied where data elements
can be stored on a dynamic set of nodes, e.g., in a peer-to-peer network.
Their Hyperring data structure has degree O(logn) and requires O(log3 n)
work for insert and delete operations; search time and congestion is bounded
by O(logn) with high probability, which improves on alternative structures,
e.g., the deterministic Skipnet by Harvey and Munro [111]. The lack of
admission control in p2p networks has triggered researchers to investigate
robust join mechanisms [93]. In [212], Scheideler considers a game between a
join algorithm and an adversary. The join algorithm includes both n “good”
and εn (for some fixed constant ε < 1) “bad” peers in a ring structure, and
seeks to ensure that there is no sequence of size Θ(logn) of consecutive peers
in which at least half of the peers are malicious. The k-rotation strategy is
presented which wins with high probability as long as ε < 1/3. The scal-
able solution to join-leave attacks presented in [36] requires a robust random
number generator described in [35].

A promising class of novel p2p architectures is due to Naor and Wieder [169].
The authors describe a dynamic decomposition of a 1-dimensional continuous
ID space into cells corresponding to processors, and show how to approximate
de Bruijn graphs or hypercubes. In particular, their distance halving DHT
yields an optimal tradeoff in the sense that peer degree d implies a network di-

1PlanetLab is a wide-area service deployment testbed spread across North America,
Europe, Asia and the South Pacific. See http://www.planet-lab.org/.

53

ameter of O(logd n). Besides achieving a low congestion of O(logd n/n), their
system is also provably robust against random faults. Finally, a construction
for dynamic expanders is proposed which is based on the tessellation of the
plane.

Liben-Nowell, Balakrishnan, and Karger [147] have analyzed the evolution
of p2p systems in the face of concurrent joins and unexpected departures.
They give a lower bound for the rate at which peers in the Chord system
must participate to maintain the system’s distributed state. For instance,
they prove that if churn can be described by a Poisson distribution, a peer
which receives fewer than k notifications per half-life will be disconnected
from the network with probability at least (1 − 1/(e − 1))k. The half-life
time period is defined as the time which elapses in a network of n live peers
before n additional peers arrive, or before half of the peers depart. Their
result implies that a successor list of length Θ(logn) per peer is sufficient to
ensure that a graph stays connected with high probability, as long as Ω(logn)
rounds pass before n/2 peers fail. It is also shown in [147] that a modified
version of Chord is within a logarithmic factor of the optimal rate. The
authors assume that the half-life is known, and the question of how to learn
the correct maintenance rate of the behavior of neighbors is left for future
research. In [181], a model similar to the one proposed in [147] is considered;
however, in this paper, it is assumed that a central server can direct joins to
specific locations in the network, and can update old peers’ neighbors when
a peer leaves. In this scenario, they are able to maintain connectivity with a
constant amount of space per peer.

A recent paper by Godfrey et al. [103] has studied—using real-world
traces—how to manage churn through the judicious selection of nodes are
likely to remain up for a long time. By comparing different algorithms, the
authors found that a uniform-random replacement strategy performs quite
well. In [164], an analytical framework based on percolation theory is pro-
posed to assess the robustness of p2p systems. Besides a probabilistic churn
model, they also consider a targeted attack where nodes having high degrees
are progressively removed.

Resilience to worst-case failures has been studied by Fiat, Saia et al. in
[92, 208]. The authors introduce a system where a (1 − ε)-fraction of peers
and data survives the adversarial removal of up to half of all nodes with high
probability. However, in contrast to our work, the failure model is static.
Moreover, the whole structure is designed with a rough a-priori knowledge
of the total number of participants, and has to be rebuilt from scratch if the
number of peers changes by a constant factor. Abraham et al. [1] address
scalability and resilience to worst-case joins and leaves, and propose a generic
overlay emulation approach for graph families such as hypercubes, butterflies,
or de Bruijn networks. They focus on maintaining a balanced network rather
than on fault-tolerance in the presence of concurrent faults. In contrast to our
system, whenever a join or leave takes place, the network is given some time
to adapt. To the best of our knowledge, the first paper treating concurrent
worst-case joins and leaves is by Li et al. [145]. In contrast to our work,
Li et al. consider a completely asynchronous model where messages can be
arbitrarily delayed. The stronger communication model is compensated by

54 CHAPTER 5. RELATED WORK

a weaker failure model where leaving peers execute an “exit” protocol which
does not allow for sudden crashes.

Finally, observe that there is also work on robust supervised overlay net-
works [135], where the p2p topology is managed by one or more special
machines. In these systems, the goal is to minimize information and compu-
tational overhead at the central servers while ensuring good network degree,
diameter, and expansion. While such an approach can be interesting in
centralized environments such as grid computing systems or games, such a
solution does not scale and the network entry point constitutes a single point
of failure.

So far, neither the hypercube nor the pancake system have been imple-
mented. However, based on the ideas presented in Chapter 3, we have devel-
oped eQuus [155], a DHT which connects peers in such a way that the peer
degree and network diameter is always bounded by O(logn) with high prob-
ability, where n is the total number of peers in the network. eQuus gives less
guarantees regarding the worst-case efficiency of the topology under churn.
However, in contrast to the work presented in Chapter 3, it is locality-aware
in the sense that communication takes place along routes whose latencies are
close to optimal. It is easy to build applications on top of the eQuus DHT,
for instance, a chat tool [119].

Note that there also exists literature on algorithms for graphs with dy-
namic edges [211] rather than with dynamic nodes. The availability of com-
munication links in wireless networks can change over time due to interference
or mobility of the nodes, which renders basic operations such as routing more
difficult [97, 176]. Already in 1988 [39], a dynamic synchronizer has been pro-
posed which shows that dynamic asynchronous networks are as fast as static
synchronous ones. The so-called temporal networks [46, 130] describe situ-
ations arising in epidemiology or scheduled transportation networks such as
airline travel, where links are only available in certain time periods. Each
edge in a graph is annotated with a time label specifying the time at which
its endpoint communicated. Given these labels, the goal is, e.g., to find the
maximum disjoint time-respecting paths between pairs of nodes. It has been
shown in [130] that the classic Menger’ Theorem cannot be applied in this
context anymore.

Finally, the pancake graph used in Chapter 3 and the unsolved problem
of computing its diameter was introduced in [83]. In terms of the group-
theoretic model for network topologies introduced by Akers and Krishna-
murthy [11], the pancake is an instance of a hierarchical Cayley graph [20].
We are not aware of any literature on dynamic token distribution or infor-
mation aggregation on pancake graphs.

Chapter 4 has studied the performance of different transfer protocols in
a network where the available bandwidth changes in a worst-case manner.
The most prominent transfer protocol is TCP which lies at the heart of
today’s Internet. Many aspects of TCP have been subject to active research,
and several modifications of TCP have been proposed over the years. For
instance, protocols such as STCP, Fast TCP, or XCP are used for specialized

55

applications with long-living flows, and also Stanford’s clean slate project2 is
devising a new congestion control algorithm for the “future Internet”, called
the Rate Control Protocol (RCP). For a reference on TCP, the reader is
referred to [225].

Chapter 4 analyzes congestion control from a worst-case perspective using
competitive analysis. Whereas all other layers have received quite a lot of
attention in the past (e.g., cf [14] for the link layer, and [140] for the network
layer), there is less algorithmic networking research about the transport layer.
Some notable exceptions are for instance adversarial queuing theory [53, 157],
mechanism design [89], or the study of the TCP ACK problem [124].

We build upon the model proposed by Karp et al. [126] who define several
optimization problems related to congestion control. The authors investigate
the issue of regulating the rate of a single unicast flow when the bandwidth
available to it is unknown and changes over time. Many results are derived.
For a static case where the available bandwidth is drawn from {1, ..., n},
an upper bound of O(n log logn) is given, together with a lower bound of
Ω(n log log n/ log log logn). For the dynamic case where the bandwidth is
chosen from a fixed interval an interval [a, b], the optimal deterministic ratio
is a/b, and the optimal randomized ratio against an oblivious adversary is
1+ ln(a/b). If the the changes are bounded multiplicatively from [ut/µ, µut],
the bound is at most 4µ − 2, and no deterministic algorithm can be better
than µ. Finally, for an additive scenario where the new ratio is chosen from
an interval [ut − α, ut + α], the deterministic ratio is between 1 + α/β and
4 + α/β, where β is the absolute lower bound of the bandwidth. Chapter 4
extends [126] in two respects: first, we give a new analysis of a model where
the bandwidth changes multiplicatively; our analysis is simpler and gives
strict competitive bounds. Second, we enhance their model with bursts.

The work by Karp et al. has already had an interesting follow-up by
Arora and Brinkman [22] who study randomized algorithms for a dynami-
cally changing congestion. In particular, they propose an asymptotically op-
timal randomized online algorithm against an adversary who can change the
congestion by a constant factor in every round. Unfortunately, they assume
a fairly weak oblivious adversary: their algorithm uses randomization only
in the first round, while the sending rate of all other rounds is computed
deterministically. The adversary however is not allowed to be adaptive in
these deterministic rounds.

The idea that an adversary can accumulate power over time has already
appeared in the area of packet routing and is related to the adversarial queu-
ing theory by Borodin et al. [53]. The problem considered there is as follows:
given a packet switched network and an adversary who continuously injects
packets that have to be routed from a source to a destination node, the goal
is to determine the delivery times and the amount of buffer space needed
at the nodes. This model offers many interesting research questions. For
instance, Lotker, Patt-Shamir and Rosén [157] have shown that the first-
in-first-out (FIFO) scheduling protocol can be instable at any injection rate
larger than 1/2 and that it is always stable if the rate is less then 1/d, where

2See http://cleanslate.stanford.edu/.

56 CHAPTER 5. RELATED WORK

d is the length of the longest route used by any packet. Moreover, every
work-conserving scheduling algorithm is stable if the rate is smaller than
1/(d+ 1).

In the paper by Aiello et al. [8], the adversary is allowed to inject any
sequence of packets into the network, as long as in any w consecutive rounds,
the total load created by the paths associated with the packets inserted in
this time period is at most wr on any edge, for some w ≥ 1, r ≤ 1. The
adversary studied by Andrews et al. [17] is similar to our adversary. Given
two parameters b ≥ 1, r ≤ 1, for any T ≥ 1 consecutive time steps, the
adversary may inject as many packets as he wants, as long as the total load
created by the paths associated with these packets is at most Tr + b on any
edge. These two adversary models have been compared by Rosén in [202]. A
contribution of Chapter 4 is to introduce a modified version of the adversary
in [17] on the transport layer.

Finally, many questions related to congestion control in the Internet are
also related to game theory (cf Part II of this thesis): what happens to the sys-
tem performance if all participants in the network seek to selfishly maximize
their throughput? Researchers have also studied the question of which game
the TCP/IP congestion control mechanism is a Nash equilibrium [128, 183].

Chapter 6

Conclusion

The dynamic composition of resources is one of the main algorithmic chal-
lenges in peer-to-peer computing. With the advent of p2p computing, for the
first time, the power of a system was actually based on dynamics: dynamics
became a first-class citizen which had to be taken into account by all com-
ponents of the distributed system. In contrast to traditional systems which
could treat failures as undesirable but rare events, membership changes in
peer-to-peer systems are an inherent ingredient of the paradigm. In this
paradigm, it is out of question to replace a defective machine by a new one
at the cost of a short period of system unavailability. Rather, a p2p system
has to accept—or even make use of!—the presence of faulty participants and
provide a seamless operation despite ongoing changes. We believe that espe-
cially node dynamics is one of the few genuine research challenges which are
new in p2p computing and for which there does not exist much literature in
other areas of computer science research. Indeed, researchers have started
applying techniques from other disciplines such as physics and control theory
to gain deeper insights into these aspects.

Part I of this thesis has studied different aspects of p2p dynamics. Chap-
ter 3 presented algorithms to maintain p2p networks under continuous churn.
In order to achieve strong guarantees, a conservative scenario was assumed
where peers join and leave in a worst-case fashion. A crucial direction for
future research is to incorporate a self-stabilizing mechanism [30, 33, 77, 79]
(the idea of self-stabilization in distributed computing first appeared in the
classic paper by E. W. Dijkstra in 1974 who considered self-stabilization in a
token ring [77]) which allows the topology to quickly recover from any state.
Observe that, so far, we do not handle the case where the number of simul-
taneously crashing peers exceeds the limitations given by our adversary. For
example, it would be desirable that if all peers in a node have left, some
surviving peers could simulate that node and try to reconstruct it, or to ini-
tiate a dimension reduction. Unfortunately, today, there is only few work
that rigorously studies self-stabilization issues for overlay networks, and the
few known results often provide fast self-stabilization only from a certain

58 CHAPTER 6. CONCLUSION

subset of degraded states that appear to be most relevant. An interesting
publication in this context is by Aspnes et al. [19] who present asynchronous
algorithms for rapidly constructing overlay networks from a weakly-connected
initial pointer graph. Such fast algorithms can facilitate the construction of
hypercubic topologies from arbitrary states. Onus et al. [178] investigate this
problem from a self-stabilization perspective.

It would also be interesting to investigate lower bounds for the costs of
maintaining peer-to-peer networks. Note that as a p2p system is intended
to run continuously, maintenance protocols cannot be evaluated in terms of
running time, or total network bandwidth which is infinite if the network
persists indefinitely. A better measure is the rate at which peers have to
expend resources in order to maintain the system. For instance: how much
bandwidth is used per join or leave to ensure connectivity, or to maintain
a hypercubic network with a logarithmic diameter? A stimulating paper in
this regard is [147]. For instance, a lower bound for the consumed network
bandwidth is derived in a Poisson model. It could be worthwhile to generalize
this approach to other distributions and objective functions, and compare
the obtained results to the rates of the algorithms proposed in Chapter 3.
Observe that the focus of Chapter 3 was on the feasibility of maintaining
overlay structures under churn, and although there are mechanisms which
seek to reduce unnecessary data transmissions (e.g., the use of peripheral
peers), the message complexity can still be improved.

Many alternative adversarial models of dynamism remain to be studied
as well. One avenue for future research is to investigate adversaries who can
accumulate power over certain time periods, e.g., to crash a larger number of
peers after a quiet period. A way to model such an adversary has been intro-
duced in Chapter 4 in a scenario incorporating another source of dynamism
in p2p networks: dynamic changes of the available bandwidth. In contrast
to node churn, dynamic bandwidth changes are not specific to peer-to-peer
computing, but appear in many application domains on the Internet. Al-
though we do not claim that our model perfectly reflects reality, we believe
that it is an interesting simplification which can be useful to gain deeper
insights into such behavior.

In this early stage of research, simple models have to be found which
are analytically tractable but which at the same time incorporate important
aspects of realistic environments. Armed with these results, the goal is to
generalize the models. One interesting question in this connection is how
dynamic processes with periodic quiet time intervals are related to processes
with continuous changes. For example, it seems that there are circumstances
in which the results, obtained in a simple model where the adversary and
the (maintenance) algorithm take turns, are applicable to settings where the
adversary and the repairing algorithm run concurrently.

Peer-to-peer dynamics is not only an important but also a challenging
and—in our opinion—exciting area of research. The topic being still quite
young, the first results are only emerging and many questions remain wide
open. Finding answers to these questions can be rewarding not only for com-
puter scientists and p2p users, but also for researchers studying alternative
dynamic systems, for instance neurologists or economists. We consider our

59

contributions as a further step to obtain a better understanding of how fu-
ture architectures can cope with transient participants in order to offer a
high availability and correctness.

Part II

Cooperation

Chapter 7

Introduction

The power of peer-to-peer computing arises from the collaboration of the
system’s constituent parts, the peers. If all the participating peers contribute
some of their resources—for instance bandwidth, memory, or CPU cycles—
highly scalable decentralized systems can be built which outperform existing
server-based architectures. However, in reality, peers may act selfishly and
strive for maximizing their own utility by benefiting from the system without
contributing much themselves. Hence the performance—and thus its success
in practice!—of a p2p system crucially depends on its capability of dealing
with selfishness.

A well-known mechanism designed to cope with the free-riding problem is
the tit-for-tat policy. It is also employed by the file-distribution tool BitTor-
rent which is currently one of the most popular applications on the Internet
and which is widely believed to effectively enforce cooperation among peers.
In Chapter 8, a BitTorrent case study is conducted which shows that in
contrast to common belief, BitTorrent can still be cheated by selfish users.
We present the BitThief client which downloads entire files without upload-
ing any real data at all. This is still true in scenarios where there are no
so-called seeders. Sharing communities are especially appealing to BitThief.

Motivated by our findings of the BitTorrent case study, we are interested
in the impact of selfish behavior in p2p systems. Game theory provides
tools to quantify such effects. In Chapter 9, we argue that selfish behav-
ior in peer-to-peer networks has implications beyond the peer’s unwilling-
ness to contribute bandwidth or memory. For example, in unstructured p2p
systems—still a popular p2p architecture in today’s Internet—a peer can of-
ten select to which and to how many other peers in the network it wants
to connect. With a clever choice of neighbors, a peer can aim to optimize
its lookup performance by minimizing the stretch (or, alternatively: the la-
tency) to the other peers in the network. Achieving only good stretches is of
course trivial: a peer simply connects to a large number of other peers in the
system. However, since storing and maintaining such a large neighbor set is
costly, it is natural that strategic peers also seek to avoid to connect to too

64 CHAPTER 7. INTRODUCTION

many neighbors. In Chapter 9, we investigate this fundamental trade-off be-
tween the need to have small latencies and the desire to reduce maintenance
overhead that governs the decisions of selfish peers. By a game-theoretic
analysis, we derive the Price of Anarchy which captures to which extent self-
ishness degrades the network performance. In other words, we answer the
question: how much better would the social welfare be if the selfish players
collaborated instead of striving for maximizing their own benefit?

The introduction of micro economic models and game theory in computer
science has led to many insights into the reality of not only today’s p2p
systems but also distributed systems in general (e.g., the Internet which
typically connects many different utility-optimizing stake-holders or agents).
Over the last years, many aspects of distributed systems have been studied
from a game-theoretic point of view. However, the non-cooperation challenge
in distributed systems is not restricted to selfishness. These p2p networks
are faced with the problem of malicious adversaries who try—independently
of their own cost—to degrade the utility of the entire system, to attack
correctness of certain computations, or to cause endless changes which render
the system instable. Chapter 10 introduces a mathematical framework which
seeks to combine the two fruitful threads of research game theory and fault-
tolerance. We consider a system of selfish individuals whose only goal is to
optimize their own benefit, and add malicious players who attack the system
in order to deteriorate its overall performance. We ask: what is the impact
of the malicious players on a selfish system’s efficiency? We exemplify our
theory by giving an analysis of a virus inoculation game. In Chapter 11, we
make an excursion and show how the framework of Chapter 10 can be applied
in the context of social networks where players care about the welfare of their
contacts. We analyze inoculation strategies in the virus game and compute
the so-called Windfall of Friendship. We can prove that while the Windfall
of Friendship can never be negative compared to purely selfish environments,
but it turns out that the social welfare does not increase monotonically with
stronger social ties.

To round off and complement our theoretic considerations of Chapter 10
on the effect of malicious peers in p2p networks, Chapter 12 performs a case
study investigating the feasibility of malicious attacks in a popular p2p sys-
tem: the Kad network. Since the demise of the Overnet network, Kad has
become the only widely used peer-to-peer system based on a distributed hash
table, and due to its decentralized nature, it is likely that the Kad’s user base
will continue growing in numbers over the next few years as. We find that sev-
eral vulnerabilities exist in the current Kad network. The presented attacks
could be used either to hamper the correct functioning of the network itself,
to censor contents, or to harm other entities in the Internet not participating
in the Kad network such as ordinary web servers. While there are simple
heuristics to reduce the impact of some of the attacks, we believe that some
of our attacks are inherently difficult to avert and cannot be thwarted easily
without some kind of centralized certification and verification authority.

Chapter 8

Free Riding Case Study:
BitTorrent

“Now there’s BitThief, which is straight-up nefarious and wrong – the client
downloads torrents without uploading.”

On http://blog.wired.com/ (January 2007)
“Anyhow, bitthief is a client which I’ve been waiting for so long, I mean..

bitcomet bent the rules but never really broke any of them.. that much
Bitthief is an interesting client [...] I wonder how fast this will get banned
at every tracker alive. As others have said, this makes bittyrant look like a

sunday school boy..”
Another blogger on BitThief (January 2007)

Bram Cohen’s BitTorrent protocol [66]—which in 2004, according to
CacheLogic, represented 35% of the Internet traffic [184]—heralded a paradigm
shift as it demonstrated that cooperation can be fostered among peers inter-
ested in the same file, and that concentrating on one file is often enough in
practice. The fair sharing mechanism of BitTorrent is widely believed to dis-
courage freeloading behavior. Contrary to such belief, this chapter shows that
BitTorrent in fact does not provide sufficient incentives to rule out free rid-
ing. We have developed our own BitTorrent client BitThief that never serves
any content to other peers. With the aid of this client, we demonstrate that
a peer can download content fast without uploading any data. Surprisingly,
BitThief always achieves a high download rate, and in some experiments it
has even outperformed the official client. Moreover, while seeders (“altruistic
peers”) clearly offer the opportunity to freeload, we are even able to retrieve
files quickly if we ignore seeders and download solely from other peers that
do not possess all pieces of the desired content (leechers). This implies that
the basic piece exchange mechanism does not effectively restrain peers from
freeloading.

Sharing communities are also investigated in this chapter. By banning

66 CHAPTER 8. FREE RIDING CASE STUDY: BITTORRENT

users with constantly low sharing ratios or by denying them access to the
newest torrents available, such communities encourage users to upload more
than they download, i.e., to keep their sharing ratio above 1. We will show
that sharing communities are particularly appealing for free riders, and that
cheating is easy.

We believe that the possibility to freeload which does not come at the cost
of a considerably reduced quality of service (e.g., download rate) is attrac-
tive for users: not only because wasting more expensive upload bandwidth
is avoided, but also because—in contrast to downloading—merely the distri-
bution of copyrighted media content such as music or video shared in p2p
networks is unlawful in certain countries.

However, as more and more users decide to free ride, the usefulness of
a p2p system will decline. Thus, spreading such freeloading clients might
prove to be an effective attack for corporations fighting the uncontrolled
distribution of their copyrighted material.

8.1 BitTorrent Background

The main mechanisms applied by BitTorrent are described in [66]; for addi-
tional resources including a detailed technical protocol, the reader is referred
to www.bittorrent.org. Basically, BitTorrent is a p2p application for sharing
files or collections of files. In order to participate in a torrent download, a
peer has to obtain a torrent metafile which contains information about the
content of the torrent, e.g. file names, size, tracker addresses, etc. A tracker
is a centralized entity that keeps track of all the peers (TCP endpoints) that
are downloading in a specific torrent swarm. Peers obtain contact informa-
tion of other participating peers by announcing themselves to the tracker on
a regular basis. The data to be shared is divided into pieces whose size is
specified in the metafile (usually a couple of thousand pieces per torrent). A
hash of each piece is also stored in the metafile, so that the downloaded data
can be verified piece by piece. Peers participating in a torrent download are
subdivided into seeders which have already downloaded the whole file and
which (altruistically) provide other peers with any piece they request, and
leechers which are still in progress of downloading the torrent. While seeders
upload to all peers (in a round robin fashion), leechers upload only to those
peers from which they also get some pieces in return. The peer selection for
uploading is done by unchoking a fixed number of peers every ten seconds
and thus enabling them to send requests. If a peer does not contribute for a
while it is choked again and another peer is unchoked instead.

The purpose of this mechanism is to enforce contributions of all peers.
However, each leecher periodically unchokes a neighboring leecher, transfer-
ring some data to this neighboring peer for free (called optimistic unchoking
in BitTorrent lingo). This is done in order to allow newly joined peers with-
out any pieces of the torrent to bootstrap. This unchoking mechanism is one
weakness that can be exploited by BitThief.

8.2. BITTHIEF AND ANALYSIS 67

8.2 BitThief and Analysis

In the following, we will provide evidence that, with some simple tricks, up-
loading can be avoided in BitTorrent while maintaining a high download
rate. In particular, our own client BitThief is described and evaluated. Bit-
Thief is written in Java and is based on the official implementation1 (written
in Python, also referred to as official client or mainline client), and the
Azureus2 implementation. We kept the implementation as simple as possible
and added a lot of instrumentational code to analyze our client’s performance.
BitThief does not perform any chokes or unchokes of remote peers, and it
never announces any pieces. In other words, a remote peer always assumes
that it interacts with a newly arrived peer that has just started download-
ing. Compared to the official client, BitThief is more aggressive during the
startup period, as it re-announces itself to the tracker in order to get many
remote peer addresses as quickly as possible. The tracker typically responds
with 50 peer addresses per announcement. This parameter can be increased
to at most 200 in the announce request, but most trackers will trim the list
to a limit of 50. Tracker announcements are repeated at an interval received
in the first announce response, usually in the order of once every 1800 sec-
onds. Our client ignores this number and queries the tracker more frequently,
starting with a configurable interval and then exponentially backing off to
once every half an hour. Interestingly, during all our tests, our client was
not banned by any of the trackers and could thus gather a lot of peers. The
effect of our aggressive behavior is depicted in Figure 8.1. Finally, note that
it would also be possible to make use of the distributed tracker protocol.3

This protocol is useful if the main tracker is not operational. However, thus
far, we have not incorporated this functionality into our client.

Having a large number of open connections improves the download rate
twofold: first, connecting to more seeders allows our client to benefit more
often from their round robin unchoking periods. Second, there will be more
leechers in our neighborhood that include BitThief in their periodical op-
timistic unchoke slot. Opening more connections increases download speed
linearly, as remote peers act independently of the number of our open connec-
tions. However, note that opening two connections to the same peer does not
help, as the official client, Azureus, and presumably all other clients as well
immediately close a second connection originating from the same IP address.

Our experiments with BitThief demonstrate that the common belief that
the performance will degrade if a large number of TCP connections is main-
tained simultaneously is unfounded. On the contrary, more connections al-
ways help to increase the download rate when using BitThief. The reason
why the total number of TCP connections is kept small in BitTorrent might
be that a moderate number of connections suffice to saturate the average
user’s bandwidth when following the real protocol, and no further gain could
be achieved by connecting to more peers.

1See http://bittorrent.com/.
2See http://azureus.sourceforge.net/.
3See http://www.bittorrent.org/Draft DHT protocol.html.

68 CHAPTER 8. FREE RIDING CASE STUDY: BITTORRENT

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18

C
on

ne
ct

io
ns

Time (minutes)

BitThief
Official Client

Figure 8.1: Number of open connections over time. In comparison to the
official client, BitThief opens connections much faster.

In contrast to other BitTorrent clients, BitThief does not apply the so-
called rarest-first policy, but uses a simpler piece selection algorithm instead:
we fetch whatever we can get. If our client is unchoked by a remote peer, it
picks a random missing piece. Our algorithm ensures that we never leave an
unchoke period unused. Furthermore, just like other BitTorrent clients, we
strive to complete the pieces we downloaded partially as soon as possible in
order to check them against the hash from the metafile and write them to
the harddisk.

8.2.1 Seeders
We first tested the client on several torrents obtained from Mininova4 and
compared it to the official client.5 By default, the official client does not allow
more than 80 connections. In order to ensure a fair comparison, we removed
this limitation and permitted the client to open up to 500 connections. In a
first experiment, we did not impose any restrictions on our client, in partic-
ular, BitThief was also permitted to download from seeders. The tests were
run on a PC with a public IP address and an open TCP port, so that remote
peers could connect to our client. We further blocked all network traffic to
or from our university network, as this could bias the measurements. The
properties of the different torrents used in this experiment are depicted in

4See http://www.mininova.org/.
5Official client vers. 4.20.2 (linux source). Obtained from bittorrent.com, used with

parameters: --min peers 500 --max initiate 500 --max allow in 500.

8.2. BITTHIEF AND ANALYSIS 69

Size Seeders Leechers µ σ
A 170MB 10518 (303) 7301 (98) 13 4
B 175MB 923 (96) 257 (65) 14 8
C 175MB 709 (234) 283 (42) 19 8
D 349MB 465 (156) 189 (137) 25 6
E 551MB 880 (121) 884 (353) 47 17
F 31MB N/A (29) N/A (152) 52 13
G 798MB 195 (145) 432 (311) 88 5

Table 8.1: Characteristics of our test torrents. The numbers in parentheses
represent the maximum number of connections BitThief maintained concur-
rently to the respective peer class and is usually significantly lower than the
peer count the tracker provided. µ and σ are the average and standard devia-
tion of the official client’s download times in minutes. The tracker of Torrent
F did not provide any peer count information. Based on the number of dif-
ferent IP addresses our client exchanged data with, we estimate the total
number of peers in this torrent to be more than 340.

Table 8.1. Note that the tracker information is not very accurate in general
and its peer count should only be considered a hint on the actual number of
peers in the torrent.

The results are summarized in Figure 8.2. As a first observation, note
that in every experiment, BitThief succeeded eventually to download the
entire file. More interestingly, the time required to do so is often not much
longer than with uploading! Exceptions are Torrents E and G, where there
are relatively few seeders but plenty of leechers. In that case, it takes roughly
four times longer with our client. However, the download came at a large
cost for the official client as it had to upload over 3.5GB of data. Torrents
A, B and F also offer valuable insights: in those torrents, BitThief was, on
average, slightly faster than the official client, which uploaded 232MB in a
run of torrent A and 129MB in a run of Torrent B. We conclude that in
torrents with many peers, particularly seeders, and in torrents for small files,
BitThief seems to have an advantage over the official client, probably due to
the aggressive connection opening.

8.2.2 Leechers
In this section, we further constrain BitThief to only download from other
leechers. Interestingly, as we will see, even in such a scenario, free riding is
possible.

Seeders are identified by the bitmask the client gets when the connection
to the remote peer is established, and the have-message received every time
the remote peer has successfully acquired a new piece. As soon as the remote
peer has accumulated all pieces, we immediately close the connection. We
conducted the tests at the same time as in Chapter 8.2.1 and also used the
same torrents. The running times are depicted in Figure 8.3. It does not come

70 CHAPTER 8. FREE RIDING CASE STUDY: BITTORRENT

 0

 1

 2

 3

 4

 5

 6

GFEDCBA

R
el

at
iv

e
D

ow
nl

oa
d

D
ur

at
io

n

Figure 8.2: Relative download times for six torrents. The download time of
the official client is normalized to 1.0. Every torrent was downloaded three
times with both clients. The plot shows relative download times with the
fastest run at the lower end of the bar, the average running time at the level
of the horizontal tick mark, and the slowest run at the upper end of the bar.

as a surprise that the average download time has increased. Nevertheless,
we can again see that all downloads finished eventually. Moreover, note that
the test is slightly unfair for BitThief, as the official client was allowed to
download not only from the leechers, but also from all seeders! In fact,
in some swarms only a relatively small fraction of all peers are leechers.
For example in Torrent C, merely 15% are leechers, and BitThief can thus
download from less than a sixth of all available peers; nevertheless, BitThief
only requires roughly 5 times longer than the official client.

We conclude that even without downloading from seeders, BitThief can
download the whole torrent from leechers exclusively. Therefore, it is not
only the seeders which provide opportunities to free ride, but the leechers
can be exploited as well.

8.2.3 Further Experiments

The measurements presented so far have all been obtained through experi-
ments on the Internet and hence were subject to various external effects. For
example, in case BitThief was allowed to download from seeders, it sometimes
downloaded at a high rate, but then—a few minutes later—the download rate
declined abruptly due to a powerful seeder having left the network. In or-
der to get reproducible results, we set up a pet network environment on a

8.2. BITTHIEF AND ANALYSIS 71

 0

 2

 4

 6

 8

 10

 12

 14

 16

GFEDCBA

R
el

at
iv

e
D

ow
nl

oa
d

D
ur

at
io

n

Figure 8.3: Relative download times of BitThief for six torrents without
downloading from any seeders. The download time of the official client is
normalized to 1.0. As in the first experiment, the torrents were downloaded
three times with the official client and three times using BitThief restricted to
download from leechers only. The bars again represent the same minimum,
average, and maximum running times.

host, consisting of a private tracker, a configurable number of official clients
as seeders and leechers, and one instance of our own client. We evaluated
different scenarios. In the following, our main findings will be summarized
briefly.

In scenarios with many seeders and only very few leechers, our client
downloads most data from seeders. As the leechers often do not fill up all
their upload slots with other leechers, our client is unchoked all the time,
yielding a constant download rate.

More interesting are scenarios with a small number of seeders. A fast
seeder is able to push data into the swarm at a high rate and all the leech-
ers can reciprocate by sharing the data quickly with their upstreams fully
saturated. In this situation, it is difficult for our client to achieve a good
downstream: we only get a small share of the seeders’ upstream and all
the other leechers are busy exchanging pieces between them. Hence, we only
profit from the optimistic unchoke slots, which results in a poor performance.
However, note that many leechers will turn into seeders relatively soon and
therefore our download rate will increase steadily.

A slow seeder is not able to push data fast enough into the swarm, and
the leechers reciprocate the newly arrived pieces much faster without filling
all their upload slots. Although BitThief cannot profit from the seeders, it

72 CHAPTER 8. FREE RIDING CASE STUDY: BITTORRENT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

C
om

pl
et

io
n

Time

Official Client 1
Official Client 2
Official Client 3

BitThief

Figure 8.4: Download times for three official clients and one BitThief client
in the presence of a slow seeder. BitThief starts downloading 9 minutes later
than the other clients, but catches up quickly. Ultimately, all clients finish
the download roughly at the same time.

can make use of the leechers’ free upload slots. The attainable download
rate is similar to the one where there are many seeders. The download
rate will go down only when BitThief has collected all pieces available in
the swarm. When a new piece arrives, the leechers will quickly exchange it,
enabling BitThief to download it as well with almost no delay. An experiment
illustrating this behavior is given in Figure 8.4. Note that the execution
shown in the figure is quite idealistic, as there are no other leechers joining
the torrent over time.

In summary, the results obtained from experiments on the Internet have
been confirmed in the experiments conducted in our pet network.

8.2.4 Exploiting Sharing Communities

Finding the right torrent metafile is not always an easy task. There ex-
ist many sites listing thousands of torrents (e.g., Mininova), but often the
torrents’ files are not the ones mentioned in the title or are of poor qual-
ity. Therefore, a lot of sharing communities have emerged around BitTor-
rent. These communities usually require registration on an invitation basis
or with a limit on the number of active users. Finding good quality torrents
in these communities is much more convenient than on public torrent reposi-
tories. Sharing communities usually encourage their users to upload at least
as much data as they download, i.e., to keep their sharing ratio above 1. This

8.2. BITTHIEF AND ANALYSIS 73

is achieved by banning users with constantly low sharing ratios or by denying
them access to the newest torrents available.

Andrade et al. [16] studied these communities and analyzed how sharing
ratio enforcement influences seeding behavior. The authors find that seeders
are staying in a torrent for longer periods of time, i.e., typically the majority
of peers are seeders. These communities thus exhibit ideal conditions for Bit-
Thief, provided that we can find ways to access and stay in this communities
without uploading.

We have found that this can often be done by simply pretending to up-
load. The community sites make use of the tracker announcements which
every client performs regularly. In these announcements the client reports
the current amount of data downloaded and uploaded. These numbers are
stored in a database and used later on to calculate the sharing ratios. The
tracker typically does not verify these numbers, although, in our opinion,
it would be possible to expose mischievous peers: for instance, in a torrent
with 100 seeders and just one leecher, it looks suspicious if the leecher is
constantly announcing large amounts of uploaded data. Alternatively, the
sum of all reported download and upload amounts could be analyzed over
different torrents and time periods, in order to detect and ban dishonest
peers.

The tracker can also be cheated easily: clients can announce bogus in-
formation and fake peers so that the tracker’s peer list fills up with dozens
of clients which do not exist. The seeder and leecher counts reported by the
tracker can therefore be misleading as there are usually not that many real
peers downloading a given torrent. Even worse, peers asking a tracker for
other peers can get a lot of invalid or stale information, which makes torrent
starts slow.6 The technique of faking tracker announcements has been used
in a couple of torrents in our tests and we now have a sharing ratio of 1.4 on
TorrentLeech7 without ever uploading a single bit.

An example which emphasizes how dramatic the difference between a
community internal and an external download can be, is given in Figure 8.5.
We used a torrent that was published on TorrentLeech approximately 12
hours before conducting this experiment and looked for the same one on
Mininova, where it had appeared 4 hours earlier. The torrent was 359MB
in size on TorrentLeech and slightly smaller (350MB) on Mininova. We
first downloaded the torrent three times from Mininova, then three times
from TorrentLeech. The Mininova runs took 32/32/37 minutes, while on
TorrentLeech the runs completed in 7:25/7:08/7:08 minutes, respectively.
This is more than four times faster. Considering that there were only 25 (24
seeders, one leecher) peers in the TorrentLeech swarm and more than 834
(531 seeders, 303 leechers) peers in the other swarm, this is surprising.

As far as the individual contributions of the peers are concerned, we
observed the following. While BitThief tends to benefit more from certain
peers, generally seeders, in public torrents, a much larger fraction of all peers

6An alternative is used by recent BitTorrent clients: a distributed tracker protocol
which manages the torrent swarm.

7See http://torrentleech.org/.

74 CHAPTER 8. FREE RIDING CASE STUDY: BITTORRENT

 0

 200

 400

 600

 800

 1000

 1200

 0.5 1 2 4 8 16 32

D
ow

nl
oa

d
R

at
e

(K
B

/s
)

Time (minutes, logarithmic!)

TorrentLeech
Mininova

Figure 8.5: BitThief’s download speed: comparison between a community
version of a torrent and one found on Mininova.

provides a considerable share of the file in sharing communities, and the
distribution across peers is more balanced. This is probably due to the
community peers’ desire to boost their sharing ratios by uploading as much
as possible. An experiment illustrating this point is depicted in Figure 8.6.

8.3 Sophisticated Exploits

While simple tricks often yield a good performance, BitTorrent has proved
to be quite robust against certain more sophisticated attacks.

First, we have investigated an exploit proposed in [150] which truly vi-
olates the BitTorrent protocol: the selfish client announces pieces as being
available even if it does not possess them. If such an unavailable piece is
requested by a remote peer, the client simply sends random data (garbage).
As only the integrity of whole pieces can be checked, the remote peer cannot
verify the subpiece’s correctness. Note that this behavior cannot be consid-
ered free riding in the pure sense, but it is a strategy that does not require
to upload any valid user data.

In a first implementation, all requests are answered by uploading entire
garbage pieces. As has already been pointed out in [150], this approach is
harmful: both the official client and Azureus store information from whom
they have received subpieces and will thus immediately ban our IP address
once the hash verification fails.8 Consequently, we have tried to answer all

8Note that an appealing solution would be to fake entire pieces by using contents

8.3. SOPHISTICATED EXPLOITS 75

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70

N
um

be
r

of
 s

ub
pi

ec
es

 (
bl

oc
ks

)
re

ce
iv

ed

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250

N
um

be
r

of
 s

ub
pi

ec
es

 (
bl

oc
ks

)
re

ce
iv

ed

Figure 8.6: Number of blocks obtained by BitThief from different peers.
The file size was 350 MB. On Mininova (left) and on TorrentLeech (right),
BitThief connected to 309 and 349 peers, respectively. In the community
network, the distribution is more balanced and BitThief is able to download
from much more peers.

requests for a piece except for one subpiece, which would force the remote
peer to get that subpiece from a different peer. The idea is that the remote
peer cannot tell which peer uploaded the fake data, as it might as well be the
other peer which only supplied one subpiece. While the official client can in-
deed be fooled this way, Azureus is smarter and uses an interesting approach:
once it has determined that the piece is not valid, it looks up from which
peer it received most subpieces. The piece is then reserved for that peer,
and Azureus aims at fetching all remaining subpieces from the same peer.
When refusing to answer these requests, the connection stalls, and eventually
our IP address is banned. We have tried several tricks to circumvent these
problems, but came to the conclusion that uploading random garbage, in any
way, does not improve performance.

When establishing connections, peers inform each other about their down-
load status by sending a list of pieces that they have already successfully
downloaded. While the connection is active, peers send messages to each
other for each new piece they downloaded. Therefore, a peer always knows
the progress of its neighbors. We sought to measure the influence that this
information has on a remote peer. Currently, BitThief sends an empty list
of available pieces during connection setup and it does not inform the re-
mote peer about any new pieces it acquires. We tried announcing different
percentages of all the pieces at the beginning of the connection, but our ex-
periments showed that the performance is independent of the percentage, as
long as not all of the pieces are available. However, announcing 100% of the
pieces has disastrous consequences, as the remote peer considers BitThief a
seeder and therefore does not respond to any piece requests.

BitThief profits from the optimistic unchoke slots of leechers and from

yielding the same hash values. Unfortunately, however, the computation of such SHA-1
hash collisions is expensive and would yield huge tables which cannot be stored in today’s
databases.

76 CHAPTER 8. FREE RIDING CASE STUDY: BITTORRENT

the round robin unchoke scheme of seeders. Thus, a client could possibly
increase the chance of being unchoked by being present in the remote peer’s
neighborhood more than once. This is known as a Sybil attack [81]. However,
this attack involves opening two or more connections to a remote peer. Both
the official client and Azureus prevent such behavior. If multiple IP addresses
are available, it would be an easy task to extend the client in a way to fake two
entities and trick remote peers. The peers would gladly open a connection
to both external addresses and thus our download rate might increase up to
twofold.

8.4 Concluding Remarks

This chapter has demonstrated that the prevalent BitTorrent system is not
robust to cooperation attacks today as it can cheated by strategic peers in
several ways. We believe that the presence of a large fraction of free riders can
be harmful to such a system’s performance. Of course, only time can tell how
many BitTorrent users will indeed act selfishly in the future. BitThief has
received quite some attention: the paper itself has been downloaded from our
research group’s web server more than 100 times per day on average in 2007,
the effects have been discussed in many blogs, and first Wikipedia articles and
YouTube tutorials have appeared on the web. While many bloggers worried
about the consequences BitThief might have on the file sharing performance,
some users announced to appreciate that the client does not upload any data.
Interestingly, BitThief has also been recommended in the Mininova FAQ9:

“ Is downloading torrent files from Mininova illegal? [...] In some
other countries, it is allowed to download copyrighted material, as long as
you don’t upload. If this is the case, we advise you to use the BitThief client.
[...] ”

Up to now, BitThief’s user base is still small. Figure 8.7 plots the number
of accessed torrents and the total number of different IP addresses using
BitThief per month from January 2007 to December 2007. However, we
believe that this does not necessarily imply that people are eager to contribute
in p2p networks. We have implemented BitThief mainly to give a proof-
of-concept and—apart from publishing our measurement results—did not
promote the software. The client still lacks many desirable features and has
a simple GUI. Moreover, it is well-known that BitThief occasionally transmits
statistical data to our server. Although this data merely contains anonymous
and hashed information about the time required to download files of any size,
it might be a good reason for some people not to install BitThief.

One possible thread of future research is the improvement of our client to
incorporate other selfish attacks, e.g., collusion, or to allow a limited amount
of upload data. Moreover, current trends such as ISP caching10 could also

9See http://www.mininova.org/faq.
10See CacheLogic Press Release http://www.cachelogic.com/home/pages/

news/pr070806.php.

8.4. CONCLUDING REMARKS 77

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12

Months 2007

Torrents

Actives

Figure 8.7: Number of accessed torrents (Torrents) and number of differ-
ent IP addresses (Actives) using BitThief per month during the year 2007.
(BitThief was released in January 2007.)

introduce new potential exploits.
More interesting, however, would be to extend BitThief such that cooper-

ation among peers is truly enforced. For this purpose, the Fast Extension11

might serve as a promising starting point. The challenge is to find a mech-
anism that applies some kind of tit-for-tat algorithm for older peers in the
system, while at the same time efficiently solving the bootstrap problem [189]
of newly joining peers: as these new peers inherently do not have any data to
share, they must be provided with some “venture capital”. Some of our first
findings regarding a more efficient tit-for-tat algorithm can be found in [156]:
our approach makes use of source coding techniques. Finally, our fairness
scheme for live-streaming in Pulsar is also inspired by the tit-for-tat scheme
and can be found in [152].

11See http://bittorrent.org/fast extensions.html.

Chapter 9

Impact of Selfish Players

This chapter investigates the impact of selfish behavior in unstructured peer-
to-peer topologies. Concretely, we study the quality of the network topologies
which result if peers selfishly select to which other peers they connect. Game
theory provides tools to analyze such strategic behavior.

One contribution will be the computation of the Price of Anarchy of
p2p overlay creation, which is the ratio between an optimal solution—where
participants are controlled by a benevolent master puppeteer (or by one of
the philosopher kings in Plato’s utopian Kallipolis)—compared to a solution
generated by peers that act in an egoistic manner, optimizing their individual
benefit.

The importance of studying the Price of Anarchy in peer-to-peer systems
stems from the fact that it quantifies the possible degradation caused by
selfishness. Specifically, a low Price of Anarchy indicates that a system does
not require an incentive-mechanism (such as tit-for-tat), because selfishness
does not overly bog down the overall system performance. If the Price of
Anarchy is high, however, specific cooperation incentives (whose goals are to
reduce the Price of Anarchy) need to be enforced in order to ensure that the
system can perform efficiently. Hence, in peer-to-peer systems the Price of
Anarchy is a measure that helps explaining the necessity (or non-necessity)
of cooperation mechanisms.

We will first show that the topologies of selfish, unstructured p2p sys-
tems can be much worse than in a scenario in which peers collaborate. More
precisely, we show that the Price of Anarchy is Θ(min(α, n)), where α is
a parameter that captures the tradeoff between lookup performance (low
stretches) and the cost of neighbor maintenance, and n is the number of
peers in the system. Thereby, the upper bound O(min(α, n)) holds for peers
located in arbitrary metric spaces, including the popular growth-bounded and
doubling metrics. On the other hand, intriguingly, this bound is tight even
in such a simple metric space as the 1-dimensional Euclidean space. As a
second contribution, we prove that the topology of a static peer-to-peer sys-
tem consisting of selfish peers may never converge to a stable state. That is,

80 CHAPTER 9. IMPACT OF SELFISH PLAYERS

links may continuously change even in environments without churn, causing
the network to be inherently instable. Finally, we consider the complexity
of Nash equilibria. We show that deciding whether there exists a pure Nash
equilibrium in a given network is NP-hard. Consequently, it is infeasible in
practice to determine if a p2p network of selfish peers can stabilize.

9.1 A P2P Network Creation Game

We model the peers of a p2p network as points in a metric space M = (V, d),
where d : V × V → [0,∞) is the distance function which describes the
underlying latencies between all pairs of peers. The effects of selfish peer
behavior is studied from a game-theoretic perspective. We consider a set of
n peers V = {π0, π1, . . . , πn−1}. A peer can choose to which subset of other
peers it wants to store pointers (IP addresses). Formally, the strategy space

of a peer πi is given by Si = 2V \{πi}, and we will refer to the actually chosen
links as πi’s strategy si ∈ Si. We say that πi maintains or establishes a link to
πj if πj ∈ si. The combination of all peers’ strategies, i.e., s = (s0, ..., sn−1) ∈
S0× · · · ×Sn−1, yields a (directed) graph G[s] = (V,∪n−1

i=0 ({πi}× si)), which
describes the resulting p2p topology.

Selfish peers exploit locality in order to maximize their lookup perfor-
mance. Concretely, a peer aims at minimizing the stretch to all other peers.
The stretch between two peers π and π′ is defined as the shortest distance be-
tween π and π′ using the links of the resulting p2p topology G divided by the
direct distance, i.e., for a topology G, stretchG(π, π′) = dG(π, π′)/d(π, π′).
Clearly, it is desirable for a peer to have low stretch to other peers in order
to keep its latency small. By establishing a link to all peers in the system,
a peer reaches every peer with minimal stretch 1, and the potential lookup
performance is optimal. However, storing and especially maintaining a large
number of links is expensive. Therefore, the individual cost ci(s) incurred at
a peer π is composed not only of the stretches to all other peers, but also of
its degree, i.e., the number of its neighbors:

ci(s) = α · |si|+
∑
i6=j

stretchG[s](πi, πj).

Note that this cost function captures the classic p2p trade-off between the
need to minimize latencies and the desire to store and maintain only few
links, as it has been addressed by many existing systems, for example Pas-
try [207]. Thereby, the relative importance of degree costs versus stretch
costs is expressed by the parameter α.

The objective of a selfish peer is to minimize its individual cost. In order
to evaluate the topologies constructed by selfish peers—and compare them
to the topologies achieved by collaborating peers—we use the notion of a
Nash equilibrium. A p2p topology constitutes a Nash equilibrium if no peer
can reduce its individual cost by changing its set of neighbors given that
the connections of all other peers remain the same. More formally, a (pure)
Nash equilibrium is a combination of strategies s such that, for each peer πi,

9.2. PRICE OF ANARCHY 81

and for all alternative strategies s′ which differ only in the ith component
(different neighbor sets for peer πi), ci(s) ≤ ci(s′). This means that in a Nash
equilibrium, no peer has an incentive to change its current set of neighbors,
that is, Nash equilibria are stable.

While peers try to minimize their individual cost, the system designer is
interested in a good overall quality of the p2p network. The social cost is
the sum of all peers’ individual costs, i.e.,

C(G) =
∑
i

ci = α|E|+
∑
i 6=j

stretchG(πi, πj).

The lower this social cost, the better is the system’s performance.
Determining the parameter α in real unstructured peer-to-peer networks

is an interesting field for study. As mentioned, α measures the relative im-
portance of low stretches compared to the peers’ degrees, and thus depends
on the system or application: for example, in systems with many lookups
where good response times are vital, α is smaller than in distributed archival
storage systems consisting mainly of large files. In the sequel, we will denote
the link and stretch costs by

CE(G) = α|E| and CS(G) =
∑
i 6=j

stretchG(πi, πj).

Typically, a given distribution of peers in a metric space can result in
different Nash equilibria, depending on the order in which peers change their
links. To gain an understanding of the impact of selfishness on the social
cost, we are particularly interested in the social cost of the worst possible
Nash equilibrium. That is, we study topologies in which no selfish peer
has an incentive to change its neighbors, but in which all peers together
could be much better off if they collaborated. More precisely and using the
terminology of game theory, we are interested in the Price of Anarchy, the
ratio between the social cost of the worst Nash equilibrium and the social
cost of the optimal topology.

9.2 Price of Anarchy

The Price of Anarchy is a measure to bound the degradation of a glob-
ally optimal solution caused by selfish individuals. In this section, we show
that the topologies created by selfish peers deteriorate more (compared to
collaborative networks) as the cost of maintaining links becomes more im-
portant (larger α). Concretely, in Chapter 9.2.1 we prove that for arbi-
trary metric spaces—thus, including the important and well-studied growth-
bounded [123] and doubling (e.g. [59]) metrics—the Price of Anarchy never
exceeds O(min(α, n)). We then show in Chapter 9.2.2 that this bound is
tight even in the “simplest” metric space, the 1-dimensional Euclidean space,
where there exist Nash equilibria with a Price of Anarchy of Ω(min(α, n)).

82 CHAPTER 9. IMPACT OF SELFISH PLAYERS

9.2.1 Upper Bound
Assume the most general setting where n peers are arbitrarily located in a
given metric space M, and consider a peer π which has to find a suitable
neighbor set. Clearly, the maximal stretch from π to any other peer π′ in
the system is at most α + 1: if stretch(π, π′) > α + 1, π could establish
a direct link to π′, reducing the stretch from more than α + 1 to 1, while
incurring a link cost of α. Therefore, in any Nash equilibrium, no stretch
exceeds α+ 1. Because there are at most n(n− 1) directed links (from each
peer to all remaining peers), the social cost of a Nash equilibrium is O(αn2).
In the social optimum on the other hand, all stretches are at least 1 and there
must be at least n − 1 links in order to keep the topology connected. This
lower bounds the optimal social cost by Ω(αn+ n2) and yields the following
result.

Theorem 9.1. For any metric spaceM, the Price of Anarchy is O(min(α, n)).

Theorem 9.1 implies that if the relative importance of the peers’ stretch
is large, the Price of Anarchy is small. That is, for small α, the selfish
peers have an incentive to establish links to many other peers, while also the
optimal network is highly connected.

9.2.2 Lower Bound
We now show that there are p2p networks in which the Price of Anarchy is
as bad as Ω(min(α, n)), which implies that the upper bound of Chapter 9.2.1
is asymptotically tight. Intriguingly, the Price of Anarchy can deteriorate
to Θ(min(α, n)) even if the underlying latency metric describes a simple 1-
dimensional Euclidean space.

Consider the topology G in which peers are located on a line, and the
distance (latency) between two consecutive peers increases exponentially to-
wards the right. Concretely, peer i, for i from 1 to n, is located at position
αi−1/2 if i is odd, and at position αi−1 if i is even. The peers of G maintain
links as follows: all peers have a link to their nearest neighbor on the left.
Odd peers additionally have a link to the second nearest peer on their right.
After proving that G constitutes a Nash equilibrium, we derive the lower
bound on the Price of Anarchy by computing the social cost of this topology.

Lemma 9.2. The topology G forms a Nash equilibrium for α ≥ 3.4.

Proof. We distinguish between even and odd peers. For both cases, we show
that no peer has an incentive to deviate from its strategy.

Case even peers: Every even peer i needs to link to at least one peer on
its left, otherwise i cannot reach the peers j < i. A connection to peer i− 1
is optimal, as the stretch to all peers j < i becomes 1. Observe that every
alternative link to the left would imply a larger stretch to at least one peer
on the left without reducing the stretch to peers on the right. Furthermore,
i cannot reduce the distance to any—neither left nor right—peer by adding
further links to the left. Hence, it only remains to show that i cannot benefit
from adding more links to the right.

9.2. PRICE OF ANARCHY 83

By adding a link to the right, peer i shortens the distance to all peers on
the right. However, we show that the cost reduction per peer decreases as
a geometric series, and any such link to the right would strictly increase i’s
costs. We consider two cases: i linking to an odd peer on the right, and to
an even peer on the right.

Link to an odd peer: Consider the benefit of i adding a link to its odd
neighbor i+1. For an odd peer j > i, we define the benefit Bi,j as the stretch
cost reduction caused by the addition of the link (i, i+1). We have, for i ≥ 2,

Bi,j = stretchold(i, j)− stretchnew(i, j) =
d(i, i− 1) + d(i− 1, j)

d(i, j)
− d(i, j)

d(i, j)

=
αi−1 − 1

2
αi−2 + 1

2
αj−1 − 1

2
αi−2

1
2
αj−1 − αi−1

− 1 =
2αi−1 − αi−2

1
2
αj−1 − αi−1

=
2− 1

α
1
2
αj−i − 1

.

Similarly, the savings Bi,j for an even peer j > i and i ≥ 2 amount to
Bi,j = stretchold(i, j) − stretchnew(i, j) = (d(i, i − 1) + d(i − 1, j + 1) +
d(j + 1, j))/(d(i, j)) −(d(i, j + 1) + d(j + 1, j))/(d(i, j)) = (αi−1 − αi−2 +
αj − αj−1)/(αj−1 − αi−1) − (αj − αi−1 − αj−1)/(αj−1 − αi−1) = (2αi−1 −
αi−2)/(αj−1 − αi−1) = (2− 1

α
)/(αj−i − 1). Hence, for all α ≥ 3.4, the total

savings Bi for peer i are less than

Bi =
∑

odd j > i

Bi,j +
∑

even j > i

Bi,j ≤
∞∑
δ=1

2− 1
α

1
2
α2δ−1 − 1

+

∞∑
δ=1

2− 1
α

α2δ − 1

≤
(α≥3)

∞∑
δ=1

2− 1
α

1
2
α2δ−2

+

∞∑
δ=1

2− 1
α

α2δ−1
=

(
2− 1

α

) ∞∑
δ=1

(
1

1
2
α2δ−2

+
1

α2δ−1

)
=

(
2− 1

α

)(
2α2

α2 − 1
+

α

α2 − 1

)
=

4α2 − 1

α2 − 1
<

(α≥3.4)
α+ 1.

Therefore, the construction of link (i, i+ 1) would be of no avail (benefit
smaller than cost). The benefit of alternative or additional links to odd
neighbors on the right is even smaller.

Link to an even peer: A link to an even peer j > i entails a stretch 1
to the corresponding peer instead of stretchold(i, j) = (αj − αj−1 + αi−1 −
αi−2)/(αj−1−αi−1) < α+1 for α > 2. However, the stretch from i to all other
peers remains unchanged, since the path i (i−1) (i+1) is shorter than
i (i+2) (i+1): αi−1− 1

2
αi−2 + 1

2
αi− 1

2
αi−2 < αi+1−αi−1 +αi+1− 1

2
αi

for α > 1. Therefore, an even peer i has no incentive to build links to any
even peer on its right.

Case odd peers: An odd peer i needs to link to peer i − 1, otherwise
there is no connection to i − 1 and the stretch from i to i − 1 is infinite.
Moreover, if the link (i, i − 1) is established, stretch(i, j) = 1 for all j < i.
Therefore, peer i does not profit from building additional or alternative links
to the left.

It remains to study links to the right. In order to reach all peers with a
finite stretch, peer i needs a link to some peer j ≥ i+ 2. In the following, we

84 CHAPTER 9. IMPACT OF SELFISH PLAYERS

first show that peer i can always benefit from a link (i, i+2), independently of
additional links to the right. Secondly, we prove that if i has a link (i, i+ 2),
it has no incentive to add further links.

Assume peer i has no direct link to peer i + 2. Then, stretch(i, i + 2) ≥
(2αi+2− 1

2
αi−1− 1

2
αi+1)/(1

2
αi+1− 1

2
αi−1) > α+ 1. Hence, no matter which

links it already has, peer i can benefit by additionally pointing to peer i+ 2.
On the other hand, if i maintains the link (i, i+2), any other links to the right
only reduce i’s gain. For odd peers, this is obvious, since the corresponding
stretches are already optimal. A link (i, j) to some even peer j > i only
improves the stretch to peer j itself, but not to other peers. The stretch to
peer j becomes 1 instead of stretchold(i, j) = (1

2
αj+1 − 1

2
αi−1 + 1

2
αj+1 −

αj)/(αj − 1
2
αi−1) = (αj+1 − αj − 1

2
αi−1)/(αj − 1

2
αi−1) < α + 1 for α > 0.

Thus, also this link would increase i’s costs.

Lemma 9.3. The social cost C(G) of the topology G is C(G) ∈ Θ(αn2).

Proof. The topology G has n − 1 links pointing to the left and bn/2c links
pointing to the right. Hence, the total link costs are

CE(G) = α [(n− 1) + bn/2c] ∈ Θ(αn).

It remains to compute the costs of the stretches.
The stretch from an odd peer i to an even peer j > i is stretch(i, j) =

(αj −αj−1− 1
2
αi−1)/(αj−1− 1

2
αi−1) > (1

2
αj − 1

2
αi−1)/(αj−1− 1

2
αi−1) > 1

2
α

for α > 2. Thus, the sum of the stretches of an odd peer i is

CS(i) =
∑
j<i

stretch(i, j) +
∑
j>i

stretch(i, j)

> (i− 1) +
1

2
α

⌊
n− i− 1

2

⌋
+

⌊
n− i

2

⌋
.

The stretch between two even peers i and j is stretch(i, j) = (αj−αj−1 +
αi−1 − αi−2)/(αj−1 − αi−1) > (1

2
αj − 1

2
αi−1)/(αj−1 − αi−1) > 1

2
α for j > i

and all α > 2. Thus, the stretch costs are at least

CS(i) > (i− 1) +
1

2
α

⌊
n− i− 1

2

⌋
− 1 +

⌊
n− i− 1

2

⌋
.

Adding up the stretches of odd and even peers yields a lower bound on
the total stretch costs:

CS(G) =
∑
i even

CS(i) +
∑
i odd

CS(i)

>
n(n− 2)

2
+ α

(n− 3)(n− 2)− n
8

+
(n− 1)(n− 2)

4
∈ Ω(αn2).

Thus, in combination with Theorem 9.1, it follows that CS(G) ∈ Θ(αn2).
The proof is concluded by combining link and stretch costs, C(G) = CE(G)+
CS(G) ∈ Θ(αn2).

9.3. EXISTENCE OF NASH EQUILIBRIA 85

Theorem 9.4. The Price of Anarchy of the peer topology G is Θ(min(α, n)).

Proof. The upper bound follows directly from the result obtained in The-
orem 9.1. As for the lower bound, if α < 3.4, the theorem holds because
Θ(min {α, n}) ∈ O(1) in this case. By Lemma 9.2, the topology G consti-
tutes a Nash equilibrium for α ≥ 3.4. Moreover, by Lemma 9.3, the social
cost of G are in order of Θ

(
αn2

)
. In the following, we prove that the opti-

mal social cost is upper bounded by O(n2 +αn) from which the claim of the
theorem follows by dividing the two expressions.

Consider again the peer distribution of G, and assume that there are no
links. If every peer connects to the nearest peer to its left and to the nearest
peer to its right, there are 2(n − 1) links, and all stretches are 1. Thus, the

social cost of this resulting topology G̃ is C(G̃) = α · 2(n − 1) + n(n − 1) ∈
O(n2 + αn). The optimal social cost is at most the social cost of G̃.

9.3 Existence of Nash Equilibria

In this section, we show that a system of selfish peers may never converge
to a stable state, even in the absence of churn, mobility, or other sources of
dynamics. Interestingly, this result even holds if we assume latencies to form
simple metric spaces, such as a 2-dimensional Euclidean space. Specifically,
there may not exist a pure Nash equilibrium for certain p2p networks in our
“locality game”.

Theorem 9.5. Regardless of the magnitude of α, there are metric spaces
M, for which there exists no pure Nash equilibrium, i.e., certain p2p net-
works cannot converge to a stable state. This is the case even if M is a
2-dimensional Euclidean space.

Instead of presenting the formal proof (which will be implicit in the proof
of Theorem 9.6), we attempt to highlight the main idea only. Assume that the
parameter α is a multiple of 0.6, i.e., αk = 0.6k for an arbitrary integer k > 0.
Given a specific k, the 2-dimensional Euclidean instance Ik of Figure 9.1 has
no pure Nash equilibrium. Specifically, Ik constitutes a situation in which
there are peers π1 ∈ Π1 and π2 ∈ Π2 that continue to deviate to a better
strategy ad infinitum, i.e., the system cannot converge.

The n peers of instance Ik are grouped into five clusters Π1, Π2, Πa,
Πb, and Πc, each containing k = n/5 peers. Within a cluster, peers are
located equidistantly in a line, and each cluster’s diameter is ε/n, where
ε > 0 is an arbitrarily small constant. The inter-cluster distance d(Πi,Πj)
between Πi and Πj is the minimal distance between any two peers in the two
clusters. Distances not explicitly defined in Figure 9.1 follow implicitly from
the constraints imposed by the underlying Euclidean plane.

The proof unfolds in a series of lemmas that characterize the structure of
the resulting topology G[s] if the strategies s form a Nash equilibrium in Ik.
First, it can be shown that in G[s], two peers in the same cluster are always
connected by a path that does not leave the cluster. Secondly, it can be

86 CHAPTER 9. IMPACT OF SELFISH PLAYERS

5 Existence of Nash Equilibria

In this section, we show that a system of selfish peers may never converge to a stable state, even in the absence

of churn, mobility, or other sources of dynamism. Interestingly, this result even holds if we assume latencies to

form simple metric spaces, such as a 2-dimensional Euclidean space.

Theorem 5.1. Regardless of the magnitude ofα, there are metric spacesM, for which there exists no pure

Nash equilibrium, i.e. certain P2P networks cannot converge to a stable state. This is the case even ifM is a

2-dimensional Euclidean space.

Π a

Π b Π c

Π 2Π 1
δ1a

2 2 2+δ

1

1a

 = 0.04
abδ = 0.14

ε > 0
δ > ε

2−δ

ab

ε/n

ε/n ε/n

ε /n ε/n
1−2δ

1+δ

Figure 2: InstanceIk has no pure Nash equilibrium whenα = 0.6k, wherek = n/5. The number of peers in
each cluster isk.

We prove the theorem for all parametersα that are multiples of0.6, i.e., αk = 0.6k for all integersk >

0. Specifically, ifα = 0.6k, then the 2-dimensional Euclidean instanceIk of Figure 5 has no pure Nash

equilibrium. The idea of the proof is thatIk constitutes a situation in which two peersπ1 ∈ Π1 andπ2 ∈ Π2

continue to deviate to a better strategy ad infinitum. From this, it follows that the system cannot converge and

that there exists no pure Nash equilibrium.

InstanceIk consists ofn peers grouped into five clusters, the top-clustersΠa, Πb, andΠc, as well as

the two bottom-clustersΠ1 and Π2. Each cluster containsn/5 peers. Within a cluster, peers are located

equidistantly on a line, and the distance between the two most distant peers isε/n, where0 < ε < n−3 denotes

an arbitrarily small positive constant. Theinter-cluster distanced(Πi, Πj) between two clustersΠi andΠj is

the minimal distance between any two peers in the two clusters. Inter-cluster distances between nearby clusters

are defined explicitly in Figure 5, whereas all other distances follow implicitly from the constraints imposed by

the underlying Euclidean plane. It follows directly from the underlying Euclidean metric space that the maximal

11

Figure 9.1: Instance Ik has no pure Nash equilibrium when α = 0.6k, where
k = n/5. The number of peers in each cluster is k.

shown that there exists exactly one link in both directions between clusters
Πa and Πb, Πb and Πc, as well as between Π1 and Π2. A third structural
characteristic of any Nash equilibrium is that for every i and j, there is at
most one directed link from a cluster Πi to peers in a cluster Πj .

To preserve connectivity, some peers in Π1 and Π2 must have links to
top-peers. Based on the aforementioned observations, the set of possible
strategies can further be narrowed down as follows.

i) Neither peers in Π1 nor Π2 select three links to top-peers.

ii) There exists a peer π1 ∈ Π1 that establishes a link to Πa.

iii) There is exactly one link from cluster Π2 to either cluster Πb or Πc,
but there is no link to Πa.

Correctness of all three properties is proven by verifying that there exists
some peer π1 ∈ Π1 or π2 ∈ Π2 that has an incentive to change its strategy
in case the property is not satisfied. If, for instance, there are two peers
π2, π

′
2 ∈ Π2 that simultaneously maintain links to Πb and Πc (thus violating

Case iii)), π′2 can lower its costs by dropping its link to Πc. This holds because
the sum of the stretches

∑
πc∈Πc

stretch(π′2, πc) entailed by the indirection

π′2 π2 Πb Πc does not justify the additional cost α.
It can be shown that only the six structures depicted in Figure 9.2 remain

valid candidates for Nash topologies. In each scenario, however, at least one
peer benefits from deviating from its current strategy.

Case 1: In this case, a peer π1 ∈ Π1 can reduce its cost by adding a link to
a peer in Πb.

Case 2: If the only outgoing link from Π1 to a top-cluster is to cluster Πa,
the peer π2 ∈ Π2 maintaining the link to Πc can be shown to profit from

9.4. COMPLEXITY OF NASH EQUILIBRIA 87

1

4 5 6

aΠ
cΠbΠ

aΠ
cΠbΠ

aΠ
cΠbΠ

1Π 2Π

1Π 2Π1Π 2Π

1Π 2Π

1Π 2Π

1Π 2Π

aΠ
cΠbΠ

aΠ
cΠbΠ

aΠ
cΠbΠ

2 3

Figure 3: Candidates for a Nash equilibrium.

c1(a) + k(3−2δ)
2 + k(4−2δ)

d(Π1,Πc)
. When establishing the link̀1b, on the other hand, this cost is reduced below

α + c1(a) + k(2+2ε)
2 + 3+4ε

d(Π1,Πc)
, which is less than the cost without`1b.

Case 2: If `1a is the only link to a top-cluster maintained by peers inΠ1, peerπc
2 profits from switching its

link from Πc to Πb. Specifically,πc
2 can reduce its cost from at leastα + c2(a) + k(3+δ)

2 + k to no more than

α + c2(a) + k(2+2ε))
2 + k(3+4ε)

2+δ , which is less for small enoughε.

Case 3:Unlike in the previous case,πb
2 prefers linking toΠc instead ofΠb in case some peerπb

1 has a link`1b

to Πb. The link`2b to Πb entails a cost of at leastα + c2(a) + k + 3k
2+δ . Whenπb

2 switches its link and selects

a peer inΠc instead, the cost is upper bounded byα + c2(a) + k(3−2δ+4ε)
2 + k(2+δ+2ε)

2+δ , which is less for small

enoughε. Note how the availability of the additional link̀1b changes the optimal choice of peerπb
2.

Case 4:In this scenario, peerπb
1 is better off after removing̀1b. Without this link, its cost is at mostcb

1(a) +
k(3−δ1a+δab+4ε)

2 + k(3−δ+4ε)
d(Π1,Πc)

> 4.3k as opposed to at leastα + cb
1(a) + k + 3

d(Π1,πc)
< 4.3k if link `1b is

maintained.

Case 5:The cost ofπc
1 in this case is at leastα + cc

1(a) + k(3−2δ)
2 + k. If this peer chooses̀1b instead of̀ 1c,

its cost diminish to no more thanα + cc
1(a) + k(2+2ε)

2 + k(3+4ε)
d(Π1,πc)

. Hence, a selfishπc
1 replaces its link to cluster

Πc with a link toΠb.

Case 6:Finally, this case is similar to Case 4 in the sense that it is worthwhile forπc
1 to remove its link toΠc.

By doing so, it reduces its cost from at leastα + cc
1(a, b) + k > 4.6k to at most4.3k as derived in Case 4.

The proof of Theorem 5.1 highlights how the system is ultimately trapped in an infinite loop of strategy

changes, without ever converging to a stable situation. The reason is that there is always at least one peer which

15

Figure 9.2: Candidates for a Nash equilibrium.

switching its link from Πc to Πb.

Case 3: The availability of the link from Π1 to Πb changes the optimal
choice of the above mentioned peer π2 ∈ Π2. Unlike in the previous case, π2

now prefers linking to Πc instead of Πb.

Case 4: Due to the existence of a link from a peer π2 ∈ Π2 to Πc, the peer
π1 ∈ Π1 with the link to Πb has an incentive to drop this link and instead
use the detours via Π2 and Πa to connect to Πc and Πb, respectively.

Case 5: In this case, the peer π1 ∈ Π1 having the link to Πc reduces its cost
by replacing this link with a link to a peer in Πb.

Case 6: Finally, this case is similar to Case 4: π1 ∈ Π1 with the link to Πb

has an incentive to remove its link to Πc

These cases highlight how the system is ultimately trapped in an infinite
loop of strategy changes, without ever converging to a stable situation. There
is always at least one peer which can reduce its cost by changing its strategy.
For instance, the following sequence of topology changes could repeat forever
(cf Figure 9.2): 1 3 4 2 1 3 . . . In other words, selfish peers
will not achieve a stable network topology.

9.4 Complexity of Nash Equilibria

It remains to answer the question whether for a given p2p network, it can
be determined if it will eventually converge to a stable state or not. In
the following, we show that it is NP-hard to decide whether there exists a
pure Nash equilibrium. This result establishes the complexity of stability in
unstructured p2p networks, showing that in general, it is computationally
infeasible to determine whether a peer-to-peer network consisting of selfish
peers can stabilize or not.

88 CHAPTER 9. IMPACT OF SELFISH PLAYERS

1−2δ

1.96
1+ δ

Π y Π z

Π c

Π 1
a

Π 2
a

Π 3
a

Π 4
a

Π 1
b

Π 4
b

Π 3
b

Π 2
b

Π 1
c

Π 2
c

Π 3
c

Π 4
c

Π 5
0

Π 5
1

Π 4
1

Π 4
0

Π 3
0

Π 2
0

Π 3
1

Π 2
1

Π 1
0

Π 1
1

2.45

2 2

2.45

1.72

1.48

1.48

1.48

11.14

1 1 11

1.2

1.2

Literals

Clauses

Figure 9.3: The graph GI for instance I = (x1 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨
x2∨x5)∧ (x3∨x4∨x5). Each cluster contains k peers with pairwise distance
ε. δ is an arbitrary constant such that δ > ε > 0.

Theorem 9.6. Regardless of the magnitude of α, determining whether a
given p2p network represented by a metric space M has a pure Nash equilib-
rium (and can therefore stabilize) is NP-hard.

The proof being rather technical, we first describe its main intuition. The
proof is based on a reduction from an NP-complete form of the Boolean sat-
isfiability problem SAT which is restricted to instances with 2 or 3 variables
per clause and at most 3 occurrences per variable [233]. For any α a mul-
tiple of 0.6, i.e., αk = 0.6k for an integer k > 0, we give a polynomial time
construction of a metric spaceMk

I from an instance I of SAT, such that the
following holds: there exists a pure Nash equilibrium in Mk

I if and only if I
is satisfiable.

The reduction is illustrated in Figure 9.3, each rectangular box represent-
ing a cluster of k peers. Assume that the SAT instance is given in standard
conjunctive normal form (CNF). For each clause Cj , we employ a gadget of
three clause-clusters Πa

j , Πb
j , and Πc

j . For every variable xi, the two literal-

clusters Π0
i and Π1

i represent the negative and positive literal of the variable,
respectively. Finally, the construction’s peer set is completed with three spe-
cial clusters Πc, Πy, and Πz. The pairwise distances between two peers in
Mk

I are determined by the graph GkI shown in Figure 9.3 (a formal definition
appears in Chapter 9.4.1). Two nodes within the same cluster have a dis-
tance of ε, for some arbitrarily small ε < (k(2n + 3m + 3))−2, where m and
n denote the number of clauses and variables in I, respectively. An edge of
GkI describes the cluster-distance between two clusters: the mutual distance
between every pair of two peers πi ∈ Πi and πj ∈ Πj in neighboring clusters
Πi and Πj with cluster-distance X is d(πi, πj) = X. All other distances are
determined by the length of the shortest path between the peers in GkI , that
is, Mk

I corresponds to the shortest path metric induced by GkI . Note that

9.4. COMPLEXITY OF NASH EQUILIBRIA 89

while Mk
I cannot be embedded in the Euclidean space, it still forms a valid

metric space, i.e., it fulfils symmetry and triangle inequality.
Consider an arbitrary clause Cj . Its clause-clusters Πa

j , Πb
j , and Πc

j in
combination with the two special clusters Πy and Πz form an instance sim-
ilar to Ik as used in the discussion of Theorem 9.5 (cf Figure 9.1). Hence,
intuitively, when considering such a clause-gadget by itself, it does not have
a pure Nash equilibrium. In order to make a clause-gadget stable, however,
literal clusters may be used. For this purpose, the cluster-distance between
each pair of corresponding literals is 1 and peers in Πz have a distance of
1.72 to all literal-peers. Furthermore, the distance between a clause-cluster
Πc
j and a literal-cluster depends on whether the corresponding literal ap-

pears in the clause. Specifically, if the positive literal xi appears in clause
Cj , xi ∈ Cj , the distance between Π1

i and Πc
j is small, i.e., only 1.48. Simi-

larly, if xi ∈ Cj , then d(Π0
i ,Π

c
j) = 1.48. And finally, if neither literal is in Cj ,

then there exists no short connection between the clusters, and the shortest
distance between peers in these clusters is via Πc.

The proof comprises two ingredients. First, we prove that if the underly-
ing SAT instance I is not satisfiable, then there exists no Nash equilibrium.
Towards this end, we show that in any Nash equilibrium two “neighboring”
clusters (clusters connected by a short link in GkI , such as two clause-clusters
in the same clause, a literal-cluster Π1

i to a clause-cluster Πc
j if xi ∈ Cj , or Πc

to all clause-clusters and literal-clusters, . . .) always establish links in both
directions between them. Between such close-by clusters, there are always
exactly two links, one in each direction. Furthermore, for every variable xi,
there is exactly one peer πz ∈ Πz that establishes a link to exactly either Π1

i

or Π0
i (but not both!), while no other peer in Πz links to these clusters.

From these lemmas, it then follows that because I is not satisfiable,
there must exist a clause Cj∗ for which the path from πz ∈ Πz to peers

in Πc
j∗ via any literal-peer has a length of at least d(Πz,Π

µ
i) +d(Πµ

i ,Π
1−µ
i) +

d(Π1−µ
i ,Πc

j∗) = 4.2, for µ ∈ {0, 1}. This path being long, it follows that it is
worthwhile for πz to build an additional link directly to some peer in Πc

j∗ or

even in Πb
j∗ instead. Based on these observations, we show that the subset

ofMk
I induced by peers in Πy, Πz, and the clause-peers of Cj∗ behaves simi-

larly as in instance Ik of Figure 9.1. That is, peers in Πy and Πz continue to
change their respective strategies forever, thus preventing the system from
stabilizing.

On the other hand, if the SAT instance I has a satisfying assignment
AI , we explicitly construct a set of pure strategies that constitute a Nash
equilibrium. In this strategy vector, one peer in Πz builds a direct link to
a peer in Π1

i if xi is set to true in AI and to a peer in Π0
i otherwise. Since

AI is a satisfying assignment, there must exist a path from Πz via a single
literal-cluster (i.e., without the additional detour of going from one literal-
cluster to the other) to peers in every cluster Πc

j . This path can be shown to
have length at most kε + d(Πz,Π

µ
i) + kε + d(Πµ

i ,Π
c
j) + kε = 3.2 + 3kε from

Πz via a literal-cluster to peers in every cluster Πc
j . It follows that in any

satisfied clause Cj , the achievable reduction in stretch costs at a peer in Πz

when connecting directly to clusters Πb
j or Πc

j is significantly smaller than in

90 CHAPTER 9. IMPACT OF SELFISH PLAYERS

an unsatisfied clause. Specifically, it can be shown that peers in Πy and Πz

are in a stable situation if one peer πy ∈ Πy connects to Πa
j and Πb

j of every
clause Cj , and no peer in Πz directly builds a link to any clause-peer. Since
AI is a satisfying assignment, peers in Πy and Πz are stable relative to all
clauses in the SAT instance.

Furthermore, we also prove that in our strategy vector, no other peer in
the network (i.e., peers in Πc, Πa

j , Πb
j , Πc

j , Π1
i , or Π0

i) has an incentive to
deviate from its strategy. For this final ingredient of the proof, the existence
of cluster Πc is essential, because it ensures that all helper peers are mutually
connected by optimal paths.

All in all, the p2p network induced by the metric space Mk
I has a pure

Nash equilibrium if and only if the underlying SAT instance I is satisfiable.
Hence, determining whether a given p2p network can stabilize is NP-hard.
Chapter 9.4.1 defines the construction of GkI (and consequently Mk

I) from
the SAT instance I. In Chapters 9.4.2 and 9.4.3, we will show that there
exists a Nash equilibrium in Mk

I if and only if I is satisfiable. Theorem 9.6
then follows from Lemmas 9.17 and 9.19, as well as the NP-hardness of SAT.
The following theorem and proof is due to Tovey [233]:

Theorem 9.7. Boolean satisfiability is NP-hard when restricted to instances
with 2 or 3 variables per clause and at most 3 occurrences per variable.

Proof. Consider a general 3-SAT instance. For each variable x which ap-
pears in more than three clauses perform the following procedure: suppose
x appears in k clauses. Create k new variables x1, ..., xk and replace the
ith occurrence of x with xi, i = 1, ..., k. Append the clause {xi ∨ xi+1} for
i = 1, ..., k − 1 and the clause {xk ∨ x1}. In the new instance the clause
{xi ∨ xi+1} implies that if xi is false, xi+1 must be false as well. The cyclic
structure of the clauses therefore forces the xi to have the same assignment,
and hence the new instance is satisfiable if the original one is. As the trans-
formation requires polynomial time, and as 3-SAT is NP-hard [68], the claim
follows.

9.4.1 The Construction of Mk
I

Let I be an instance of SAT expressed in conjunctive normal form (CNF),
in which each clause contains 2 or 3 variables. Without loss of generality,
we can assume that each variable in I appears in at most 3 clauses [233].
Furthermore, we can restrict our attention to those instances of SAT in which
each variable appears both as a positive and a negative literal at least once,
because otherwise, assigning a feasible value to this variable is trivial. The
set of clauses and variables of I is denoted by C and X , respectively. Further,
we write m = |C| and n = |X |. Given I, we construct a graph GkI =
(VI , EI) in which each node represents a peer of the underlying network.
Nodes are grouped into clusters of k peers and each cluster is illustrated as
a rectangular box in Figure 9.3. Within each cluster, the pairwise distance
between two peers is ε < (k(2n + 3m + 3))−2, and the distance between
two peers in neighboring clusters is given by the cluster-distance d(Πi,Πj)

9.4. COMPLEXITY OF NASH EQUILIBRIA 91

illustrated in Figure 9.3. The p2p network is then characterized by Mk
I ,

which is induced by the shortest path metric of GkI , i.e., the distance between
two peers corresponds to the length of the shortest path in GkI .

In more detail, GkI is defined as follows. The node-set VI consists of three
clusters of peers per clause Cj ∈ C, denoted as clause-clusters Πa

j , Πb
j , and Πc

j .

Also, we add a pair of literal-clusters Π0
i and Π1

i for each of the n variables,
with Π1

i representing the positive literal xi, and Π0
i representing the negative

literal xi. The set of clause-peers and literal-peers is denoted by CP and LP ,
respectively. Finally, there are three additional special clusters Πc, Πz, and
Πy. Call the union of Πc and all clusters in CP and LP top-layer clusters.
Peers in top-layer clusters are top-layer peers. The total number of peers N
in the network Mk

I is therefore N = k(2n + 3m + 3). Notice that N · ε is
smaller than (k(2n+ 3m+ 3))−1.

The pairwise distances between the peers in different clusters—as illus-
trated in Figure 9.3—are as follows. Let δ be an arbitrarily small constant
with δ > 10kε, and µ ∈ {0, 1}. For all πc ∈ Πc and πw ∈ CP ∪ LP , it holds
that d(πc, πw) = 1.2. For every Cj ∈ C, the following distances apply.

∀πy ∈ Πy, ∀πaj ∈ Πa
j : d(πy, π

a
j) = 1.96

∀πy ∈ Πy, ∀πcj ∈ Πc
j : d(πy, π

c
j) = 2.45

∀πz ∈ Πz, ∀πbj ∈ Πb
j : d(πz, π

b
j) = 2

∀πaj ∈ Πa
j , ∀πbj ∈ Πb

j : d(πaj , π
b
j) = 1.14

∀πy ∈ Πy, ∀πbj ∈ Πb
j : d(πy, π

b
j) = 2

∀πz ∈ Πz, ∀πaj ∈ Πa
j : d(πz, π

a
j) = 2.45

∀πz ∈ Πz, ∀πcj ∈ Πc
j : d(πz, π

c
j) = 2 + δ

∀πbj ∈ Πb
j , ∀πcj ∈ Πc

j : d(πbj , π
c
j) = 1

For every variable xi ∈ X , it holds that

∀π0
i ∈ Π0

i , ∀π1
i ∈ Π1

i : d(π0
i , π

1
i) = 1

∀πz ∈ Πz, ∀πµi ∈ Πµ
i : d(πz, π

0
i) = d(πz, π

1
i) = 1.72.

.
Furthermore,

∀Cj ∈ C, xi ∈ Cj∀π1
i ∈ Π1

i , ∀πcj ∈ Πc
j : d(π1

i , π
c
j) = 1.48

∀Cj ∈ C, xi ∈ Cj∀π0
i ∈ Π0

i , ∀πcj ∈ Πc
j : d(π0

i , π
c
j) = 1.48.

Finally, the distance between any two peers πy ∈ Πy and πz ∈ Πz is
d(πy, πz) = 1−2δ. All distances not explicitly defined follow from the shortest
path metric induced by the above definitions.

Intuitively, the idea of the construction is the following. Each clause
Cj ∈ C is represented by a gadget consisting of the two clusters Πy, Πz, as

92 CHAPTER 9. IMPACT OF SELFISH PLAYERS

well as the clause-clusters Πa
j , Πb

j , and Πc
j . By itself, each such gadget is

reminiscent of the construction shown in Figure 9.1. Specifically, this implies
that the sub-network induced by each such clause-gadget does not have a
pure Nash equilibrium when considered independently from the rest of the
network.

In order to render a clause-gadget stable, literal-peers can be used. In
particular, it can be shown that for µ ∈ {0, 1}, the peers in every literal-
cluster Πµ

i construct links to those (at most two) clause-clusters Πc
j in whose

clause the literal occurs. Based on this and other structural properties of
Nash equilibria in Mk

I , it can further be shown that in a Nash equilibrium,
there is exactly one link from cluster Πz to each variable xi ∈ X , i.e., one
peer in Πz connects to a peer in either Π0

i or Π1
i for all xi ∈ X .

Consider a clause Cj . If there is a peer πz ∈ Πz that connects to at least
one literal-cluster that is directly connected to Πc

j , the length of the path
from πz to peers in Πc

j via this literal-cluster is at most kε + d(Πz,Π
µ
i) +

kε + d(Πµ
i ,Π

c
j) + kε = 3.2 + 3kε. In this case, the detour from πz to Πc

j

via some “satisfying” literal-cluster Πµ
i —while being suboptimal compared

to the direct connection—is relatively small. Specifically, it is small enough
to ensure that no peer in Πz has an incentive to construct an additional
direct link to Πb

j or Πc
j . Once peers in Πz have no further need to establish

direct links to a clause-peer of Cj , the best possible strategy of peers in Πy

becomes fixed, too. In other words, this satisfying literal helps in stabilizing
the clause-gadget.

Conversely, if there is a clause Cj for which no peer in Πz connects to
a satisfying literal-cluster, there exists no efficient detour. Specifically, the
length of the path from πz ∈ Πz to πcj ∈ Πc

j via a literal-cluster is at least
4.2, including the distance between the positive and negative literal-cluster of
the variable. The increased length of the detour renders the resulting stretch
from Πz to Πc

j too large, and it becomes worthwhile for πz ∈ Πz to construct

direct links to Πc
j , and even to Πb

j . That is, in a sense, the network induced
by the unsatisfied clause Cj becomes independent of the remainder of the
network and therefore does not stabilize.

Finally, the special cluster Πc ensures that the shortest path in GkI (and
hence the distance inMk

I) between two top-layer peers is small. In fact, it can
be shown that there are links in both directions from every top-layer cluster
to Πc. This implies that all top-layer clusters are connected to one another
almost optimally (i.e., with low stretch) in every Nash equilibrium, thus
facilitating the proof that such an equilibrium exists in case I is satisfiable.
We end the section with a series of lemmas that capture structural properties
of Mk

I .

Lemma 9.8. Consider two peers πg and π′g in an arbitrary cluster Πg. In
a Nash equilibrium, there exists a path from πg to π′g of length at most kε.

Proof. Because the distance between πg and π′g is ε, it is easy to see that
the shortest path between these two nodes must be located entirely in Πg.
Because the distance between each pair of peers in a cluster is ε and there
are k peers in the cluster, the claim follows.

9.4. COMPLEXITY OF NASH EQUILIBRIA 93

Lemma 9.9. Consider two arbitrary clusters Πg and Πh. In a Nash equi-
librium, there is at most one peer πg ∈ Πg that has a link to a peer in Πh.

Proof. Assume for contradiction that there are two nodes πg and π′g that
maintain links to peers in Πh. Then, π′g can reduce its cost by dropping its
link. Doing so, the stretches to each peer in the network can increase by at
most 2kε. By the definition of ε, it holds that 2Nkε < α and hence, dropping
the link is worthwhile.

Based on these two lemmas, we can go on to prove more elaborate prop-
erties.

Lemma 9.10. Let Πg and Πh be two clusters with cluster distance at most
d(Πg,Πh) ≤ 1.48. In any Nash equilibrium, there is exactly one peer πg ∈ Πg

that has a link to a peer in Πh.

Proof. By Lemma 9.9, there cannot be more than one peer in Πg having a
link to Πh. It therefore remains to show that at least one link exists. We
divide the proof in two parts and begin by showing that the claim holds for all
pairs of clusters with cluster distance d(Πg,Πh) ≤ 1.2. In a second step, we
prove the claim for pairs of clusters with cluster distance d(Πg,Πh) = 1.48,
which suffices because there are no cluster distances between 1.2 and 1.48 in
GkI .

Consider any two clusters in the network Mk
I with cluster distance at

most 1.2. It follows from the construction of GkI that the shortest path
between peers in these clusters via a third cluster has a length of at least 2.2
(e.g., from Π0

i via Π1
i to Πc). In other words, if there is no direct connection

between the two clusters, πg has a stretch of at least 2.2/1.2 to each peer in
Πh. Because 2.2k

1.2
> α+k(1 + 2kε), it is beneficial for πg to establish a direct

link to the other cluster.
For the second part of the proof, consider pairs of clusters with cluster

distance d(Πg,Πh) = 1.48. Specifically, we need to show the existence of a
link in each direction between clusters Πc

j and Π1
i , if xi ∈ Cj , or between

Πc
j and Π0

i , if xi ∈ Cj . The shortest indirect connection between two such
clusters has a length of at least 2.4 (via cluster Πc) and hence, the cumulated
stretch to all peers in the respective cluster without a direct link is 2.4k

1.48
>

α+ k(1 + 2kε). That is, peers in both clusters decrease their cost by paying
for this direct link.

Lemma 9.10 implies that within a clause, neighboring clause-clusters (i.e.,
Πa
j ↔ Πb

j and Πb
j ↔ Πc

j , respectively) are connected in both directions in any

Nash equilibrium. The same holds for corresponding literal-cluster Π1
i and

Π0
i , as well as for a literal-cluster Π1

i (or Π0
i) and a Πc

j if xi ∈ Cj (or xi ∈ Cj).
Also, there are links in both directions from any top-layer (clause or literal)
cluster to Πc and vice versa. All in all, this implies that in a Nash equilibrium,
every pair of top-layer peers is connected almost optimally, i.e., with stretch
of less than 1 + 2kε. The value ε being smaller than (k(m + n + 3))−2, this
stretch is virtually as good as 1. Finally, there are also links between Πy and

94 CHAPTER 9. IMPACT OF SELFISH PLAYERS

Πz in any Nash equilibrium. In the sequel of the proof, we use the fact that
these “short” links are available in any Nash equilibrium without particular
mention.

Lemma 9.11. In a Nash equilibrium, there is exactly one peer πy ∈ Πy that
has a link to a peer in Πa

j , for all Cj ∈ C, and vice versa.

Proof. Consider a specific Πa
j . If there exists no direct link from Πy to Πa

j ,

the stretch of a peer πy ∈ Πy to each peer in Πa
j is at least 3.14

1.96
. Because for

small enough ε, we have 3.14k
1.96

> α + k(1 + 2kε), it is always worthwhile for
some πy to build an additional link to Πa

j . Clearly, the argument also holds
for the opposite direction.

Lemma 9.12. Assume that there is a link between Πz and at least one literal-
cluster of every variable xi ∈ X and that there is a link between Πy and Πa

j ,
for all Cj ∈ C. Assume further that there are links in both directions between
clusters with cluster distance at most 1.48. Finally, assume that all peers are
connected within their cluster with a path of length at most kε. It holds for
all j that the shortest path from a peer πy ∈ Πy to a peer in V \(Πa

j ∪Πb
j∪Πc

j)

is not via Πa
j , Πb

j, or Πc
j, even when directly connecting to such a cluster.

The same holds for πz ∈ Πz.

Proof. Recall that by assumption there exists a link from Πy to Πa
j (for every

Cj ∈ C) and Πz. Hence, connecting to Πb
j or Πc

j clearly cannot reduce the
stretch to peers in Πz, Πc, and any Πa

j′ , j 6= j′. Furthermore, the distance in

the topology to any clause-peer in Πb
j′ and Πc

j′ via Πa
j′ is at most 3.1 + 3kε

and 4.1 + 4kε, respectively, which is strictly smaller than 2 + 2 · 1.2 = 4.4,
which is the shortest achievable distance via Πb

j or Πc
j . Finally, the path from

πy ∈ Πy to any literal-peer in Πµ
i has a length of at most 3.72 − 2δ + 3kε.

This is because there exists a link between Πy and Πz, and between Π0
i and

Π1
i , and because there is a link from Πz to either Π0

i or Π1
i . On the other

hand, the path from πy ∈ Πy to a literal-peer via Πb
j or Πc

j has a length of
at least 2.45 + 1.48 = 3.93. Similar arguments show that the same holds for
πz ∈ Πz.

9.4.2 Satisfiable Instances
In this section, we show that if I has a satisfying assignment AI , then there
exists a Nash equilibrium in Mk

I . For this purpose, we explicitly construct
a set of strategies s, which we prove to constitute a Nash equilibrium. Let
AI(xi) be the assignment of xi in AI , i.e.,

AI(xi) :=

{
1 , xi is set to 1 in AI
0 , xi is set to 0 in AI .

(9.1)

Furthermore, we define in every cluster Πg a single leader peer, which we
denote by π̂g. The role of this leader-peer is to construct all inter-cluster
links going from this cluster to peers located in other clusters. The strategy

9.4. COMPLEXITY OF NASH EQUILIBRIA 95

cluster. Formally, the strategysg for a non-leader peeřπg ∈ Πg \ {π̂g} is

sg := {π̂g}.

For each leader-peer, we define the set of strategiess as follows:

sy := Πy ∪ {π̂z} ∪
⋃

Cj∈C
{π̂a

j , π̂b
j}

sz := Πz ∪ {π̂y} ∪
⋃

xi∈X
{π̂AI(xi)

i }

sc := Πc ∪
⋃

xi∈X
{π̂0

i ∪ π̂1
i } ∪

⋃
Cj∈C

{π̂a
j ∪ π̂b

j ∪ π̂c
j}

sa
j := Πa

j ∪ {π̂c, πy, π̂
b
j} , ∀Cj ∈ C

sb
j := Πb

j ∪ {π̂c, π̂
a
j , π̂c

j} , ∀Cj ∈ C

sc
j := Πc

j ∪ {π̂c, π̂z, π̂
b
j} ∪

⋃
xµ

i ∈Cj

{π̂µ
i } , ∀Cj ∈ C

sµ
i := Πµ

i ∪ {π̂c, π̂z, π̂
1−µ
i } ∪

⋃
xµ

i ∈Cj

{π̂c
j} ,∀xi ∈ X

1−2δ

1.96 δ2+

Π y Π z

Π
1

a

Π
1

c

Π c

Π
1

b

Π
m

a
Π

m

b Π
m

c

Π
1

0 Π
n

1

1

1.72

1.48
1

1.14 1

2

1.2

Figure 5: An example instanceGk
I with the topology resulting from strategys. Within each cluster, the peers

are connected as a star. Directed arrows between clusters indicate inter-cluster links between cluster-leaders.
Cluster-leader̂πz connects to those leaders of literal-peers that appear in the satisfying assignmentAI . In the
example,AI setsx1 = 0 andxn = 1.

Strategys is illustrated in Figure 5. Our goal is to show thats constitutes a Nash equilibrium. The topology

resulting from strategys contains all “short” links, i.e., links between cluster leaders of clusters that have a

distance of at most1.48 (cf Lemma A.3). Additionally, peer̂πy builds links to clause-cluster leadersπ̂a
j andπ̂b

j

26

Figure 9.4: An example instance GkI with the topology resulting from strat-
egy s. Within each cluster, the peers are connected as a star. Directed
arrows between clusters indicate inter-cluster links between cluster-leaders.
Cluster-leader π̂z connects to those leaders of literal-peers that appear in the
satisfying assignment AI . In the example, AI sets x1 = 0 and xn = 1.

of the remaining non-leader peers π̌g ∈ Πg \ {π̂g} is to connect to the unique
leader peer within their cluster. Formally, the strategy sg for a non-leader
peer π̌g ∈ Πg \ {π̂g} is sg := {π̂g}. For each leader-peer, we define the set of
strategies s as follows:

sy := Πy ∪ {π̂z} ∪⋃Cj∈C {π̂aj , π̂bj}
sc := Πc ∪⋃xi∈X {π̂0

i ∪ π̂1
i } ∪

⋃
Cj∈C {π̂

a
j ∪ π̂bj ∪ π̂cj}

scj := Πc
j ∪ {π̂c, π̂z, π̂bj} ∪

⋃
x
µ
i ∈Cj {π̂

µ
i }, ∀Cj ∈ C

sµi := Πµ
i ∪ {π̂c, π̂z, π̂1−µ

i } ∪⋃xµi ∈Cj {π̂cj}, ∀xi ∈ X
sz := Πz ∪ {π̂y} ∪⋃xi∈X {π̂AI (xi)

i }
saj := Πa

j ∪ {π̂c, πy, π̂bj}, ∀Cj ∈ C
sbj := Πb

j ∪ {π̂c, π̂aj , π̂cj}, ∀Cj ∈ C

Strategy s is illustrated in Figure 9.4. Our goal is to show that s con-
stitutes a Nash equilibrium for AI . The topology resulting from strategy s
contains all “short” links, i.e., links between cluster leaders of clusters that
have a distance of at most 1.48 (cf Lemma 9.10). Additionally, peer π̂y builds
links to clause-cluster leaders π̂aj and π̂bj for all Cj ∈ C. On the other hand,
leaders π̂aj and π̂cj have a link to π̂y and π̂z, respectively. Most importantly,
however, for every variable xi ∈ X , leader-peer π̂z maintains a link to the

literal-peers π̂
AI (xi)
i that are used in the satisfying assignment. Note that

96 CHAPTER 9. IMPACT OF SELFISH PLAYERS

because in s, peer π̂z has exactly one connection to a literal-peer of every
variable, we can apply Lemma 9.12. That is, no peer in clusters Πy and Πz

can reduce its stretch to any peer V \ (Πa
j ∪ Πb

j ∪ Πc
j) by connecting to one

of the clause-peers of clause Cj . Finally, note that non-leaders are directly
connected to their cluster leader, and cluster leaders maintain direct links to
each peer in their cluster.

The next three lemmas prove that no peer has an incentive to single-
handedly deviate from strategy s. In the proofs, we use the notation ∆i(ψ)
to denote the change in cost when peer πi changes its strategy according to
action ψ, ψ being clear from the context. Specifically, if ∆i(ψ) ≥ 0, peer
πi has no incentive to perform action ψ because doing so would increase its
cost.

We begin with a lemma that shows that no peer can unilaterally benefit
from changing its links within its own cluster.

Lemma 9.13. In s, no peer in an arbitrary cluster Πg has an incentive to
change its strategy within the cluster, i.e., to add, replace, or remove links to
peers in Πg.

Proof. The cluster leader π̂g cannot remove any link because the topology
would become disconnected without it. Next, consider a non-leader π̌g. If π̌g
removes its link to the cluster-leader, it disconnects itself from the network.
Adding one or more new link to a non-leader costs α per link, while the
resulting stretch reduction per link is 2ε

ε
− 1 = 1 only. Finally, replacing

the link to the leader with a link to another non-leader strictly increases the
stretch to all but one peer in the network and therefore cannot be beneficial.

Based on Lemma 9.13, we can regard the topology within each cluster in s
as fixed. It remains to show that no peer has an incentive to add, remove, or
replace its inter-cluster links. As shown next, peers in Πy cannot unilaterally
reduce their costs in s.

Lemma 9.14. No peer in Πy has an incentive to change its strategy, given
that all other peers follow strategy s.

Proof. By Lemma 9.13, no peer πy ∈ Πy has an incentive to change its
intra-cluster links. Furthermore, π̂y does not benefit from switching its link
from a leader peer to a non-leader peer, because this would only decrease the
stretch to that particular peer, while increasing the stretch to all other peers
(at least) in this cluster. It follows from Lemmas 9.10 and 9.11 that π̂y must
keep its links to π̂aj and π̂z. We now show that no peer in Πy can reduce this
cost by deviating from its strategy in any other way.
Case 1: Some π̌y or π̂y adds one or more additional links: in the topology
resulting from s, every peer in Πy is connected with stretch at most 1 + 2ε
with all peers except from peers in Πc

j (for all Cj ∈ C) and peers in those
literal-clusters to which π̂z does not have a direct connection. With any
additional link, a peer in Πy can reduce its stretch to peers in exactly one

9.4. COMPLEXITY OF NASH EQUILIBRIA 97

of these clusters only. Hence, every additional link would increase the peer’s

cost: ∆y(+) ≥ − k(4.72+ε)
3.72

+ α+ k > 0.
Observe that because non-leader peers π̌y ∈ Πy do not have inter-cluster

links, Case 1 in combination with Lemma 9.13 implies that no π̌y can benefit
from changing its strategy.
Case 2: π̂y changes its link from π̂bj to π̂cj : while the stretch to peers in Πc

j

is reduced, the stretch to peers in Πb
j increases. The relative cost difference

is ∆y(π̂bj→ π̂cj) ≥ − k(3+ε)
2.45

+ (1.96+1.14)k
2

> 0.

Case 3: π̂y removes its link from π̂bj : by removing such a link, π̂y can save

the link’s cost α. On the other hand, the stretch to both Πb
j and Πc

j increase.
Specifically, the shortest connection to peers in these clusters is now via π̂aj
and π̂bj , i.e., ∆y(−π̂bj) ≥ −α−k(1+ε)− k(3+ε)

2.45
+ (1.96+1.14)k

2
+ (1.96+1.14+1)k

2.45
>

0.
The only other thing that could potentially lead to an advantage for π̂y is

to replace a link π̂bj by some leader peer in Πµ
i to which π̂z is not connected,

formally µ 6= AI(xi). Doing so clearly increases the stretch to peers in Πb
j

and Πc
j , but like in Case 3, the shortest connection between π̂y to peers

in Πc
j is via π̂aj and π̂bj . In particular, this path has a length of at most

4.1 + ε, whereas the shortest path via a literal-cluster has a length of at least
1− 2δ+ 1.72 + 1.48 = 4.2− 2δ, which is larger. Hence, replacing one or more
links to π̂bj by links to literal-peers reduces to Cases 1 and 3, respectively,
and therefore cannot be worthwhile. Finally, no combination of the above
cases can reduce the cost of any peer in Πy either.

Lemma 9.15. No peer in Πz has an incentive to change its strategy, given
that all other peers follow strategy s.

Proof. Again, we discuss the various cases and show that none of them is
beneficial for a peer in Πz. Recall that by Lemma 9.12, connecting to any
clause-peer cannot improve the stretch to any other peer outside this clause.
Furthermore, because AI is a satisfying assignment, the topology of s con-
tains a path of length at most ε + d(Πz,Π

µ
i) + d(Πµ

i ,Π
c
j) + ε = 3.2 + 2ε

between peers in Πz and peers in Πc
j , for every clause Cj ∈ C. Consequently,

connecting to a so far unconnected literal-peer cannot decrease the stretch
to any clause-peer πj ∈ CP in the system.

It follows from Lemma 9.13 that no peer πz ∈ Πz has an incentive to
change its intra-cluster links. Also, as shown in the proof of Lemma 9.14,
no peer can benefit from connecting to a non-leader peer in the network,
because this bears strictly higher costs than connecting to the corresponding
leader peer of the same cluster. Hence, we only need to verify the cases in
which peers in Πz connect to leader peers.

In the following, we will discuss the various cases how peers in Πz could
improve their situation and derive that none of them is actually beneficial.
Case 1: Some peer in Πz adds an additional link to π̂bj : the reduction of the

stretches to peers in Πb
j and Πc

j resulting from the additional link does not

outweigh the link’s cost. Specifically, we have ∆z(+π̂
b
j) ≥ − k(3−2δ+2ε)

2
+ k−

98 CHAPTER 9. IMPACT OF SELFISH PLAYERS

k(3.2+2ε)
2+δ

+ 3k
2+δ

+ α ≥ k(4δ + 2δ2) > 0. Notice that in the second term, the

stretch to each of the k peers in Πb
j is at least 1, and in the third term, the

distance 3.2 + 2ε holds because AI is a satisfying assignment.
Case 2: Some peer in Πz adds an additional link to π̂cj : again, the stretches

to Πb
j and Πc

j are not reduced enough to render the additional link worthwhile.

In fact, the stretch to peers in Πb
j is not reduced by the addition of this link,

nor is the stretch to any other peer in the network except from peers in Πc
j

(Lemma 9.12). It follows that ∆z(+π̂
c
j) ≥ − k(3.2+2ε)

2+δ
+k+α = k(1.6δ−2ε) >

0.
Case 3: Some peer in Πz adds an additional link to π̂aj : clearly, this option
is even worse than Cases 1 and 2.
Case 4: Some peer in Πz adds an additional link to π̂µi : adding a link to a
literal-cluster that is not used in AI reduces the stretch to peers in this cluster
only, because there is already a short connection from Πz to every Πc

j through

the literal-clusters Π
AI (xi)
i . Hence, ∆z(+π̂

µ
i) ≥ − k(2.72+2ε)

1.72
+ k + α > 0.

Observe that because non-leader peers π̌z ∈ Πz do not have inter-cluster
links, Cases 1 to 4 in combination with Lemma 9.13 implies that no π̌z can
benefit from changing its strategy.

Case 5: π̂z replaces some π̂
AI (xi)
i by π̂

1−AI (xi)
i : again, the new link to

a previously unconnected literal-cluster cannot decrease the stretch to any
clause-peer, because AI is a satisfying assignment and π̂z already had a path

of length 3.2 to every π̂cj via some π̂
AI (xi)
i . Furthermore, by a symmetry

argument, the stretch cost gained by adding the link to π̂
1−AI (xi)
i is lost by

removing the link to π̂
AI (xi)
i . Thus, ∆y(π̂

AI (xi)
i → π̂

1−AI (xi)
i) ≥ 0.

Case 6: π̂z removes or replaces some π̂
AI (xi)
i : if π̂z does not have a connec-

tion to any literal-cluster of a variable xi, the resulting stretch to each peer

in these two clusters is at least 3+δ+1.48
1.72

. Because k(4.48+δ)
1.72

> k(1 + 2ε) + α,
it follows that π̂z must maintain at least one link to such a peer.

Any other possible strategy deviation can either be reduced to one of the
above five cases or to Lemma 9.10.

Having shown that peers in Πy and Πz have no incentive to deviate from
s, we have to prove that no other peer can improve its situation either.

Lemma 9.16. No top-layer peer can benefit from changing its strategy, given
that all other peers follow s.

Proof. First, by Lemma 9.13, it holds that no peer can improve its situation
by adding, replacing, or removing a link within its cluster. Also, no peer can
benefit from connecting to a non-leader, as opposed to the leader peer in the
same cluster. Both claims can be proven with exactly the same argument as
in the proof of Lemma 9.14.

It is important to observe that in s, all top-layer peers are almost opti-
mally connected with each other, either via the central cluster Πc or because
their respective clusters are neighbors in the graph. More specifically, the
stretch between any pair of top-layer peers in s is at most 1+2ε (via the own

9.4. COMPLEXITY OF NASH EQUILIBRIA 99

cluster leader, π̂c, and the other cluster leader). Besides removing the final 2ε
from these small stretches, adding additional links can only help in reducing
the stretches to peers in Πy and Πz. By Lemma 9.10, no link between cluster
leaders whose clusters have a distance of less than 1.48 can be removed from
s. Hence, the possible strategy deviations by other nodes is actually limited.
Peers in Πa

j : A peer π̂aj ’s link to π̂y cannot be removed by Lemma 9.11.
For every peer πaj ∈ Πa

j , it further holds that building an additional link to

π̂z is too costly, ∆a
j (+π̂z) ≥ − k(2.96−2δ+2ε)

2.45
+ k + α > 2kNε. Hence, even if

this additional link could reduce all other less than N stretches to top-level
peers by the remaining 2ε, the cost of an additional link would still be too
high.
Peers in Πb

j : Peer π̂bj does not have a link longer than 1.48 in s and hence,
cannot remove any of them. We show that neither building a link to π̂y
nor to π̂z decreases the cost of any peer in Πb

j . In the first case, we have

∆b
j(+π̂y) ≥ − k(1.96+1.14+2ε)

2
+k− k(3+δ+2ε)

2
+ k(3−2δ)

2
+α > 2kNε. As for the

second case, ∆b
j(+π̂z) ≥ − k(1.96+1.14+2ε)

2
+ k(3−2δ)

2
− k(3+δ+2ε)

2
+k+α > 2kNε.

Clearly, building both links is even less worthwhile.
Peers in Πc

j : The potential strategy deviations that could decrease peer
π̂cj ’s costs are to add a link to π̂y, to remove its link from π̂z, or to re-
place the link to π̂z by a link to π̂y. However, none of these alterations are
beneficial for π̂cj (or for any non-leader peer in Πc

j in the case of link ad-

dition). First, it holds that ∆c
j(+π̂y) ≥ − k(3−δ+2ε)

2.45
+ k + α > 2kNε and

∆c
j(−π̂z) ≥ −α−k(1 + 2ε)− k(3−δ+2ε)

2.45
+ 3.2k

2+δ
+ 4.1k

2.45
> 2kNε. Also, switching

the link from π̂z to π̂y is not helpful, ∆c
j(π̂z→ π̂y) ≥ 3.2k

2+δ
− k(3−δ+2ε)

2.45
> 2kNε.

Peers in Πµ
i : Each leader of a literal-cluster maintains a link to π̂z, and

we show that they (as well as any non-leader peer in these clusters) do not
have an incentive to change that strategy. It is clear that neither adding a
link to π̂y nor switching from π̂z to π̂y can be beneficial. In the first case,
the stretch is reduced by at most 2ε by the additional link, which does not
render the link cost α worthwhile. In the second case, the stretch is strictly
increased. If π̂µi removes its link to π̂z and connects via its neighboring
literal-cluster, the stretches to both Πy and Πz increase. Particularly, we

have ∆µ
i (−π̂z) ≥ −α− k(1 + 2ε) + 2.72k

1.72
+ k(3.72−2δ)

2.72−2δ
> 2kNε.

Peers in Πc: Finally, peers in Πc are connected with stretch at most 2ε to
all peers in the network. To top-clusters, the connection is via links shorter
than 1.48. As for the remaining two clusters, it is connected to π̂z via one of
the literal-clusters and to π̂y via some π̂aj . By the definition of ε and α, it is
clear that no peer in Πc can improve its strategy.

By combining Lemmas 9.14, 9.15, and 9.16, we know that no peer in the
network has an incentive to change its strategy. Hence, s constitutes a pure
Nash equilibrium.

Lemma 9.17. If I is satisfiable, there exists a pure Nash equilibrium inMk
I .

100 CHAPTER 9. IMPACT OF SELFISH PLAYERS

9.4.3 Non-satisfiable Instances
It remains to prove the other direction, that is, there exists no pure Nash
equilibrium in the network if the underlying SAT instance I has no satisfying
assignment. We proceed by defining structural properties that any Nash
equilibrium must fulfil, and show that the intersection of all these properties
is empty. Besides the basic properties derived in Chapter 9.4.1, an important
characteristic of any Nash equilibrium is the fact that exactly one peer in Πz

connects to exactly one literal-peer (either in Π0
i or Π1

i) for every variable
xi ∈ X .

Lemma 9.18. In any Nash equilibrium, exactly one peer in Πz connects to
either a peer π1

i ∈ Π1
i or π0

i ∈ Π0
i , for every xi ∈ X .

Proof. We have already shown in Lemma 9.15 (Case 6) that there must be
a peer πz ∈ Πz that has at least one link to a literal-peer of every variable.
Furthermore, we know by Lemma 9.9 that no other peer in Πz connects to the
same cluster as πz. Hence, we only need to show that in a Nash equilibrium
no two peers in Πz connect to both literal-clusters of the same variable.

Assume for the sake of contradiction that peers πz and π′z (potentially
πz = π′z) maintain links to both Π0

i and Π1
i for some xi ∈ X . In this case, it

would be worthwhile for one of the two peers to remove its link and replace
it with a link to some peer in Πc

j if this link does not already exist. By the
definition of our special SAT instance and the construction of GI , we know
that of the two literal-clusters, one, say Πµ

i , has clause-cluster Πc
j at distance

1.48, and the other literal-cluster, say Π1−µ
i , has one or two such close-by

clause-clusters. Let π′z be the peer that connects to cluster Πµ
i (otherwise,

replace πz with π′z for the remainder of the proof).
Assume for the first case that the length of the shortest path from π′z to

this Πc
j without the link via Πµ

i is 3.2 or longer. In this case, the change in
π′z’s costs when switching from its link to literal-cluster Πµ

i that has only a
single close-by clause-cluster Πc

j directly to a peer in Πc
j is ∆z(π

µ
i → πcj) ≤

+ k(2.72+2kε)
1.72

− 3.2k
2+δ

+ k(2+δ+2kε)
2+δ

< 0. If the length of the path from πz to

Πc
j is strictly shorter than 3.2, then the link to Πµ

i can simply be dropped,

resulting in a gain of ∆z(−πµi) ≤ −α − k + k(1.72+2kε)
1.72

+ k(2.72+2kε)
1.72

< 0.
Hence, π′z is always better off not connecting to a literal-cluster if πz already
connects to a literal-cluster. From this, the claim follows.

Lemma 9.18 is an important ingredient for the remainder of the proof,
because it gives us a one-to-one correspondence between the connections of
Πz to literal-clusters, and an assignment of variables in the SAT instance I.
Also, note that when combining Lemma 9.18 with Lemma 9.12, it follows
that in a Nash equilibrium, peers in Πy and Πz cannot reduce their stretch
to any peer in V \ {Πa

j ∪ Πb
j ∪ Πc

j} by connecting to one of the clause-peers
of clause Cj .

Lemma 9.19. If I is non-satisfiable, there exists no pure Nash equilibrium
in Mk

I .

9.4. COMPLEXITY OF NASH EQUILIBRIA 101

Proof. By Lemma 9.18, exactly one peer in Πz connects to either the posi-
tive or negative literal-cluster of every variable xi. Because there exists no
satisfying assignment, it follows that regardless of how Πz is connected to the
literal-clusters, there must exist at least one clause Cj∗ that is “not satisfied”.
In the resulting topology, this means that the path from a peer in Πz to a
clause-peer in Πc

j∗ of this unsatisfied clause via any literal-cluster must be of

length at least d(Πz,Π
µ
i) + d(Πµ

i ,Π
1−µ
i) + d(Π1−µ

i ,Πc
j∗) = 4.2. Particularly,

every such path must include the additional distance of 1 between x1
i and

x0
i . In the sequel, we consider this unsatisfied clause Cj∗ in more detail.

First, we show that in a Nash equilibrium, no peer πy ∈ Πy establishes
a link to Πc

j∗ . We distinguish two cases. In the first case, if some peer in

Πy already has a link to Πb
j∗ , then the cost reduction for πy when omitting

its link to Πc
j∗ is ∆y(−πcj∗) ≤ −α − k + k(3+2kε)

2.45
< 0. In the other case,

the cost reduction when switching the link from Πc
j∗ to a peer in Πb

j∗ is at

least ∆y(πcj∗→πbj∗) ≤ − k(3−2δ)
2

+ k(3+2kε)
2.45

< 0. That is, in either case it is
beneficial for πy not to connect directly to Πc

j∗ .

For the next step, we establish that in any Nash equilibrium, exactly
one peer πz ∈ Πz connects to either a peer in Πb

j∗ or in Πc
j∗ . To see this,

assume that no peer in Πz establishes any links to peers in the two clusters.
In this case (because there is no link from Πy to Πc

j∗ , and because Cj∗ is

not satisfied), the sum of the stretches to peers in Πc
j∗ is at least k(4−2δ)

2+δ
>

k(1 + 2kε) + α. That is, πz ∈ Πz can reduce its cost by connecting to πcj∗ .

It remains to show that no peer in Πz connects to Πa
j∗ , and particularly,

that no two peers in Πz simultaneously connect to both Πb
j∗ or Πc

j∗ . Because

there is at least one link from Πz to either Πb
j∗ or Πc

j∗ , it follows that a
link to Πa

j∗ can only reduce the stretch to peers in this particular cluster.
However, the incurred cost exceeds the savings due to the reduced stretch,

i.e., ∆z(+π
a
j∗) = − k(2.96−2δ+2kε)

2.45
+α+ k > 0. For the last case, assume that

two peers πz and π′z (potentially the same) connect to both Πb
j∗ and Πc

j∗ ,
respectively. Then, π′z has an incentive to drop its link to Πc

j∗ : ∆z(−πcj∗) =
k(3+2kε)

2+δ
− k − α < 0. Hence, in any Nash equilibrium, there is exactly one

link from Πz to either Πb
j∗ or Πc

j∗ , but not to both.

Studying the above rules, it can be observed that there remain only four
possible sets of strategies for peers in Πy and Πz that could potentially result
in a pure Nash equilibrium. The four cases can be distinguished by whether
or not a peer in Πy directly connects to Πb

j∗ , and by whether a peer in Πz

connects to Πb
j∗ or Πc

j∗ .

Case 1: Some peer πz ∈ Πz connects to πbj∗ : in this case, some peer πy ∈ Πy

has an incentive to add a link to a peer in Πb
j∗ , because this significantly

reduces its stretches to peers in Πb
j∗ and Πc

j∗ . Specifically, πy could reduce its

cost by at least ∆y(+πbj∗) ≤ − k(3−2δ)
2
− k(4−2δ)

2.45
+α+k(1+2kε)+ k(3+2kε)

2.45
< 0.

Case 2: Peers πz ∈ Πz and πy ∈ Πy connect to Πb
j∗ : in this case, the

peer πz can profit from switching its link to a peer in Πc
j∗ . Specifically,

102 CHAPTER 9. IMPACT OF SELFISH PLAYERS

∆z(π
b
j∗→πcj∗) ≤ − 3k

2+δ
+ k(3−2δ+2kε)

2
< 0.

Case 3: Some peer πz ∈ Πz connects to Πc
j∗ : unlike in the previous case,

πz prefers switching its link from Πc
j∗ to a peer in Πb

j∗ in the absence of a

link from Πy to Πb
j∗ . By doing so, it can reduce its cost by ∆z(π

c
j∗→πbj∗) ≤

k(3+2kε)
2+δ

− k(3+δ)
2

= k(−5δ − δ2 + 4kε) < 0.

Case 4: Some peer πz ∈ Πz connects to Πc
j∗ and some peer πy ∈ Πy connects

to Πb
j∗ : in this configuration, peer πy benefits from removing its link to Πb

j∗ .

The decrease of its costs is ∆y(−πbj∗) < −α− k + k(3.1+2kε)
2

< 0.
Finally, since none of these four cases is a Nash equilibrium, the proof is
concluded.

9.5 Concluding Remarks

The analysis of our locality game reveals that the efficiency of p2p topologies
can suffer if peers act selfishly. Moreover, our results indicate that topolo-
gies may degrade more severely when selfish peers value maintenance cost
relatively higher than latency costs. Finally, it has been shown that it is gen-
erally a hard problem to decide whether a p2p system can stabilize if peers
select their neighbors in a selfish manner.

So far, we did not conduct any measurement studies to verify whether
such phenomena also exist in reality. Many theoretic questions are left for
future research as well. For instance, it would be interesting to know whether
incentive mechanisms can be designed such that the resulting topologies have
desirable properties, e.g., are hypercubic or pancake networks. Some of our
assumptions should also be weakened; e.g., a peer may not have complete
knowledge of the other peers’ states. Finally, we have not investigated how
optimal topologies (with respect to our social cost function) can be computed,
and approximate or mixed Nash equilibria have not been considered yet
either.

Chapter 10

Impact of Malicious Players

The last chapter has investigated the effects of selfishness in unstructured
peer-to-peer networks. However, a p2p system is also threatened by other
forms of non-cooperative behavior. In the following, we will extend the game-
theoretic framework to take malicious behavior into account. For instance,
a malicious player may seek to harm the network, in order to prevent the
unlawful distribution of a copyrighted movie.

To study the impact of malicious players on a given system formally, we
introduce the Price of Malice of selfish systems. The Price of Malice is a
ratio that expresses how much the presence of malicious players deteriorates
the social welfare of a system consisting of selfish players. More technically,
the Price of Malice is the ratio between the social welfare or performance
achieved by a selfish system containing a number of Byzantine1 players, and
the social welfare achieved by an entirely selfish society.

It is interesting to compare the Price of Malice with the notion of the
Price of Anarchy. As described in Chapter 9, the Price of Anarchy captures
the degradation of a socially optimal performance of a system due to selfish
behavior of its users or participants. That is, the Price of Anarchy relates
the social welfare generated by players acting in an egoistic manner to an op-
timal solution obtained by perfectly collaborating participants. The Price of
Malice’s reference point, on the other hand, is not a socially optimal welfare,
but the welfare achieved by an entirely selfish system.

The Price of Anarchy and the Price of Malice are therefore two orthogo-
nal measures that describe inherent properties of distributed, socio-economic
systems. Specifically, a system may have a small Price of Anarchy, but a
large Price of Malice, and vice versa. The fact that a system has a large
Price of Anarchy indicates that it is necessary to design mechanisms (such
as taxes or payment schemes) that force players to collaborate more effec-

1In this chapter, the terms “malicious” and “Byzantine” will be used interchangeably.
Observe that this is not always correct [182], and that “malicious” is generally more exact.
However, in order to be consistent with our publications, henceforth, both terms will be
used.

104 CHAPTER 10. IMPACT OF MALICIOUS PLAYERS

tively. However, it is more difficult to improve or repair systems having a
large Price of Malice, since malicious or Byzantine players do not respond to
any rules or (financial) incentives. Often, the only solution is to defend the
system against malicious intruders, or at least to ensure that the number of
malicious players in the system remains small.

By introducing a model that formally comprises the notions of Byzantine
Nash equilibria, the Byzantine Price of Anarchy, and the Price of Malice, we
are able to analyze what happens in selfish systems if one or more players’
aim is to hinder the system from working or to bog down its performance as
much as possible.

The Price of Malice crucially depends on the amount of information the
selfish players have about the presence and behavior of the Byzantine play-
ers, and how they respond to this information. In other words, the utility
function which eventually defines the selfish players’ reaction depends on how
they subjectively perceive and judge the threat of Byzantine players. Hence,
the utility of selfish players is computed using the perceived expected cost
rather than the unknown actual cost. For example, it can be shown that
in case of risk-averse players, the presence of Byzantine players may actu-
ally improve the social welfare compared to a situation where there are no
Byzantine players at all. That is, there are situations where selfish players
tend to be more willing to collaborate if they face higher risks. To the best
of our knowledge, this is the first framework which allows for an analytical
quantification of this so-called Fear Factor. Potentially, this in turn gives
raise to several research questions in many areas including distributed sys-
tems, economics, politics, or sociology. Besides studying Byzantine players
who aim at minimizing the performance of a system (Price of Malice), we
also raise the question of stability. Particularly, we are interested in the ques-
tion, how many Byzantine players suffice in order to prevent the system from
stabilizing.

In this chapter, we investigate a concrete example where selfish and
Byzantine players interact. In this simple game, we consider a network of
nodes, where each node (or peer) can choose between paying for inocula-
tion, or risking to get infected by a virus. After the nodes have made their
choices, a virus starts at some random node and propagates iteratively to all
neighboring nodes which are not inoculated.

As a motivation for this game, consider the peer-to-peer Internet tele-
phony tool Skype, and regard the different Skype instances as nodes in a
graph. Two nodes are connected in this graph iff they are contained in
each other’s contact list. Each user can decide whether she likes to buy
an anti-virus software or not. A p2p worm is then assumed to propa-
gate along the contacts stored by the Skype instance, similarly to the M-
Worm:W32/Pykse.A2 virus .

2See http://news.softpedia.com/news/Skype-Attacked-By-Fast-Spreading-Virus-
52039.shtml.

10.1. FRAMEWORK 105

10.1 Framework

We present our model in two steps. First, we discuss the virus inocula-
tion game derived from [24]. Subsequently, we introduce our framework of
Byzantine game theory including the definition of the Price of Malice.

10.1.1 Virus Inoculation Game

Similarly to [24], we model the virus inoculation game as a scenario with n
strategic players each of whom corresponds to a node in an undirected grid
G[r, c] of r rows and c columns.3 Henceforth, we will refer to the upper left
corner of the grid as G[0, 0], i.e., indices start with 0.

Each node i has two choices: either do nothing and risk infection by a
virus, or inoculate itself by installing anti-virus software. For a node, in-
stalling the anti-virus software has the obvious advantage that it becomes
immune against infection. On the other hand, the process of installing the
software entails a cost in terms of money and/or time. Hence, a strategic
player may or may not opt for inoculation depending on which choice maxi-
mizes his own utility.

The nodes’ choices can be summarized by a strategy profile −→a ∈ {0, 1}n,
where ai = 1 signifies that node i installs the anti-virus software, and ai = 0
that it does not install it. We call nodes i with ai = 1 secure, and denote
the set of secure nodes by I−→a . After the nodes have made their choices,
the adversary picks some node uniformly at random as a starting point for
infection. Infection then propagates on the network graph and infects all
non-secure nodes that are in the same non-secure connected component as
the starting point of infection. Technically, we associate an attack graph
G−→a = G \ I−→a with −→a . It is essentially the network graph in which all secure
nodes and their incident edges are removed.

In this chapter, we consider the following costs: installing anti-virus soft-
ware on a selfish node entails an inoculation cost of 1 at this node. If a selfish
node does not inoculate and becomes infected, it suffers a loss equal to L.
Therefore, the cost of a selfish node i can be summarized as follows:

costi(
−→a) = ai + (1− ai) · L · ki

n
,

where ki/n is the probability that node i is infected, conditioned on the
event that it does not install the anti-virus software. Thereby, ki is the size
of the connected component containing i in G−→a . Finally, the social cost
of a strategy profile −→a is the sum of all individual costs, i.e., Cost(−→a) =∑
j∈S costj(

−→a), where S denotes the set of all selfish players. When the

strategy profile −→a is clear from the context, we sometimes use abbreviations
costi and Cost to denote individual cost and social cost, respectively.

3Our results can be generalized to other highly regular, low-dimensional graphs such
as the two-dimensional torus, i.e., a grid that wraps around at the boundaries.

106 CHAPTER 10. IMPACT OF MALICIOUS PLAYERS

10.1.2 Byzantine Game Theory
In order to understand the impact of malicious players on the selfish system,
we extend the virus inoculation game with malicious players. Formally, there
are n nodes in the network. Of these n nodes, b are malicious Byzantine nodes
that do not strive for minimizing their own costs. Instead, the goal of these
Byzantine nodes is to deteriorate the overall system performance as much
as possible, i.e., to maximize the resulting social cost of the solution. The
remaining s := n−b nodes are selfish and aim at maximizing their own utility.
We denote the set of Byzantine and selfish players as B and S, respectively.
It holds that b := |B|, s := |S|, and n = s+ b.

While selfish nodes behave as discussed in Chapter 10.1.1, we assume
that the Byzantine nodes pursue the following strategy: they claim to be
inoculated (i.e., they proclaim their strategy to be ai = 1), but actually
they are not. In order to emphasize that Byzantine nodes are only seemingly
secure, we denote the set of really inoculated and secure selfish nodes by Iself−→a .

The attack graph resulting from strategy profile −→a is then G−→a = G− Iself−→a .
This is the network graph without secure, selfish nodes, but including all
Byzantine nodes. We can therefore define the individual cost incurred at a
selfish node i ∈ S as follows.

Definition 10.1 (Actual Individual Cost). We define the (actual) individual
cost costi(

−→a) of a node i ∈ S as

costi(
−→a) := ai + (1− ai) · L · ki

n
,

where ki is the size of the connected component of node i in the attack graph
G−→a .

Notice that in spite of its being equivalent to the corresponding definition
in Chapter 10.1.1, we call this cost actual individual cost. This is to emphasize
the fact that selfish players may not know about the existence of Byzantine
players, and therefore, they are unable to compute their actual individual
cost. Even if they are aware of the malicious players’ existence, they might
not know the Byzantine players’ exact locations or strategies. In other words,
with the addition of Byzantine players, selfish nodes no longer have a perfect
knowledge about the network and its nodes’ choices.

In case of imperfect information, a node might deal with its uncertainty
in different ways. For example, a node might be risk averse and act in a
conservative manner. These observations imply that before the location and
strategies of Byzantine players are revealed (i.e., before the virus infection

occurs), a selfish player i experiences a perceived individual cost ĉosti(
−→a).

This perceived cost can differ from the actual individual cost costi(
−→a) a

node eventually has to pay.

Definition 10.2 (Perceived Individual Cost). Consider a selfish game with
Byzantine players in which selfish players have imperfect knowledge about
the existence, location, or the strategy of Byzantine players. In this case,

10.1. FRAMEWORK 107

the perceived individual cost ĉosti(
−→a) of a selfish player i captures the cost

expected by player i given his knowledge about the Byzantine players. This
cost depends on the underlying model.

The strategic decisions of selfish players can only be based on the perceived
cost (not on their actual individual costs), as the actual individual cost can
only be computed once the locations and strategies of Byzantine players are
revealed. In this chapter, we will study the following two basic models.

Definition 10.3 (Oblivious). In the oblivious model, selfish players are not
aware of the existence of Byzantine players. That is, selfish players assume
that all other players in the system are selfish as well.

Definition 10.4 (Non-Oblivious). In the non-oblivious
model, selfish players know about the existence of Byzantine players. Specif-
ically, we assume that every selfish player knows b, the number of Byzantine
players in the system, but he does not know about these players’ exact loca-
tions or strategies. Moreover, we assume that selfish players are highly risk
averse in the sense that they aim at minimizing their maximal individual
cost. Let D be the set of possible distributions of Byzantine players among
all players. A selfish player i experiences a perceived individual cost of

ĉosti(
−→a) := max

d∈D
{costi(−→a , d)},

where costi(
−→a , d) denotes the actual costs of i if the Byzantine players are

distributed according to d ∈ D.

In the virus inoculation game, and in an oblivious model, the perceived
cost is typically smaller than the actual cost: a node i ∈ S does not take
into consideration the Byzantine nodes which may increase the size of i’s
attack component. In the non-oblivious risk-averse model on the other hand,
a node actually overestimates its expected actual cost by considering a worst-
case scenario: a selfish player assumes that the Byzantine nodes are—from
his individual point of view—distributed in a worst-case fashion among all
players. Therefore, the perceived individual cost may be larger than the
actual cost.

Since our goal is to understand the impact of malicious behavior on a
system of selfish players, the cost of Byzantine players is not included in the
social cost. If it was, it would in general be easy for Byzantine players to
arbitrarily deteriorate the social welfare of a system by simply increasing their
own costs as much as possible. Moreover, as Byzantine players are malicious
anyway, there is no particular reason why the overall system should care
about these players’ costs.

The total social cost Cost(−→a) of a strategy is defined as the sum of the
(actual) individual costs of all selfish players. Since each node in the same
connected component of G−→a has the same probability of infection, the li
selfish nodes in the ith attack component face a loss of li · (Lki/n) if the
component is infected.

108 CHAPTER 10. IMPACT OF MALICIOUS PLAYERS

Definition 10.5 (Social Cost). The social cost is given by the sum of the
actual individual costs of selfish players

Cost(−→a) =
∑
j∈S

costj(
−→a) = |Iself−→a |︸ ︷︷ ︸

inoculation cost

+
L

n

l∑
i=1

kili︸ ︷︷ ︸
infection cost

,

where k1, k2, . . . , kl are the sizes of the components in G−→a , and l1, l2, . . . , ll
are the sizes of the same components without counting the Byzantine nodes.
We refer to the cost due to inoculation as the inoculation cost Costinoc, and
to the cost due to the virus infections as the infection cost Costinf .

The social cost of a setting where all nodes perfectly collaborate, i.e.,
where there are neither selfish nor Byzantine nodes, is called the social opti-
mum.

Definition 10.6 (Optimal Social Cost). The optimal social cost CostOPT
is the sum of all the players’ actual individual costs in case of perfect collab-
oration.

Recall that the Nash equilibrium describes a situation where no selfish
node has an incentive to unilaterally change its strategy. In the following, we
extend the definition of a Nash equilibrium to incorporate Byzantine nodes.
The Byzantine Nash equilibrium (BNE) describes a configuration where no
selfish player can reduce his perceived cost by changing his strategy, given
that the strategies of all other players are fixed.4

Definition 10.7 (Byzantine Nash Equilibrium (BNE)). Let −→a [i|x] be the
strategy vector that is identical to −→a except for the ith component ai which is
replaced by x. In a Byzantine Nash equilibrium, no selfish player i ∈ S has
an incentive to change his strategy if the strategies of all other (selfish and
Byzantine) players are fixed, i.e.,

∀i ∈ S : ĉosti(
−→a) ≤ ĉosti(−→a [i|a′i]),

for every possible strategy a′i.

While the Byzantine Nash equilibrium must be defined by the perceived
individual costs, the resulting social cost is determined by the actual costs.
After all, it is the actual individual costs that players will eventually have to
pay. In the following, we will refer to the social cost of the worst Byzantine
Nash Equilibrium of a problem instance I as CostBNE(I, b).

It is well-known that selfish and Byzantine players often interact in a
manner that yields suboptimal solutions. The degree of degradation result-
ing from selfish and Byzantine players compared to the social optimum is
captured by the Price of Byzantine Anarchy.

4Notice that we do not define the Byzantine Nash equilibrium with actual individual
costs, because they are not known to the players.

10.2. VIRUS GAME ANALYSIS 109

Definition 10.8 (Price of Byzantine Anarchy). The Price of Byzantine An-
archy captures how much worse a Byzantine Nash equilibrium can be com-
pared to a collaborative optimal solution. More formally, in a scenario with
b Byzantine players, the Price of Byzantine Anarchy PoB(b) is the ratio be-
tween the worst-case social cost of a Byzantine Nash equilibrium divided by
the minimal social cost, i.e., for all problem instances I,

PoB(I, b) =
maxBNE CostBNE(I, b)

CostOPT (I)
.

Note that in the absence of Byzantine players—i.e., if the system con-
sists of selfish players only—the Price of Byzantine Anarchy is equivalent
to the well-known Price of Anarchy (PoA) studied in classic game theory.
Specifically, it holds that PoA = PoB(0).

With these definitions, we are ready to define the Price of Malice which
describes the degree of sub-optimality resulting from malicious Byzantine
players in an otherwise selfish system. A high Price of Malice indicates
that an economic system is particularly vulnerable to malicious attacks. On
the other hand, if the Price of Malice is low, the system consisting of selfish
players is stable enough to tolerate malicious participants. Clearly, the degree
of degradation may depend on the number of Byzantine players in the game.
Hence, the Price of Malice is a function of b.

Definition 10.9 (Price of Malice). The Price of Malice captures the ra-
tio between the worst Byzantine Nash Equilibrium with b malicious players
and the Price of Anarchy in a purely selfish system. Formally, for problem
instance I,

PoM(I, b) =
PoB(I, b)

PoB(I, 0)
.

As will be discussed in Chapter 10.2.4, we may also speak of the inverse
of the Price of Malice as the game’s Fear Factor Ψ(b). That is, a game’s Fear
Factor is given by Ψ(b) := 1/PoM(b).

10.2 Virus Game Analysis

In order to derive results for the Price of Malice in various models, we have to
establish structural properties of Nash equilibria and the social optimum in
the virus inoculation game. We begin with a simple characterization of Nash
equilibria if there are no Byzantine nodes. The following lemma is derived
from the analogous lemma in [24].

Lemma 10.1. In a pure Nash equilibrium −→a , it holds that (a) every com-
ponent in the attack graph G−→a has a size of at most n/L, and (b) inserting
any secure node into G−→a yields a component size of at least n/L.

Lemma 10.1 implies that if L ≥ n, all nodes will inoculate in the Nash
equilibrium. Therefore, for the rest of this chapter, we assume that L < n.

110 CHAPTER 10. IMPACT OF MALICIOUS PLAYERS

10.2.1 Social Optimum
If the inoculation strategies of the individual nodes are planned by a benev-
olent centralized coordinator, the welfare of the system is maximized. In the
following, we will derive an asymptotically tight bound on the cost of this
social optimum. Throughout this section, perceived costs equal actual costs
because when studying the social optimum, we do not consider Byzantine
players, i.e., b = 0 and therefore s = n.

Theorem 10.2. The optimal social cost if all players in S act altruistically
is CostOPT ∈ Θ(s2/3L1/3). More specifically,

1

3

√
π · s2/3L1/3 ≤ CostOPT ≤ 4s2/3L1/3.

Proof. We prove the upper and lower bound in turn.
Lower Bound: If all nodes collaborate to achieve the optimal solution,

it holds that li = ki and hence, the social cost is given by

Cost = |I−→a |+ L

n

l∑
i=1

k2
i ,

where |I−→a | is the number of inoculated nodes, and the ki’s are the sizes of
the components in the attack graph. This sum is minimized when all ki are
of equal size, say size K. While each secure node has a cost of 1, every other
node has an expected cost of L ·K/n. Hence, setting γ := |I−→a | and because
s = n, the optimal social cost can be bounded as

CostOPT ≥ γ + (s− γ)

(
LK

s

)
. (10.1)

A relationship between γ and K follows from a simple geometric argument: if
a component in the attack graph is of size K, the number of inoculated nodes

at the component’s border must be at least 2π
√

K
π

= 2
√
πK (circumference

of a disk with volume K). As the total number of such components is at
least s−γ

K
and as each inoculated node can be on the border of at most two

components, γ can be expressed as

γ ≥ s− γ
K
· 2
√
πK · 1

2
= (s− γ)

√
π

K
.

By solving this inequality for γ, it follows that γ ≥ s ·√π/K/(1 +
√
π/K).

On the other hand, it can be observed that in the optimal solution, for s > L,
no node is inoculated if all its four neighbors are inoculated. From this, it can
be derived that in an optimal solution, γ ≤ s

2
. Plugging these two bounds

into Inequality (10.1), the optimal social cost is at least

CostOPT ≥ s ·
√
π/K

1 +
√
π/K

+
LK

2
.

10.2. VIRUS GAME ANALYSIS 111

The first term of the above expression is monotonously decreasing in K in the
range 0, . . . , s, whereas the second one is monotonously increasing. Therefore,
taking the minimum of the two terms for a specific K yields a lower bound
on CostOPT . When setting

K :=
2

3

√
π ·
(s
L

)2/3

,

the second term yields 1
3

√
π · s2/3L1/3. The first term evaluates to

√
3/2 ·

4
√
π/(1+

√
3/2 · 4

√
π)s2/3L1/3 > 1

3

√
π ·s2/3L1/3. Consequently, we obtain the

following lower bound on the cost of the social optimum:

CostOPT ≥ 1

3

√
π · s2/3L1/3 ∈ Ω(s2/3L1/3).

Upper Bound: Having established a lower bound on the optimal social
cost, we now explicitly construct a solution that is asymptotically optimal
and proves the tightness of the above lower bound. Given an arbitrary grid
G[r, c], we inoculate the nodes as follows. Let K := (s/L)2/3. We secure

all nodes in the columns G[·, i√K] for i ∈ {1, ..., bc/(√K + 1)c} and rows

G[i
√
K, ·] for i ∈ {1, ..., br/(√K+1)c}. Consequently, all attack components

are of size at most
√
K×√K = K as illustrated in Figure 10.1 (Left). Hence,

the total infection cost is at most L · (s− |I−→a |)Ks < LK = s2/3L1/3.
It remains to bound the inoculation cost. In an ideal setting where the

components perfectly fit into G[r, c] without leftovers, it holds that for each

component of sizeK in the attack graph, there are exactly 2
√
K+1 inoculated

nodes. Let X denote the number of components. It holds that X · (K +

2
√
K + 1) = s and therefore, when plugging in the definition of K, X =

s/[(s/L)2/3 + 2(s/L)1/3 + 1]. The number of inoculated nodes γ is at most

γ ≤ X · (2
√
K + 1) ≤ s(2

√
K + 1)(

s
L

)2/3
+ 2

(
s
L

)1/3
+ 1

< s1/3L2/3 ·
(

2
(s
L

)1/3

+ 1

)
= 2s2/3L1/3 + s1/3L2/3

≤ 3s2/3L1/3.

Combining the infection and inoculation costs, we can bound the optimal
social cost by

CostOPT < s2/3L1/3 + 3s2/3L1/3 = 4s2/3L1/3.

10.2.2 Price of Anarchy
The Price of Anarchy compares the social cost of the worst Nash equilib-
rium (without Byzantine nodes) to the minimal social cost. In the upcoming

112 CHAPTER 10. IMPACT OF MALICIOUS PLAYERS

Figure 1: Left: Upper bound for social optimum. White nodes are insecure, black nodes are secure. Middle: Byzantine Nash
equilibrium for G[n/L,L] for the oblivious model. Insecure Byzantine nodes are denoted by white triangles. They are located in a
way that may yield an attack component of size (b+1)n/L+b. Right: Example with large social cost for the non-oblivious, risk-averse
model.

It remains to show that O(s) is an upper bound for any Nash
equilibrium. Since at most each of the s = n nodes can be inocu-
lated, the inoculation cost cannot exceed s. By Lemma 4.1, we also
know that the infected component’s size is at most s/L, entailing a
total infection cost of at most s as well. Hence, CostNE ≤ 2s, and
the claim holds.

By Theorem 4.2 and Lemma 4.3, we get the following result.

THEOREM 4.4. For the Price of Anarchy (PoA), it holds that

1

4
·
� s
L

�1/3

≤ PoA ≤ 6√
π
·
� s
L

�1/3

PROOF. As for the upper bound, it holds that

PoA =
CostNE

CostOPT
≤ 2s

1
3

√
π · s2/3L1/3

≤ 6s1/3

√
π · L1/3

and as for the lower bound, we have PoA ≥ s

4·s2/3L1/3 .

4.3 Oblivious Model
We begin our study of the Price of Malice with the oblivious

model in which players are clueless about the existence of Byzan-
tine players in the system (cf Section 3). As a consequence, it
follows that—since nodes underestimate the attack components’
sizes—the nodes’ perceived individual costs are smaller than the
actual individual costs. It turns out that in the presence of Byzantine
nodes, the social costs increase in the number of Byzantine nodes.

LEMMA 4.5. In the oblivious model, the social cost is at least
CostBNE ∈ Ω(s+ nb2

L
) for b < L

2
− 1, and CostBNE ∈ Ω(sL)

otherwise.

PROOF. Consider again a grid G[n/L,L] with n/L rows and
L columns, where every second column consists of secure nodes
only. For simplicity, let L be even. Suppose that in the first b secure
columns there is one Byzantine node each, see Figure 1 (middle).
In case b ≥ L

2
− 1, every secure column that separates two inse-

cure columns contains one Byzantine node. The remaining Byzan-
tine nodes can be placed at arbitrary places in the secure columns.
Because selfish nodes are not aware of the existence of Byzantine
nodes in the network, the perceived cost is dcosti = 1 for inoculated
nodes, and dcosti = n/L

n
·L = 1 for the other selfish nodes. Hence,

the situation constitutes a Byzantine Nash equilibrium.

For computing the social costs of this Byzantine Nash equilib-
rium, we distinguish two cases, depending on whether the number
of Byzantine nodes is smaller than L

2
− 1 or not. For the first case,

assume that b ≥ L
2
−1. Because there is at least one Byzantine node

in every secure column that separates two insecure columns has
least one Byzantine node, all selfish and Byzantine players form one
large attack component. Consequently, each insecure selfish node
i ∈ S is infected with probability 1 and thereforeCostBNE ≥ s·L.

For the second case, assume that b < L
2
− 1. Each of the first

secure columns contains exactly one Byzantine node. Since L is
even, there are s/2−b secure nodes, and hence the inoculation cost
is s/2−b. With probability ((b+1)n/L+b)/n, the infection starts
at an insecure or a Byzantine node of an attack component of size
(b + 1) · n/L, yielding a cost of (b + 1) · n/L · L = n(b + 1).
Moreover, with probability (s/2 − (b + 1)n/L)/n, an insecure
column of size n/L is hit. Thus, for b < L

2
−1, we get the following

lower bound on the social cost:

CostBNE =
� s

2
− b
�

+
(b+1)n

L
+ b

n
· n(b+ 1) +

+
s
2
− (b+ 1) n

L

n
· n
L
· L

= s+
nb2

L
+
nb

L
+ b2 ∈ Ω

�
s+

nb2

L

�
.

LEMMA 4.6. In the oblivious model, the social cost is at most
CostBNE ∈ O

�
min{sL, s+ b2n

L
}
�

.

PROOF. Since at most every selfish node can be inoculated, it is
clear that Costinoc = O(s). It remains to study the infection cost.
The infection cost of a node in some component i is L times the
probability of this component being hit by the virus, i.e., L · ki/n.
Hence, the total infection cost is given by

Costinf =
X

i

li · ki

n
· L =

L

n

X
i

li · ki,

where ki is the size of the attack components (including Byzantine
nodes), and li is the number of selfish nodes in this component.
In order to upper bound Costinf , let SByz denote the set of com-
ponents in the attack graph which contain at least one Byzantine

Figure 10.1: Left: Upper bound for social optimum. White nodes are in-
secure, black nodes are secure. Middle: Byzantine Nash equilibrium for
G[n/L,L] for the oblivious model. Insecure Byzantine nodes are denoted by
white triangles. They are located in a way that may yield an attack compo-
nent of size (b + 1)n/L + b. Right: Example with large social cost for the
non-oblivious, risk-averse model.

section, we will first compute CostNE , which is the maximal cost of any
Nash equilibrium. Together with the bound for the social optimum in Chap-
ter 10.2.1, the Price of Anarchy will follow.

Lemma 10.3. The social cost of the worst Nash equilibrium is CostNE =
Θ(s).

Proof. First, we show that CostNE = Ω(s). Consider a grid G[s/L,L] con-
sisting of an even number of L rows of size s/L. Assume that columns
G[·, 2i] for i ∈ {0, 1, ..., L/2 − 1} consist of insecure nodes only, while all
nodes in the remaining rows are secure. Since all attack components have
size s/L, according to Lemma 10.1, this situation constitutes a Nash equi-
librium. Observe that every second row is inoculated, engendering an inoc-
ulation cost of s/2. Moreover, with probability 1/2, the virus starts at an
insecure node, yielding infection cost s/L · L. The social cost is therefore
CostNE = s/2 + 1/2 · s/L · L = s.

It remains to show that O(s) is an upper bound for any Nash equilibrium.
Since at most each of the s = n nodes can be inoculated, the inoculation cost
cannot exceed s. By Lemma 10.1, we also know that the infected component’s
size is at most s/L, entailing a total infection cost of at most s as well. Hence,
CostNE ≤ 2s, and the claim holds.

By Theorem 10.2 and Lemma 10.3, we get the following result.

Theorem 10.4. For the Price of Anarchy (PoA), it holds that

1

4
·
(s
L

)1/3

≤ PoA ≤ 6√
π
·
(s
L

)1/3

.

10.2. VIRUS GAME ANALYSIS 113

Proof. As for the upper bound, it holds that

PoA =
CostNE
CostOPT

≤ 2s
1
3

√
π · s2/3L1/3

≤ 6s1/3

√
π · L1/3

and as for the lower bound, we have PoA ≥ s

4·s2/3L1/3 .

10.2.3 Oblivious Model

We begin our study of the Price of Malice with the oblivious model in which
players are clueless about the existence of malicious players in the system
(cf Chapter 11.1). As a consequence, it follows that—since nodes underesti-
mate the attack components’ sizes—the nodes’ perceived individual costs are
smaller than the actual individual costs. It turns out that in the presence of
Byzantine nodes, the social costs increase in the number of Byzantine nodes.

Lemma 10.5. In the oblivious model, the social cost is at least CostBNE ∈
Ω(s+ nb2

L
) for b < L

2
− 1, and CostBNE ∈ Ω(sL) otherwise.

Proof. Consider again a grid G[n/L,L] with n/L rows and L columns, where
every second column consists of secure nodes only. For simplicity, let L be
even. Suppose that in the first b secure columns there is one Byzantine node
each, see Figure 10.1 (Middle). In case b ≥ L

2
− 1, every secure column that

separates two insecure columns contains one Byzantine node. The remaining
Byzantine nodes can be placed at arbitrary places in the secure columns.
Because selfish nodes are not aware of the existence of Byzantine nodes in
the network, the perceived cost is ĉosti = 1 for inoculated nodes, and ĉosti =
n/L
n
· L = 1 for the other selfish nodes. Hence, the situation constitutes a

Byzantine Nash equilibrium.

For computing the social costs of this Byzantine Nash equilibrium, we
distinguish two cases, depending on whether the number of Byzantine nodes
is smaller than L/2− 1 or not. For the first case, assume that b ≥ L/2− 1.
Because there is at least one Byzantine node in every secure column that
separates two insecure columns has least one Byzantine node, all selfish and
Byzantine players form one large attack component. Consequently, each
insecure selfish node i ∈ S is infected with probability 1 and therefore
CostBNE ≥ s · L.

For the second case, assume that b < L/2 − 1. Each of the first secure
columns contains exactly one Byzantine node. Since L is even, there are s/2−
b secure nodes, and hence the inoculation cost is s/2 − b. With probability
((b+ 1)n/L+ b)/n, the infection starts at an insecure or a Byzantine node of
an attack component of size (b+ 1) ·n/L, yielding a cost of (b+ 1) ·n/L ·L =
n(b+1). Moreover, with probability (s/2−(b+1)n/L)/n, an insecure column
of size n/L is hit. Thus, for b < L/2 − 1, we get the following lower bound

114 CHAPTER 10. IMPACT OF MALICIOUS PLAYERS

on the social cost:

CostBNE =
(s

2
− b
)

+
(b+1)n
L

+ b

n
· n(b+ 1) +

+
s
2
− (b+ 1) n

L

n
· n
L
· L

= s+
nb2

L
+
nb

L
+ b2 ∈ Ω

(
s+

nb2

L

)
.

Lemma 10.6. In the oblivious model, the social cost is at most CostBNE ∈
O
(

min{sL, s+ b2n
L
}
)

.

Proof. Since at most every selfish node can be inoculated, it is clear that
Costinoc = O(s). It remains to study the infection cost. The infection cost
of a node in some component i is L times the probability of this component
being hit by the virus, i.e., L · ki/n. Hence, the total infection cost is given
by

Costinf =
∑
i

li · ki
n
· L =

L

n

∑
i

li · ki,

where ki is the size of the attack components (including Byzantine nodes),
and li is the number of selfish nodes in this component. In order to upper
bound Costinf , let SByz denote the set of components in the attack graph
which contain at least one Byzantine node, and let SByz be the remaining
components. We can rewrite the equation above as

Costinf =
L

n
·
 ∑
i∈SByz

li · ki +
∑

i∈S
Byz

li · ki
 ,

that is, we consider the infection cost of components with at least one Byzan-
tine node separately from the remaining “malicious player-free” components.
In the following, let

CostByzinf :=
L

n

∑
i∈SByz

liki CostByzinf :=
L

n

∑
i∈S

Byz

liki.

We have to prove that neither CostByzinf nor CostByzinf exceeds O(s+ b2n
L

).
As we have shown in the proof of Lemma 10.3 in Chapter 10.2.2, the total

infection cost of a network consisting only of selfish nodes cannot exceed s.
Because in our case nodes are oblivious about the existence of Byzantine
nodes, attack components without Byzantine nodes behave like in an entirely

selfish environment. Therefore, CostByzinf ∈ O(s).

10.2. VIRUS GAME ANALYSIS 115

It remains to compute the infection cost of those attack components which
include at least one Byzantine node. Let bi be the number of Byzantine nodes
in the ith component in SByz, and note that

∑
i bi = b. By Lemma 10.1, we

know that in the absence of Byzantine nodes, the size of an attack compo-
nent is at most ki ≤ n/L. Therefore, one Byzantine node can increase a
component by at most n/L nodes plus itself. From this it follows that the
size of an attack component i is bounded by

ki ≤ (bi + 1) · n
L

+ bi, and li ≤ (bi + 1) · n
L
.

Using this relationship between bi and the size of the attack component, we
can bound CostByzinf as

CostByzinf =
L

n

∑
i∈SByz

li · ki

≤ L

n

∑
i∈SByz

[
(bi + 1) · n

L
·
(

(bi + 1) · n
L

+ bi
)]

=
∑

i∈SByz

[
(bi + 1)2 n

L
+ bi(bi + 1)

]
<

∑
i∈SByz

[
(bi + 1)2

(n
L

+ 1
)]

=
(n
L

+ 1
)
·
∑

i∈SByz
(bi + 1)2.

Given the constraint that bi ≥ 1 for every bi, and because
∑
i bi = b, the

above convex function assumes its maximum for a single positive bi = b.
Consequently,

CostByzinf ≤
(n
L

+ 1
)
·
∑

i∈SByz
(bi + 1)2

≤
(n
L

+ 1
)
· (b+ 1)2 ∈ O

(
b2n

L

)
.

On the other hand, it clearly holds that at most every selfish node can be

infected and hence, CostByzinf + CostByzinf ≤ sL. The proof is concluded by

adding the upper bounds for Costinoc, Cost
Byz
inf , and CostByzinf .

Combining Lemmas 10.5 and 10.6 leads to the following theorem that
captures the social cost in the virus inoculation game in the presence of b
Byzantine players among selfish, oblivious nodes.

Theorem 10.7. The social cost in a Byzantine Nash equilibrium with b

Byzantine nodes in the oblivious model is CostBNE ∈ Θ(s + b2n
L

), for b <
L
2
− 1, and CostBNE ∈ Θ(sL), otherwise.

116 CHAPTER 10. IMPACT OF MALICIOUS PLAYERS

Proof. In both cases, the lower bound follows from Lemma 10.5. As for the
upper bound, note that for b < L/2−1 and due to L ≤ n = s+b, it holds that
b < (s+ b)/2 and therefore, b < s. Then, the term s+ b2n/L asymptotically
cannot exceed the term sL and therefore, the claim follows. As for the second
case, note that for b ≥ L

2
− 1, the term sL is asymptotically smaller or equal

to s+ b2n/L.

Finally, we can derive tight bounds on the Price of Byzantine Anarchy
and the Price of Malice by bringing together the results of Theorems 10.2,
10.4, and 10.7.

Theorem 10.8. In the virus inoculation game with b Byzantine nodes among
selfish, oblivious nodes, the Price of Byzantine Anarchy and the Price of
Malice are

PoB(b) ∈ Θ

((s
L

)1/3
(

1 +
b2

L
+
b3

sL

))
and

PoM(b) ∈ Θ

(
1 +

b2

L
+
b3

sL

)
for b < L

2
− 1. Otherwise, it holds that

PoB(b) ∈ Θ
(
s1/3L2/3

)
and PoM(b) ∈ Θ (L) .

Proof. Consider the case b < L
2
− 1. For the Price of Byzantine Anarchy,

we have PoB(b) = CostBNE
CostOPT

=
Θ(s+

b2(b+s)
L

)

Θ(s2/3L1/3)
∈ Θ

((
s
L

)1/3 · (1 + b2

L
+ b3

sL

))
.

From this, the Price of Malice is computed as follows: PoM(b) = PoB(b)
PoA

∈
Θ
(

1 + b2

L
+ b3

sL

)
. The case b ≥ L

2
−1 follows along the same lines by plugging

in the corresponding expressions of Theorem 10.7.

Our results on the Price of Malice in the oblivious case support the in-
tuition that in the absence of knowledge about the existence of Byzantine
players, the quality of the global solution (i.e., the resulting social cost) dete-
riorates as the number of malicious players increases. In the next section, we
will show that the situation may change as soon as selfish players are aware
of the existence of Byzantine players.

10.2.4 Non-oblivious Model
Having studied the oblivious model, we now turn our attention to the non-
oblivious case in which selfish players are aware of the existence of Byzantine
players. If selfish nodes knew about the exact locations of Byzantine nodes,
they would be able to compute their optimal choice exactly. If selfish nodes
only know the number of Byzantine nodes in the system, however, the optimal
strategy of a player becomes more complex, and the impact on the social cost

10.2. VIRUS GAME ANALYSIS 117

more interesting. Specifically, it turns out that in this non-oblivious case,
the “Fear Factor” may actually encourage players to act less selfishly and
cooperate. Put differently, there may be settings in which the existence of
Byzantine players helps to improve the global social cost, rendering the Price
of Malice less than 1.

Observe that in the non-oblivious case, every selfish node inoculates if
b ≥ n

L
, implying a social cost of s. If b < n

L
, the resulting social costs are

bounded by the following lemma.

Lemma 10.9. For b < n
2L

, the social cost in a Byzantine Nash equilibrium
in case of non-oblivious, risk-averse players with b Byzantine nodes is at least

CostBNE ≥ s

2
+
bL

4
.

For all values of b, it holds that CostBNE ≥ s
2

.

Proof. We start with the more interesting case b < n
2L

. Consider a grid
with L columns each containing n/L nodes. All nodes in columns 2i + 1

for i = 0, 1, . . . , L
2
− 1 and all nodes in rows j · n/L−b

b+1
for j = 1, 2, . . . , b are

inoculated. That is, as illustrated in Figure 10.1 (Right), each component of

insecure selfish nodes is of size n/L−b
b+1

.
First, we show that this configuration constitutes a Byzantine Nash equi-

librium in the risk-averse, non-oblivious case with b Byzantine nodes. Con-
sider an insecure node in some column i. If all b secure nodes in this column
are Byzantine, the size of the resulting attack component is (n/L − b)/(b +
1) · (b+ 1) + b = n/L. Hence, i’s perceived infection cost is

ĉosti = L · (n/L− b)/(b+ 1) · (b+ 1) + b

n
= 1,

which equals the cost of inoculation. Next, consider an inoculated selfish
node i and distinguish two cases. In the first case, i separates two components
consisting of insecure selfish players and a change of i’s strategy would merge
two components of size (n/L−b)/(b+1) into a single connected component of
insecure selfish nodes. Every Byzantine node can connect another component
of size (n/L−b)/(b+1) (and itself) to the component containing i. Therefore,
the size of the resulting attack component can be as large as(

2 ·
n
L
− b

b+ 1
+ 1

)
+

(
b ·

n
L
− b

b+ 1
+ b

)
=

b+ 2

b+ 1

(n
L
− b
)

+ b+ 1 >
n

L
+

1

b+ 1
.

The perceived cost of i without inoculation is therefore

ĉosti > L ·
n
L

+ 1
b+1

n
= 1 +

L

n(b+ 1)
> 1.

In the second case, we consider a “crossing” node i that is located in the
crossing of a secure row and column. Consider the column to the right (or

118 CHAPTER 10. IMPACT OF MALICIOUS PLAYERS

to the left) of i. If all inoculated nodes in this column are Byzantine, the
entire column plus node i becomes one large attack component. Hence, the
perceived cost of i is

ĉosti > L ·
n
L

+ 1

n
> 1.

In other words, no selfish node has an incentive to change its strategy
and the situation in Figure 10.1 (right) constitutes a Byzantine Nash equi-
librium. In the sequel, we lower bound the social cost of this equilibrium
under the assumption that all b Byzantine nodes are in column 1. Note that
our construction guarantees that this is always possible if b < n

2L
.

We start with the sum of the infection costs Cost0inf of insecure nodes in
column 0. The number of insecure, selfish nodes in this component is n

L
− b.

Hence, the expected sum of infection costs is

Cost0inf =
(n
L
− b
)
·
n
L
− b+ b

n
· L =

n

L
− b.

Let µ be the number of insecure nodes in columns 3, 5, etc. The sum of the
infection costs Costrinf of the remaining attack components (each being of
size (n/L− b)/(b+ 1)) is

Costrinf = µ ·
n
L
− b

n(b+ 1)
· L > µ ·

(
1

b+ 1
− L

n

)
.

Because the number of insecure nodes in these small attack components is
µ = L−1

2
· (n

L
− b), it follows that

Costrinf >
L− 1

2
·
(n
L
− b
)
·
(

1

b+ 1
− L

n

)
>

1

2(b+ 1)

(
n− n

L
− bL+ b

)
− L

2
.

Finally, we also need to calculate the total inoculation cost of this topology.
Clearly, all s/2 nodes in even columns are secure. (Recall that column and
row indices start with 0.) Furthermore, b nodes in each odd column (ex-
cept for the first column) are also inoculated. Hence, the total inoculation
Costinoc cost becomes

Costinoc =
s

2
+
bL

2
− b =

s

2
+ b

(
L

2
− 1

)
.

Combining the various costs, the social cost of the Byzantine Nash equilib-
rium is

CostBNE(b) ≥ s

2
+ b

(
L

2
− 1

)
+
n

L
− b

+
1

2(b+ 1)

(
n− n

L
− bL+ b

)
− L

2

≥ s

2
+
bL

4

10.2. VIRUS GAME ANALYSIS 119

for b ≤ n
2L

and b ≥ 3.
Finally, note that if b ≥ n

2L
, at least half of the selfish nodes inoculate

and hence, CostBNE(b) ≥ s/2.

With this lower bound on the social cost of a Byzantine Nash equilibrium,
we can now derive the Price of Byzantine Anarchy as well as the Price of
Malice for the non-oblivious, risk-averse model.

Theorem 10.10. In the non-oblivious, risk-averse model with b Byzantine
nodes, the Price of Byzantine Anarchy is at least

PoB(b) ≥ 1

8

((s
L

)1/3

+
b

2

(
L

s

)2/3
)

for b < n
2L

. For all b, it holds that PoB(b) ≥ 1
8
(s
L

)1/3.

Proof. Lemma 10.9 gives us a lower bound on the social cost of a Byzantine
Nash equilibrium in the non-oblivious, risk-averse model with b malicious
nodes. On the other hand, we have seen in Lemma 10.2, that the optimal
social cost is at most 4s2/3L1/3. Hence,

PoB(b) ≥
s
2

+ bL
4

4s2/3L1/3
=

1

8

(
s1/3

L1/3
+
bL2/3

2s2/3

)
.

The second lower bound follows analogously.

Theorem 10.11. In the non-oblivious, risk-averse model with b Byzantine
nodes, the Price of Malice is

PoM(b) ≥
√
π

48

(
1 +

bL

2s

)
for b < n

2L
. For all b, it holds that PoM(b) ≥

√
π

48
.

Proof. In order to derive the Price of Malice, we can apply our bound from
Theorem 10.10 and the upper bound on the Price of Anarchy established in
Theorem 10.4. Specifically,

PoM(b) =
PoB(b)

PoA
≥

1
8

((
s
L

)1/3
+ b

2

(
L
s

)2/3)
6s1/3√
π·L1/3

.

The theorem then follows from arithmetic simplifications. Again, the second
lower bound follows in an analogous way.

120 CHAPTER 10. IMPACT OF MALICIOUS PLAYERS

Discussion: From a technical point of view, this result shows that the
Price of Malice can potentially be less than 1 in the non-oblivious model of
the virus inoculation game. Intuitively, it is clear that in the presence of
Byzantine players, nodes may be more willing to pay for inoculation. How-
ever, we find it interesting that the selfish players’ awareness of the existence
of malicious Byzantine players may lead to an improvement of the overall
system behavior, i.e., the social welfare. Specifically, the existence (or even
the threat!) of malicious Byzantine players can render it worthwhile for nodes
to cooperate better.

This highlights the possible existence of a Fear Factor, which describes
the gain of the overall social efficiency in a selfish system if selfish players
are afraid of malicious, Byzantine individuals among them. This Fear Factor
is determined by the ratio between the social cost of the worst Byzantine
Nash equilibrium with b malicious players and the worst Nash equilibrium in
a purely selfish system. Technically, we can define the Fear Factor Ψ as the
inverse of the Price of Malice, i.e.,

Ψ(b) :=
1

PoM(b)
.

In other words, the Fear Factor Ψ quantifies how much the threat of a com-
mon enemy can unite selfish individuals, and to what degree the global social
performance is improved.

In the virus inoculation game, the Fear Factor may be both negative and
positive. What is interesting to note, however, is that this Fear Factor Ψ
cannot be arbitrarily large, regardless of the number of Byzantine players b
in the system. Instead, the Price of Malice can never drop below the constant√
π

48
and hence, the Fear Factor is upper-bounded by Ψ ≤ 48√

π
. That is, the

social welfare or efficiency gained due to the Fear Factor cannot exceed a
factor of Ψ ≤ 48√

π
.

The existence of a Fear Factor has been documented in various economic
and social models. By combining a game theoretic framework with the classic
notion of Byzantine players from distributed computing and cryptography,
our model allows for an analytical quantification of a system’s Fear Factor Ψ
from a computational point of view.

10.3 Stability Considerations

In the previous section, we have studied the degradation of the social welfare
in a selfish system caused by Byzantine players. However, besides trying
to reduce the optimality of certain outcomes of games, Byzantine players
might also attack the stability of a system. In this section, we therefore
continue our studies by capturing the amount of instability that can be caused
by Byzantine players in an otherwise selfish system. Particularly, we are
interested in the question, how many Byzantine players suffice in order to
keep the system from stabilizing.

10.3. STABILITY CONSIDERATIONS 121

In the following, we generalize the model of Chapter 10.2 to arbitrary
network graphs. We assume that the Byzantine players aim at destabilizing
the system by repeatedly announcing to have changed from insecure to secure
state and back in a worst-case fashion. Thereby, we consider an oblivious
model where selfish nodes are not aware of the stability attack. We use the
following definitions.

Definition 10.10 (b-Stable / b-Instable). We call a game b-stable if b Byzan-
tine players cannot prevent the system from reaching a Nash equilibrium.
Similarly, a game is called b-instable if b Byzantine players are sufficient
such that no Nash equilibrium will ever be reached in case of oblivious selfish
players.

For the virus inoculation game, the following stability properties can be
shown.

Theorem 10.12. (i) Generally, the virus inoculation game is not 1-stable.
(ii) For certain restricted classes of network graphs, the virus inoculation
game is 1-stable. (iii) The virus inoculation game is always 2-instable.

Proof. Claim (i): This claim already holds in simple graphs. Assume that
n/L is an integer and that L > 1, and consider a one-dimensional chain of
nodes {0, 1, ..., n−1}. Let the nodes i ·n/L be secure, for i ∈ {0, 1, ..., L−1}.
By Lemma 10.1, this situation constitutes a Nash equilibrium. Now assume
that node n/L is Byzantine, and that it changes to the insecure state. Then,
all other nodes j ∈ {1, 2, 3, ..., n/L−1, n/L+1, ..., 2n/L−1} have an incentive
to inoculate. However, once such a node j has become secure, node n/L can
return to the secure state, yielding components of size smaller than n/L.
Consequently, j is bound to become insecure again. These changes can be
repeated forever.

Claim (ii): Interestingly, there are robust graphs where no single node
can destabilize the system. To see this, consider a complete graph where
each node is connected to all other nodes. From Lemma 10.1, it follows that
in this network, all Nash equilibria have just one single attack component.
Let C denote the set of nodes of this component, and let C := V \C be the set
of the remaining (secure) nodes. Also by Lemma 10.1, it holds that in any
Nash equilibrium, the size of C is either n/L or n/L− 1. Moreover, observe
that independently of which node is Byzantine and of how the Byzantine
node acts, a situation will eventually be reached with the two components
as described above. However, the system having converged to such a state,
there exist only four possibilities: either the Byzantine node belongs to the
node set C or to the node set C, and either |C| = n/L or |C| = n/L − 1. It
is run of the mill to verify that in all cases, a Byzantine node can enforce at
most one additional change.

Claim (iii): We use the fact that in the virus inoculation game, a pure
Nash equilibrium always exists, and that in the absence of Byzantine nodes,
selfish nodes stabilize quickly [24]. Assume that the Byzantine nodes first
act like selfish nodes until such a classic Nash equilibrium is reached. Now
consider an arbitrary secure node u1 ∈ V , and assume it is Byzantine. If u1

122 CHAPTER 10. IMPACT OF MALICIOUS PLAYERS

becomes insecure, according to Lemma 10.1, an attack component C emerges
which consists of n/L or more nodes. If |C| > n/L, at least one node v in
C has an incentive to change to a secure state. Let C′ be the component
of v when u1 is secure, but not v. Assume that after v has changed, u1

becomes secure again. There are two possibilities. If |C′| < n/L, v will
return to insecure state, and the changes can be repeated forever with only
one Byzantine node. If |C′| = n/L, a second Byzantine (previously insecure)
node u2 in C′ can force v to become insecure again.

Finally, if |C| = n/L, nodes are indifferent between becoming secure or
not. Of course, however, another Byzantine node on the edge of C can cause
endless changes also in this case.

10.4 Concluding Remarks

This chapter has initiated the study of distributed systems consisting of both
selfish and malicious players. Our framework can be applied not only to p2p
systems but potentially many other economic and social systems. Using our
models, we have derived bounds on the Price of Malice in oblivious and
non-oblivious systems. Moreover, we have quantified and upper bounded the
Fear Factor, which is the gain in system efficiency arising from the increased
willingness of selfish individuals to cooperate caused by malicious players.

Several questions are left for future research. For example: what is the
Price of Malice in a virus inoculation game on other topologies, e.g., on a
hypercubic Pastry network? And what is the Price of Malice of other games,
e.g., of a p2p caching game [63, 114]? It seems that while in certain selfish
routing games where a single node can attract a lot of traffic by announcing
short distances to all other nodes which results in a large Price of Malice,
in congestion games the impact of Byzantine players may be much smaller.
Another direction for future work is to study the impact of knowledge on the
resulting Fear Factor in non-oblivious models. Specifically, one could assume
that players are not only aware of the existence of Byzantine players, but also
of their approximate whereabouts or their statistical distribution. Intuitively,
such additional knowledge should decrease the selfish players’ incentive for
collaboration and thus lower the Fear Factor.

In Chapter 11, we will show how our framework can be adapted to study
alternative phenomena in distributed systems. We will look at social networks
and ask: how much damage can a virus entail in networks where players may
care about their friends’ welfare? We will see that the situation can only
improve compared to purely selfish environments.

Chapter 11

Impact of Social Players

We now describe how to adapt the framework introduced in Chapter 10 for
social networks. In particular, we investigate what happens in the virus
inoculation game if users start caring about their friends’ welfare.

Social networks have existed for thousands of years, but it was not until
recently that researchers have started to gain scientific insights into phe-
nomena like the small world property, which so far have only be known at
an anecdotal level. The Internet has enabled people to connect with each
other in new ways and to find friends sharing the same interests from all over
the planet. A social network on the Internet can manifest itself in various
forms. For instance, on Facebook, people maintain virtual references to their
friends. The contacts stored in a user’s Skype contact list, mobile phone,
or email client form a social network as well. The analysis of such networks
is an interesting endeavor, as they comprise many aspects of our society in
general.

We believe that game theory can help to shed light on certain aspects of
such systems. However, for the case of social networks, modeling players as
completely self-interested may not be appropriate. It is likely that users act
less selfishly towards their contacts than towards complete strangers. This
chapter aims at taking such aspects into account. A framework is introduced
which takes into consideration that players care about the well-being of their
friends. In particular, we define the Windfall of Friendship (WoF) which cap-
tures to what extent the social welfare improves in social networks compared
to purely selfish systems.

Social networks are not only attractive to their participants. It is well-
known that the user profiles are an interesting data source for the PR industry
to provide tailored advertisements. Moreover, the social network graph can
also be exploited for attacks: for instance, email viruses have exploited the
address books for propagating to the user’s contacts, and worms spreading
on mobile phone networks and over the Internet telephony tool Skype have
been reported.

We will investigate the propagation of such viruses on social networks with

124 CHAPTER 11. IMPACT OF SOCIAL PLAYERS

the game introduced in Chapter 10. As expected, our analysis reveals that the
players in this game always benefit from caring about the other participants
in the social network rather than being selfish. Intriguingly, however, we
find that the Windfall of Friendship does not increase monotonically with
stronger relationships, i.e., with a larger friendship factor F . Despite of the
phenomenon being an “ever-green” in political debates, to the best of our
knowledge, this is the first framework to quantify this effect formally.

As another contribution, this chapter shows that computing the best and
the worst friendship Nash equilibrium is NP-hard. In addition, simple net-
works such as cliques and stars are considered For example, we show that
the Windfall of Friendship in cliques is at most 4/3; this is tight in the sense
that there are problem instances where the situation can indeed improve
this much. Moreover, we show that in star graphs, friendship can help to
eliminate undesirable equilibria.

11.1 Framework

We consider again the virus inoculation game on an undirected network graph
G = (V,E) of n = |V | players (or nodes) pi ∈ V , for i = 1, . . . , n, who are
connected by a set of edges (or links) E. ai = 1 denotes that player pi is
protected whereas for a player pj willing to take the risk, aj = 0. Assume
that it costs C to inoculate, and that it costs L if a player gets infected. A
player has the following expected cost:

Definition 11.1 (Actual Individual Cost). The (actual) individual cost of
a player pi is defined as

ca(i,~a) = ai · C + (1− ai)L · ki
n

where ki denotes the size of pi’s attack component. If pi is inoculated, ki will
denote the attack component that would result if pi became insecure. In the
following, let c0a(i,~a) refer to the actual cost of an insecure and c1a(i,~a) to the
cost of a secure node pi.

We only consider pure Nash equilibria where it must hold for each player
pi, that given a strategy profile ~a

∀pi ∈ V : ca(i,~a) ≤ ca(i, (a1, . . . , a
′
i, . . . , an)),

implying that player pi cannot decrease her cost by choosing an alternative
strategy a′i, given the other players’ strategies. The total social cost of a
game is the sum of the cost of all participants: Ca(~a) =

∑
pi∈V ca(i,~a). The

Price of Anarchy (PoA) is the maximum ratio (over all problem instances
I) between the worst Nash equilibrium cost divided by the social optimum,
PoA(I) = maxNE CNE(I)/COPT (I). In the remainder of this chapter, we
only consider a limited region of the parameter space to avoid trivial cases: we
will assume that C ≤ L and C > L/n. We make use of the following notation.
For a player pi, let Γ(pi) denote the set of neighbors of pi. Moreover, let

11.1. FRAMEWORK 125

Γsec(pi) ⊆ Γ(pi) be the set of inoculated neighbors, and Γsec(pi) = Γ(pi) \
Γsec(pi) be the remaining (insecure) neighbors.

We now introduce our model for social networks. We define a Friendship
Factor F which captures the extent to which players care about their friends,
i.e., about the players adjacent to them in the social network. More formally,
F is the factor by which a player pi takes the individual cost of her neighbors
Γ(pi) into account when deciding for a strategy. F can assume any value
between 0 and 1. F = 0 implies that the players do not consider their
neighbors’ cost at all, whereas F = 1 implies that a player values the well-
being of her neighbors to the same extent as her own.

We distinguish between a player’s actual (individual) cost and a player’s
perceived cost. A player’s actual individual cost is the expected cost arising
for each player defined in Definition 11.1 and we use it to compute a game’s
social cost. However, in our social network, the decisions of our players are
steered by the players’ perceived cost. Formally, the perceived (individual)
cost is defined as follows.

Definition 11.2 (Perceived Individual Cost). The perceived cost of a player
pi is defined as

cp(i,~a) = ca(i,~a) + F ·
∑

pj∈Γ(pi)

ca(j,~a).

In the following, we will again write c0p(i,~a) to denote the perceived cost of

an insecure node pi and c1p(i,~a) for the perceived cost of an inoculated node.

This definition entails a new equilibrium concept. We define a friendship
Nash equilibrium (FNE) as a situation where no player can reduce her per-
ceived cost by unilaterally changing her strategy given the strategies of the
other players. Formally:

∀pi ∈ V : cp(i,~a) ≤ cp(i, (a1, . . . , a
′
i, . . . , an)).

Given this equilibrium concept, we can now define the Windfall of Friend-
ship Υ.

Definition 11.3 (Windfall of Friendship (WoF) Υ). For a problem instance
I, the Windfall of Friendship Υ(F, I) is the ratio of the (actual) social cost
of the network’s most expensive Nash equilibrium and the (actual) social cost
of the worst friendship Nash equilibrium:

Υ(F, I) =
maxNE CNE(I)

maxBNE CFNE(F, I)
.

Υ(F) > 1 implies the existence of a real windfall in the system, whereas
Υ(F) < 1 denotes that the social cost can become greater in social graphs
than in purely selfish environments.

126 CHAPTER 11. IMPACT OF SOCIAL PLAYERS

11.2 Windfall of Friendship

This section characterizes friendship Nash equilibria and derives general re-
sults on the Windfall of Friendship for the virus propagation game in social
networks. It has been shown in [24] that in classic Nash equilibria (F = 0),
an attack component can never consist of more than Cn/L insecure nodes.
A similar characteristic also holds for FNEs. As every player cares about her
neighbors, the maximal attack component size in which an insecure player
pi still does not inoculate depends on the number of pi’s insecure neighbors
and the size of their attack components. Therefore, it differs from player to
player. We have the following helper lemma.

Lemma 11.1. The player pi will inoculate if and only if the size of her
attack component is

ki >
Cn/L+ F ·∑pj∈Γsec(pi)

kj

1 + F |Γsec(pi)| ,

where the kjs are the attack component sizes of pi’s insecure neighbors if pi
is inoculated.

Proof. Player pi will inoculate if and only if this choice lowers the perceived
cost. By Definition 11.2, the perceived individual cost of an inoculated node
are

c1p(i,~a) = C + F

|Γsec(pi)|C +
∑

pj∈Γsec(pi)

L
kj
n

 ,

and for an insecure node we have

c0p(i,~a) = L
ki
n

+ F

(
|Γsec(pi)|C + |Γsec(pi)|Lki

n

)
.

For pi to prefer to inoculate, it must hold that

c0p(i,~a) > c1p(i,~a)⇔

L
ki
n

+ F · |Γsec(pi)|Lki
n
> C + F ·

∑
pj∈Γsec(pi)

L
kj
n
⇔

L
ki
n

(1 + F |Γsec(pi)|) > C +
FL

n
·

∑
pj∈Γsec(pi)

kj ⇔

ki(1 + F |Γsec(pi)|) > Cn/L+ F ·
∑

pj∈Γsec(pi)

kj ⇔

ki >
Cn/L+ F ·∑pj∈Γsec(pi)

kj

1 + F |Γsec(pi)| .

11.2. WINDFALL OF FRIENDSHIP 127

A pivotal question is of course whether social networks where players care
about their friends yield better equilibria than selfish environments. The
following theorem answers this questions affirmatively: the worst FNE never
costs more than the worst NE.

Theorem 11.2. For all instances of the virus inoculation game and 0 ≤
F ≤ 1, it holds that

n ≥ PoA ≥ Υ(F) ≥ 1.

Proof. The proof idea for Υ(F) ≥ 1 is the following: for an instance I we
consider an arbitrary FNE with F > 0. Given this equilibrium, we prove the
existence of a NE with larger social cost. Let α be any (e.g., the worst) FNE
in the social model. If α is also a NE in the same instance with F = 0 then
we are done. Otherwise there is at least one player pi that prefers to change
her strategy. Assume pi is insecure but favors inoculation. Therefore pi’s
attack component has on the one hand to be of size at least k′i > Cn/L [24]
and on the other hand of size at most k′′i = (Cn/L+F ·∑pj∈Γsec(pi)

kj)/(1+

F |Γsec(pi)|) ≤ (Cn/L+F |Γsec(pi)|(k′′i −1))/(1+F |Γsec(pi)|)⇔ k′′i ≤ Cn/L−
F |Γsec(pi)| (cf Lemma 11.1). This is impossible and yields a contradiction
to the assumption that in the selfish network, an additional player wants to
inoculate.

It remains to study the case where pi is secure in the FNE but prefers to be
insecure in the NE. Observe that, since every player has the same preference
on the attack component’s size when F = 0, a newly insecure player cannot
trigger other players to inoculate. Furthermore, only the players inside pi’s
attack component are affected by this change. The total cost of this attack
component increases by at least

x =
ki
n
L− C︸ ︷︷ ︸
pi

+
∑

pj∈Γsec(pi)

(
ki
n
L− kj

n
L

)
︸ ︷︷ ︸

pi’s insecure neighbors

=
ki
n
L− C +

L

n
(|Γsec(pi)|ki −

∑
pj∈Γsec(pi)

kj).

Lemma 11.1 guarantees that
∑
pj∈Γsec(pi)

kj ≤ (ki(1+F |Γsec(pi)|)−Cn/L)/F .

This results in

x ≥ kiL

n
− C +

L

n

[
|Γsec(pi)|ki − ki(1 + F |Γsec(pi)|)− Cn/L

F

]
=

kiL

n
(1− 1

F
)− C(1− 1

F
) > 0,

since a player only gives up her protection if C > kiL/n. If even more players
are unhappy with their situation and become vulnerable, the cost for the NE

128 CHAPTER 11. IMPACT OF SOCIAL PLAYERS

increases more. In conclusion, there exists a NE for every FNE with F ≥ 0
for the same instance which is at least as expensive.

The upper bound for the WoF, i.e., PoA ≥ Υ(F), follows directly from
the definitions: while the PoA is the ratio of the NE’s social cost divided by
the social optimum, Υ(F) is the ratio between the cost of the NE and the
FNE. As the FNE’s cost must be at least as large as the social optimum cost,
and since n ≥ PoA [24], the claim follows.

The above result leads to the question of whether the Windfall of Friend-
ship grows monotonically with stronger social ties, i.e., with larger friendship
factors F . Intriguingly, this is not the case.

Theorem 11.3. For all network sizes n > 7, there exist game instances for
which Υ(F) does not grow monotonically in F .

Proof. We give a counter example for the star graph Sn which has one center
node and n− 1 boundary nodes. Consider two friendship factors, Fl and Fs
where Fl > Fs. We show that for the large friendship factor Fl, there exists
a FNE, FNE1, where only the center node and one boundary node remain
insecure. For the same setting but with a small friendship factor Fs, at least
two boundary nodes will remain insecure, which will trigger the center node
to inoculate, yielding a FNE, FNE2, where only the center node is secure.

Consider FNE1 first. Let c be the insecure center node, let b1 be the
insecure boundary node, and let b2 be a secure boundary node. In order for
FNE1 to constitute a Nash equilibrium, the following conditions must hold:

node c :
2L

n
+

2FlL

n
< C +

FlL

n

node b1 :
2L

n
+

2FlL

n
< C +

FlL

n

node b2 : C +
2FlL

n
<

3L

n
+

3FlL

n

For FNE2, let c be the insecure center node, let b1 be one of the two
insecure boundary nodes, and let b2 be a secure boundary node. In order for
the boundary nodes to be happy with their situation but for the center node
to prefer to inoculate, it must hold that:

node c : C +
2FsL

n
<

3L

n
+

6FsL

n

node b1 :
3L

n
+

3FsL

n
< C +

2FsL

n

node b2 : C +
3FsL

n
<

4L

n
+

4FsL

n

Now choose C := 5L/(2n) + FlL/n. This yields the following conditions:
Fl > Fs + 1/2, Fl < Fs + 3/2, and Fl < 4Fs + 1/2. These conditions are

11.2. WINDFALL OF FRIENDSHIP 129

easily fulfilled, e.g., for Fl = 3/4 and Fs = 1/8. Observe that the social cost
of the first FNE (for Fl) is Cost(Sn,~aFNE1) = (n − 2)C + 4L/n, whereas
for the second FNE (for Fs) Cost(Sn,~aFNE2) = C + (n − 1)L/n. Thus,
Cost(Sn,~aFNE1)−Cost(Sn,~aFNE2) = (n−3)C− (n+3)L/n > 0 as we have
chosen C > 5L/(2n) and as, due to our assumption, n > 7. This concludes
the proof.

Reasoning about best and worst Nash equilibria raises the question how
difficult it is to compute such equlibria. We can generalize the proof given
in [24] and show that computing the most economical and the most expensive
FNE is hard for any friendship factor.

Theorem 11.4. Computing the best and the worst pure friendship Nash
equilibrium is NP-complete for any 0 ≤ F ≤ 1.

Proof. We prove this theorem by a reduction from two NP-hard problems,
Vertex Cover [125] and Independent Dominating Set [101]. Concretely,
for the decision version of the problem, we show that answering the question
of whether there exists a FNE with cost less than k, or more than k respec-
tively, is at least as hard as solving vertex cover or independent dominating
set. Note that verifying whether a proposed solution is correct can be done
in polynomial time, hence the problems are indeed in NP.

Fix some graph G = (V,E) and set C = 1 and L = n/1.5. We show first
that the following two conditions are necessary and sufficient for a FNE: (a)
all neighbors of an insecure node are secure, and (b) every inoculated node
has at least one insecure neighbor.

Due to our assumption that C > L/n, Condition (b) holds. To see that
Condition (a) holds as well, assume that there is an attack component of
size at least two. An insecure node pi in this attack component bears the
cost ki

n
L + F (|Γsec(pi)|C + |Γsec(pi)| kin L). Changing the strategy reduces

the cost by at least ∆i = ki
n
L + F |Γsec(pi)| kin L − C − F |Γsec(pi)| ki−1

n
L =

ki
n
L + F |Γsec(pi)| 1nL − C. By our assumption that ki ≥ 2, and hence

|Γsec(pi)| ≥ 1, it holds that ∆i > 0, resulting in pi becoming secure. There-
fore, Condition (a) holds as well. For the opposite direction assume that an
insecure node wants to change the strategy even though (a) and (b) are true.
This is impossible because in this case (b) would be violated. An inoculated
node would destroy (a) by adopting another strategy. Thus (a) and (b) are
sufficient for a FNE.

We now argue that G has a vertex cover of size k if and only if the virus
game has a FNE with k or fewer secure nodes, or equivalently an equilibrium
with social cost at most Ck + (n− k)L/n, as each insecure node must be in
a component of size 1 and contributes exactly L/n expected cost. Given a
minimal vertex cover V ′ ⊆ V , observe that installing the software on all nodes
in V ′ satisfies Condition (a) because V ′ is a vertex cover and (b) because V ′

is minimal. Conversely, if V ′ is the set of secure nodes in a FNE, then V ′ is
a vertex cover by Condition (a) which is minimal by Condition (b).

For the worst FNE, we consider an instance of the independent dominat-
ing set problem. Given an independent dominating set V ′ ⊆ V , installing the

130 CHAPTER 11. IMPACT OF SOCIAL PLAYERS

software on all nodes except the nodes in V ′ satisfies Condition (a) because
V ′ is independent and (b) because V ′ is a dominating set. Conversely, the
insecure nodes in any FNE are independent by Condition (a) and dominating
by Condition (b). This shows that G has an independent dominating set of
size at most k iff it has a FNE with at least n− k secure nodes.

11.3 Clique and Star

We study the Windfall of Friendship for two concrete topologies, namely the
complete graph Kn and the star graph Sn.

11.3.1 Clique
We consider a most simple topology, namely the complete graph, or clique,
Kn where all players are connected to each other. First assume a classic
setting where nodes do not care about their neighbors (F = 0). We have the
following result:

Lemma 11.5. In the clique Kn, there are two Nash equilibria with total cost:

NE1: Cost(Kn,~aNE1) = (n− dCn/Le − 1)C + (dCn/Le − 1)2L/n

NE2: Cost(Kn,~aNE2) = (n− bCn/Lc)C + (bCn/Lc)2L/n

If dCn/L− 1e = bCn/Lc, there is only one Nash equilibrium.

Proof. Let ~a be a NE. Consider an inoculated node pi and an insecure node

pj , and hence ca(i,~a) = C and ca(j,~a) = L
kj
n

, where kj is the total number
of insecure nodes in Kn. In order for pi to remain inoculated, it must hold
that C ≤ (kj +1)L/n, so kj ≥ dCn/L−1e; for pj to remain insecure, it holds
that kjL/n ≤ C, so kj ≤ bCn/Lc. As the total social cost in Kn is given by
Cost(Kn,~a) = (n− kj)C + k2

jL/n, the claim follows.

Observe that the equilibrium size of the attack component is roughly twice
the size of the attack component of the social optimum, as Cost(Kn,~a) =
(n− kj)C + k2

jL/n is minimized for kj = Cn/2L.

Lemma 11.6. In the social optimum for Kn, the size of the attack compo-
nent is either b 1

2
Cn/Lc or d 1

2
Cn/Le, yielding a total social cost of

Cost(Kn,~aOPT) = (n− b1
2
Cn/Lc)C + (b1

2
Cn/Lc)2L

n

or

Cost(Kn,~aOPT) = (n− d1
2
Cn/Le)C + (d1

2
Cn/Le)2L

n
,

respectively.

In order to compute the Windfall of Friendship, the FNEs in social net-
works have to be identified.

11.3. CLIQUE AND STAR 131

Lemma 11.7. In Kn, there are two FNEs with total cost:

FNE1: Cost(Kn,~aFNE1) = (n− dCn/L−1
1+F

e)C + (dCn/L−1
1+F

e)2L/n

FNE2: Cost(Kn,~aFNE2) = (n− bCn/L+F
1+F

c)C + (bCn/L+F
1+F

c)2L/n

If d(Cn/L− 1)/(1 + F)e = b(Cn/L+ F)/(1 + F)c, there is only one FNE.

Proof. According to Lemma 11.1, in a FNE, a node pi remains secure if
otherwise the component had size at least ki = kj + 1 ≥ (Cn/L+Fk2

j)/(1 +
Fkj), where kj is the number of insecure nodes. This implies that kj ≥
d(Cn/L − 1)/(1 + F)e. Dually, for an insecure node pj it holds that kj ≤
(Cn/L+F (kj−1)2)/(1+F (kj−1)) and therefore kj ≤ b(Cn/L+F)/(1+F)c.
Given these bounds on the total number of insecure nodes in a FNE, the social
cost can be obtained by substituting kj in Cost(Kn,~a) = (n−kj)C+k2

jL/n.
As the difference between the upper and the lower bound for kj is at most
1, there are at most two equilibria and the claim follows.

Given the characteristics of the different equilibria, we have the following
theorem.

Theorem 11.8. In Kn, the Windfall of Friendship is at most Υ(F) = 4/3
for arbitrary network sizes. This is tight in the sense that there are indeed
instances where the worst FNE is a factor 4/3 better than the worst NE.

Proof. Upper Bound. We first derive the upper bound on Υ(F).

Υ(F) =
Cost(Kn,~aNE)

Cost(Kn,~aFNE)

≤ Cost(Kn,~aNE)

Cost(Kn,~aOPT)

≤ (n− dCn/L− 1e)C + (bCn/Lc)2 L
n

(n− 1
2
Cn/L)C + (1

2
Cn/L)2 L

n

as the optimal social cost (cf Lemma 11.6) is smaller or equal to the social
cost of any FNE. Simplifying this expression yields

Υ(F) ≤ n(1− C/L)C + C2n/L

n(1− 1
2
C/L)C + 1

4
C2n/L

=
1

1− 1
4
C/L

.

This term is maximized for L = C, implying that Υ(F) ≤ 4/3, for arbitrary
n.

Lower Bound. We now show that the ratio between the equilibria cost
reaches 4/3. There exists exactly one social optimum of cost Ln/2+(n/2)2L/n
= 3nL/4 for even n and C = L by Lemma 11.6. For F = 1 this is also the
only friendship Nash equilibrium due to Lemma 11.7. In the selfish game
however the Nash equilibrium has fewer inoculated nodes and is of cost nL

132 CHAPTER 11. IMPACT OF SOCIAL PLAYERS

(see Lemma 11.5). Since these are the only equilibria they constitute the
worst equilibria and the ratio becomes

Υ(F) =
Cost(Kn,~aNE)

Cost(Kn,~aFNE)
=

nL

3/4nL
= 4/3.

To conclude our analysis of Kn, observe that FNEs always exist in cliques,
and that best response strategies where one node at a time is given the chance
to change its strategy quickly results in such an equilibrium.

11.3.2 Star
While the analysis of the Kn was simple, it turns out that already slightly
more sophisticated graphs are challenging. In the following, the Windfall
of Friendship is investigated in star graphs Sn. Note that in Sn, the social
welfare is maximized if the center node inoculates and all other nodes do not.
The total inoculation cost then is C and the attack components are all of
size 1, yielding a total social cost of Cost(Sn,~aOPT) = C + (n− 1)L/n.

Lemma 11.9. In the social optimum of the star graph Sn, only the center
node is inoculated. The social cost is Cost(Sn,~aOPT) = C + (n− 1)L/n.

The situation where only the center node is inoculated also constitutes a
NE. However, there are more Nash equilibria.

Lemma 11.10. In the star graph Sn, there are three NEs with total cost:

NE1: Cost(Sn,~aNE1) = C + (n− 1)L/n

NE2: Cost(Sn,~aNE2) = (n− dCn/Le) + 1C + (dCn/Le − 1)2L/n

NE3: Cost(Sn,~aNE3) = (n− bCn/Lc)C + (bCn/Lc)2L/n

If Cn/L /∈ N, only two equilibria exist.

Proof. If the center node is the only secure node, changing to insecure state
costs L but saves only C. When a boundary node becomes secure, its cost
changes from L/n to C. These changes are unprofitable, and the social cost
of this NE is Cost(Sn,~aNE1) = C + (n− 1)L/n.

For the other NEs the center node is not inoculated. Let the number of
insecure boundary nodes be n0. In order for a secure node to remain secure,
it must hold that C ≤ (n0 + 2)L/n, and hence n0 ≥ dCn/L − 2e. In order
for an insecure node to remain insecure, it must hold that (1 + n0)L/n ≤ C,
so n0 ≤ bCn/L− 1c. Therefore, we can conclude that there are at most two
Nash equilibria, one with dCn/L − 1e and one with bCn/Lc many insecure
nodes. The total social cost follows by substituting n0 in the total social
cost function. Finally, observe that if Cn/L ∈ N and Cn/L > 3, all three
equilibria exist in parallel.

11.3. CLIQUE AND STAR 133

Let us consider the social scenario again.

Lemma 11.11. In Sn, there are at most three FNEs with total cost:

FNE1: Cost(Sn,~aFNE1) = C + (n− 1)L/n

FNE2: Cost(Sn,~aFNE2) = (n− dCn/L− 1− F e)C + (dCn/L− 1− F e)2L/n

FNE3: Cost(Sn,~aFNE3) = (n− bCn/L− F c)C + (bCn/L− F c)2L/n

If Cn/L− F /∈ N, at most 2 friendship Nash equilibria exist.

Proof. First, observe that having only an inoculated center node constitutes
a FNE. In order for the center node to remain inoculated, it must hold that
C + F (n − 1)L 1

n
≤ nL/n + F (n − 1)Ln

n
= L + F (n − 1)L. All boundary

nodes remain insecure as long as L/n + FC ≤ C + FC ⇔ L/n ≤ C. These
conditions are always true, and we have Cost(Sn,~aFNE1) = C + (n− 1)L/n.

If the center node is not inoculated, we have n0 insecure and n− n0 − 1
inoculated boundary nodes. In order for a secure boundary node to remain
secure, it is necessary that C+F n0+1

n
L ≤ n0+2

n
L+F n0+2

n
L, so n0 ≥ dCn/L−

2−F e. For an insecure boundary node, it must hold that n0+1
n

L+F n0+1
n

L ≤
C + F n0

n
L, so n0 ≤ bCn/L− 1− F c. The claim follows by substitution.

Note that it is indeed possible that the star graph has three FNEs in
parallel. As an example, consider the star graph S9 with C = 1, L = 4, and
F = 0.25. Moreover, observe that there are instances where FNE1 is the only
friendship Nash equilibrium. We already made use of this phenomenon in
Chapter 11.2 to show that Υ(F) is not monotonically increasing in F . The
next lemma states under which circumstances this is the case.

Lemma 11.12. In Sn, there is a unique FNE equivalent to the social opti-
mum if and only if

bCn/L− F c − b 1

2F
(
√

1− 4F (1− Cn/L)− 1)c − 2 ≥ 0

Proof. Sn has only one FNE if every (insecure) boundary node is content
with its chosen strategy but the insecure center node would rather inoculate.
In order for an insecure boundary node to remain insecure we have n0 ≤
bCn/L− 1− F c and the insecure center node wants to inoculate if and only
if C+F (n−n0−1)C+Fn0

1
n
L < (n0 +1)L

n
+F (n−n0−1)C+Fn0

n0+1
n

L⇔
Fn2

0 + n0 + 1 − Cn/L > 0 ⇔ n0 ≥ b 1
2F

(
√

1− 4F (1− Cn/L) − 1) + 1c.
Therefore there is only one FNE iff there exists an integer n0 such that
b 1

2F
(
√

1− 4F (1− Cn/L)− 1) + 1c ≤ n0 ≤ bCn/L− 1− F c.

Given the characterization of the various equilibria, the Windfall of Friend-
ship can be computed.

134 CHAPTER 11. IMPACT OF SOCIAL PLAYERS

Theorem 11.13. If bCn/L−1−F c−b 1
2F

(
√

1− 4F (1− Cn/L)−1)+1c ≥ 0,
the Windfall of Friendship is

Υ(F) ≥ (n− 2)C + L/n

C + (n− 1)/nL
.

Otherwise, Υ(F) ≤ n+1
n−3

.

Proof. According to Lemma 11.12, if bCn/L−F c−b 1
2F

(
√

1− 4F (1− Cn/L)−
1)c − 2 ≥ 0, the FNE is unique and hence equivalent to the social optimum.
On the other hand, observe that there always exist expensive NEs where the
center node is not inoculated. Hence, we have

Υ(F) =
Cost(Sn,~aNE)

Cost(Sn,~aFNE)
=

Cost(Sn,~aNE)

Cost(Sn,~aOPT)

≥ (n− bCn/L− 1c)C + (dCn/Le − 1)2L/n

C + (n− 1)L/n

≥ C(n− 2) + L/n

C + (n− 1)L/n
.

Otherwise, i.e., if there exist FNEs with an insecure center node, an upper
bound for the WoF can be computed:

Υ(F) =
Cost(Sn,~aNE)

Cost(Sn,~aFNE)

≤ (n− dCn/L− 1e)C + (bCn/Lc)2L/n

(n− bCn/L− F c)C + (dCn/L− 1− F e)2L/n

≤ (n+ 1)C

nC + FC − 2C(1 + F) + (1 + F)2L/n

<
(n+ 1)C

C(n+ F − 2(1 + F))
<

n+ 1

n− 3
.

Theorem 11.13 reveals that caring about the cost incurred by friends is
particularly helpful to reach more desirable equilibria. In large star networks,
the social welfare can be much higher than in Nash equilibria: in particular,
the Windfall of Friendship can increase linearly in n, and hence indeed be
asymptotically as large as the Price of Anarchy. However, if bCn/L − 1 −
F c − b 1

2F
(
√

1− 4F (1− Cn/L)− 1) + 1c ≥ 0 does not hold, social networks
do not perform much better than purely selfish systems: the maximal gain
is constant.

Finally observe that also in Sn, FNEs always exist and can be computed
efficiently (in linear time) by a best response strategy.

11.4. CONCLUDING REMARKS 135

11.4 Concluding Remarks

This chapter has studied viruses propagating along links of social networks,
e.g., along contact lists of Skype users. Also in this context, our framework in-
troduced in Chapter 10 helps to formally describe interesting phenomena. We
have shown that the virus cannot do more harm than in selfish environments,
and we have observed that the social welfare does not grow monotonically
with stronger social ties.

We believe that our work opens many possibilities for future research.
First, the analysis of the Windfall of Friendship needs to be continued for
other graphs, especially for graphs incorporating more topological properties
of real networks, like random graphs or Kleinberg graphs which exhibit the
small world property. We have restricted ourselves to players who only care
for their direct neighbors. Investigating the effects of considering players
over multiple hops (maybe to a lesser extent) or letting the metric distance
between two players decide about their degree of friendship, i.e., porting
the virus inoculation game into the Euclidean space, are interesting research
directions.

Chapter 12

Attacks Case Study: Kad

In order to complement our theoretic results given in Chapter 10 on the
effects of malicious players in p2p systems, in the following, as a case study,
we evaluate the feasibility of various malicious attacks in the Kad network—
the most widely deployed structured p2p system with more than a million
simultaneous users [223]. We find that while the Kad network functions
reliably under normal operation, it has several critical vulnerabilities, despite
ongoing efforts on the developers’ part to prevent fraudulent and destructive
use.

We describe several protocol exploits which prevent peers from accessing
particular files in the system. In order to obstruct access to specific files,
file requests can be hijacked, and subsequently, arbitrary information can be
returned instead of the actual data. Alternatively, we show that publishing
peers can be overwhelmed with bogus information such that pointers to the
original files can no longer be accessed. Moreover, it is even possible to
eclipse certain peers, i.e., to fill up their routing tables with information
about malicious peers, which can subsequently intercept all messages. We
will also briefly discuss how our network poisoning attacks can be used to
harm machines outside the Kad network, e.g. web servers, by tricking the
peers into performing a Kad-steered distributed denial of service (DDoS)
attack. It is virtually impossible to determine the true culprit in this scenario,
as the initiating peer does not take part in the attack, which makes this kind
of vulnerability appealing to malicious peers.

All our attacks have been tested on the real Kad network using a modi-
fied C++ eMule client. Already with three attackers, virtually no peer in the
system was able to find content associated with any given keyword for sev-
eral hours, which demonstrates that with moderate computational resources,
access to any targeted content can be undermined easily.

138 CHAPTER 12. ATTACKS CASE STUDY: KAD

12.1 Kad Background

The Kad network is a DHT-based p2p network that implements the Kademlia
protocol [161]. Access to the Kad network is provided through the eMule1

client, which also uses the server-based eDonkey2 network.
Each peer in the Kad network has a 128-bit identifier (ID) which is nor-

mally created by a random generator. This ID is stored at the peer even
after it has left the network and is re-used once the peer returns. Rout-
ing in the network is performed using these identifiers and the XOR metric,
which defines the distance between two identifiers as the bitwise exclusive or
(XOR) of these identifiers interpreted as an integer. For all i ∈ [0, 127], every
peer stores the addresses of a few other peers whose distance to its own ID
is between 2i and 2i+1, resulting in a connected network whose diameter is
logarithmically bounded in the number of peers. For each of these contacts
in the routing table, a Kad ID, an IP address, and a port is stored.

The publish and retrieval mechanisms work roughly as follows. Each
keyword, i.e., a word in a file name, and the file itself, are hashed, and
information about the keywords, its associated file, and the address of the
owner is published in the network, i.e., this information is stored at the peers
in the DHT whose identifers are closest to the respective hash values. If a
peer wants to download a file with a certain name (a particular sequence
of keywords), it first queries the peer whose identifier is closest to the hash
of the first of the specified keywords, and this peer returns the information
of all files whose file names contain all the given keywords, and also the
corresponding file hashes. The requesting peer p1 can then download the
desired file by querying the peer p2 whose identifier is closest to the file hash,
as p2 keeps track of all the peers in the network that actually own a copy of
the file.

12.2 Attacks and Measurements

This section presents three different attacks which limit the Kad users’ access
to a given file f . In a node insertion attack, an attacking peer seeks to
attract search requests for f , which are answered with bogus information.
Alternatively, access to f can be denied by filling up the index tables of
other peers publishing information about f (publish attack). Finally, we
describe how an attacker can eclipse an arbitrary peer: by controlling all the
peer’s incoming and outgoing traffic, the attacker can prevent a peer from
either publishing information about f or from accessing it.

12.2.1 Node Insertion Attack

By performing a node insertion attack, it is possible to corrupt the network
by spreading polluted information, e.g., about the list of sources, keywords,

1See http://www.emule-project.net/.
2See http://en.wikipedia.org/wiki/EDonkey network/.

12.2. ATTACKS AND MEASUREMENTS 139

or comments. We have implemented the attacks for keywords, that is, a
search for the attacked keyword will not give the correct results, but instead
arbitrary data chosen by the attacker is returned.

For this attack to work, we have to ensure that the search requests for the
specific keyword are routed to the attacking peer rather than to the peers
storing the original information. This can be achieved as follows. In the
Kad network, a peer normally creates its ID using a random number gener-
ator; however, any alternative mechanism will work as well, as there is no
verification of a peer’s ID. In our modified eMule client, it is possible to se-
lect the peer’s Kad ID manually. Thus, an attacker can choose its ID such
that it matches the hash value of the targeted keyword. Consequently, the
peer will become the node closest to this ID and will receive all the corre-
sponding search requests. The nodes storing the correct files typically have
a larger distance to the keyword’s ID than the attacker, as the probability
for a peer to have a random ID that perfectly matches the 128-bit keyword
ID is negligible.

In order to guarantee that peers looking for a certain keyword only receive
faked results, the attacker must provide enough result tuples, as the eMule
client terminates the search after having gathered 300 tuples. The attacker
further has to include the keywords received from a peer in the filenames,
otherwise the replies are not accepted. In our attacks, we use filenames that
contain a unique number, the message “File removed from Kad!”, and the
keywords. Unique file hashes are needed such that the 300 tuples are not
displayed as one tuple in eMule’s search window.

We frequently observed that eMule sends search requests not only to the
closest peer, even though this peer provided enough answers. This can be
explained by the delay caused when transmitting the 300 search results from
the closest peer. eMule will send another request to the second closest peer
before all of the results are received from the closest one. This of course
may harm the effectiveness of the attack, and hence it is beneficial to gain
control over the second, third, etc. closest IDs as well by means of additional
attackers. These attackers behave exactly the same way: all requests are
answered by supplying 300 faked tuples.

Figure 12.1 depicts the traces obtained during two week-long node in-
sertion attacks performed using our modified eMule client on the keyword
“Simpsons”. Note that this attack influences all queries in the entire Kad
network not only for the search term “Simpsons”, but also all other queries
starting with the term “Simpsons” such as “Simpsons Movie” or “Simpsons
Soundtrack” etc. are affected automatically.

In the first trace, only one attacker whose ID exactly matches the hash
of the keyword infiltrated the network. We used another client to search
for the term “Simpsons” once a minute and examined the returned results.
Since a single attacker is not sufficient, as mentioned before, the attack is
moderately successful in that only approximately 40% of the returned results
originated from the attacker. What is more, every single query returned at
least some results that are not faked. Further experiments showed that using
two attackers instead of one does not increase the success rate substantially,
but three attackers is already enough to hijack virtually all requests. The

140 CHAPTER 12. ATTACKS CASE STUDY: KAD

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

Attack Duration (Days)

Su
cc

es
s

R
at

e
(%

) 3 Clients
1 Client

Figure 12.1: Percentage of successfully hijacked keyword requests in a node
insertion attack for 1 and 3 attackers during a time period of one week.

second trace shows the success rate of the node insertion attack using three
attackers. On average, more than 95% of all returned tuples were faked,
and every batch of tuples contained at least some bogus data created by the
attackers. The plot shows that there are sudden drops of the success rate once
in a while. An explanation for this behavior is that peers join and leave the
network at a high rate, resulting in inaccurate routing tables. Consequently,
a lookup request can be routed to a peer that still stores results for this
request and does not know about our attacking peers yet.

The attack was repeated at other times using different keywords. All our
other experiment resulted in a similar picture and confirmed our findings
made with the “Simpsons” keyword. Our attacking peers received roughly 8
requests per minute from other peers in the network during the experiments.
As expected, the peer having the closest ID received the most requests at a
rate of roughly 4 requests per minute.

12.2.2 Publish Attack
In contrast to the node insertion attack, which forces the search requests to be
routed to the attacker, the publish attack directly attacks the peers closest to
the ID of the attacked keyword, comment, or source entry. The index tables
stored by the peers in the Kad network have a limited length; for instance,
the keyword table can store up to 50,000 entries for a specific ID. Moreover, a
peer will never return more than 300 result tuples per request, giving priority
to the latest additions to the index table. This makes it possible to replace
the original information by filling up the tables of the corresponding peers
with poisoned entries. Thus, an attacker seeks to publish a large amount
of information on these peers. Once the index tables of the attacked peers
are full, they will not accept any publish requests by other peers anymore.
Therefore, the attacked peers will only return our poisoned entries instead of

12.2. ATTACKS AND MEASUREMENTS 141

the original information. Since every entry has an expiration time (24 hours
for keyword and comment entries, and 5 hours for source entries), the clients
have to be re-attacked periodically in order to achieve a constant fraction
of poisoned entries. In addition, an attacker has to take into consideration
the newly joining peers in the network; if they have an ID close to the one
attacked, their tables also have to be filled.

We have implemented the publish attack for keyword entries as well, again
by modifying the original eMule application. An existing timer method is
used to run the attack every 10 minutes. In the first phase the 12 peers closest
to the targeted ID are located, using eMule’s search mechanism. In each run,
only peers are selected that have not been attacked before or which need to
be re-attacked due to the expiration of the poisoned entries. In the second
phase, all the peers found in the first phase are attacked, beginning with the
closest peer. To guarantee a full cache list, 50,000 poisoned entries are sent
divided into 250 packets containing 200 entries each. In order to prevent
overloading the attacked client, the sending rate was limited to 5 packets per
second. Every entry consists of a unique hash value and filename as in the
node insertion attack. Since these entries should match all search requests
containing the attacked keyword, it is necessary to include all additional
relevant keywords (e.g., song titles for an interpreter, year and language
for a film title) in the filename; otherwise, all the lookups with additional
keywords would not receive the poisoned entries. In the node insertion attack,
this problem does not occur as the additional keywords are obtained from
every search request and can directly be appended to the filename to match
the request. The success of each run is measured with the load value sent
in every response to a publish packet. This value should increase with every
poisoned packet sent, from a starting level of about 10 - 20% to 100% when
the attack is finished.

In comparison to the node insertion attack, it is clearly harder to maintain
a high success rate using the publish attack, due to the permanent arrivals
of new peers and the need to re-attack several peers periodically. While
the node insertion attack yields constantly high rates, this is not true for
the publish attack. Figure 12.2 plots the success rate of an attack on the
keyword “Simpsons” over a period of 5 days. The attack works fairly well on
average, at a success rate of roughly 80%, but the success rate periodically
drops and remains low for a certain time period before it recovers again.

Overall, the success rate is much lower than in the case of a node insertion
attack, although performing a publish attack is more expensive. Again, re-
peating the attack at other times using different keywords results in a similar
pattern. The reason for this peculiar behavior is that the peers responsible
for the targeted IDs that are online during the phase where the success rate
is low refuse to accept our publish messages. In fact, these peers do not even
reply to publish messages, even though they can be contacted, otherwise we
could not receive any lookup results from them. As this behavior is not in
accord with the protocol implemented in the real eMule client, we suspect
that modified versions of the original clients cause this phenomenon. What
clients are used is hard to determine as they do not directly provide this
information. Thus, the use of modified clients appears to be another reason

142 CHAPTER 12. ATTACKS CASE STUDY: KAD

0

10

20

30

40

50

60

70

80

90

100

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0

Attack Duration (Hours)

Su
cc

es
s

R
at

e
(%

)

Figure 12.2: Percentage of faked replies received in a publish attack for the
keyword “Simpsons” during a time period of 5 days. Sometimes, the success
rate drops but then recovers again quickly.

why the node insertion attack is superior to the publish attack.

12.2.3 Eclipse Attack

Instead of poisoning the network to keep peers from obtaining certain infor-
mation, we can also attack the requesting peers directly and keep them from
sending requests into the Kad network. In the eclipse attack, the attacker
takes over the targeted peer’s routing table such that it is unable to commu-
nicate with any other peer in the Kad network except the attacker. As the
attacker simulates the whole Kad network for that peer, it can manipulate
the attacked peer in arbitrary ways, e.g., it can specify what results are re-
turned for any lookup, or modify comments for any file. The peer’s requests
can also be directed back into the Kad network, but modified arbitrarily.

Typically, the contacts in the Kad routing table are not uniformly dis-
tributed over the whole ID space. Rather, most of the contacts are located
around the peer’s ID to maintain short lookup paths when searching for
other peers in the Kad network (cf [161]). The attacker takes advantage of
the fact that there are relatively few contacts in most parts of the ID space.
Concretely, we inject faked peer entries into these parts of the routing table
to achieve a dominating position. Subsequently, the faked peers are selected
for almost all requests. If we set the IP address of all those faked entries to
the address of our attacking peer, we receive most requests of the attacked
peer and can process them as desired. We exploit the fact that the standard
eMule client accepts multiple neighbors of the same IP address.

Our measurements showed that a peer running eMule for an extended
time period has up to 900 contacts in its routing table. As the maximum

12.3. IMPLICATIONS 143

number of contacts is 6,310, there is plenty of space in the routing table for
the faked entries. To inject these faked entries the Hello Request message is
used, which is normally utilized during connection set up to check whether
known peers are still alive. As a side-effect, the sender of the message is
added to the receiver’s routing table. After enough entries are injected, the
attacking peer has to process the requests from all those entries in order to
keep them in the routing table of the attacked node.

We implemented the eclipse attack in a stand-alone application and ported
all necessary parts from the source code of eMule. The application maintains
a list that holds all faked entries sent to the attacked peer. This is necessary,
because every new entry in the routing table is validated by sending a hello
request. This request has to be answered with the same ID as we have chosen
when injecting the entry. In order to differentiate between the entries, we
assign a new port to every faked entry and maintain a data structure to store
this information. The other part of our application processes the requests of
the attacked peer. If it asks for new peers close to a specific ID, we reply
with new faked peers that match this ID, or are very close to it, to guarantee
the success of the attack. If the peer asks for stored information we deliver
poisoned results, as in the two attacks discussed before.

Our experiments have revealed that the eclipse attack is effective, in par-
ticular if only certain keywords are targeted. In that case, the attacker only
has to partially fill the routing table of the attacked peer, which renders the
attack more efficient. The success rate virtually always reaches 100% within
seconds and hence the attack works well, especially if it is focused on a single
keyword; however, the attack is naturally limited to merely a single attacked
peer. The other two attacks are clearly preferable if an attacker aims at
hiding content from all peers.

12.3 Implications

The preceding section has presented three different attacks that can be used
to keep peers from acquiring the requested information. Naturally, these
exploits can also be combined in order to increase the chances of a success.
However, the poisoning attacks cannot only be used for this purpose. Rather,
they can serve an attacker as basic building blocks to pursue completely
different aims.

We will now briefly illustrate another attack. The resources of the Kad
network’s peers and our attacks can be used to drive a distributed denial of
service attack (DDoS) against any machine internal or external to the Kad
network as follows: a node insertion attack is performed in order to occupy
some popular keywords. Let µ be the machine (e.g., a server) to be attacked.
We inform all requesters that µ contains the desired files. Consequently,
all requests are directed to the attacked machine. Of course, the resulting
load on µ is not larger than on the machine performing the node insertion.
However, the advantage of this attack is that the attacking machine remains
hidden; moreover, it is generally harder to counter a distributed DoS attack
than a normal DoS attack as the request originate from different (and valid)

144 CHAPTER 12. ATTACKS CASE STUDY: KAD

IP addresses. Also the publish attack can be used for the DDoS attack if we
advertise wrong IP-bindings of keywords. This has the additional advantage
that the attack induces more load on the victim than on the attacker, as
the different Kad peers are directed to the victim directly. Note that DDoS
attacks using a p2p system such as Kad are particularly harmful as the peers
store information about sources for a long period of time, implying that such
an attack could last several days with steadily changing peers involuntarily
performing the attack.

As all the described attacks can be performed easily and have a large
impact, it is mandatory to derive and implement counteractive measures.
In order to overcome the node insertion attack it must be guaranteed that
choosing specific IDs is infeasible. A straightforward approach, which is often
described in literature, is to bind the ID directly to the peers’ IP addresses,
e.g., by hashing the IP address. However, there are several reasons why real-
world p2p systems do not adhere to this simple rule. First, multiple peers may
share the same IP address, for example, peers in a local area network behind a
NAT router are typically addressed using the same public IP address. These
peers would all have the same peer identifier. Second, IP addresses are often
given out dynamically and the assignment of addresses may change. In case
of an ID-IP binding, this implies that peers have to rebuild their routing
tables when reconnecting to the network with a new IP. Additionally, all the
credits gathered by uploading data would be lost irretrievably because the
peer ID changed and hence the peer cannot be recognized by other peers
anymore. It seems that some of these problems can be solved and the IP
address can still be incorporated into the ID, e.g., by hashing the IP address
and a randomly chosen bit string to solve the NAT problem, or by using a
different, randomly chosen ID for the credit system, together with a public
and private key pair to protect it against misuse.3 Hashing the IP address
and a user-generated bit string is preferable to including the port as this
would require a static assignment of ports, and switching ports would also
lead to a new ID. However, the crucial observation is that creating such a
binding is not sufficient to avert the attack in general, as long as the ID
includes a user-generated part. Assuming that a hash function such as SHA-
1 is used, an attacker can try out millions of bit string in a short period
of time in order to generate an ID that is closest to the targeted keyword
even in a network containing more than a million peers. Thus, another form
of peer authentication would be required which is hard to achieve without
the use of a centralized verification service. As part of the strength of the
network is its completely decentralized structure, relying on servers does not
seem to be an acceptable solution.

A simple heuristic to render the Kad network more resilient to publish and
eclipse attacks is to limit the amount of information a peer accepts from the
same IP address, i.e., a peer does not allow that its entire contact list is filled
by peers using the same IP address. This is also a critical solution as several
peers behind a NAT may indeed have the same public IP address. What is

3In fact, Kad already uses public and private keys to authenticate peers whenever a
new session starts.

12.4. CONCLUDING REMARKS 145

more, an attacker with several IP addresses at its disposal can circumvent
this security measure. We conclude that straightforward modifications may
lead to an increased robustness, but a powerful attacker can nevertheless
launch various effective attacks, and deriving strong disincentives is chal-
lenging. Furthermore, a crucial observation is that many of the discussed
vulnerabilities do not only pertain to the Kad network, such attacks can be
launched against any fully decentralized system that does not incorporate
strong verification mechanisms.

12.4 Concluding Remarks

Our case study has provided evidence that the Kad network, which is cur-
rently the only widely deployed p2p network based on a DHT, can be attacked
with a small amount of computing resources such that access to popular files
is denied. It is clear that such attacks could significantly lower the through-
put of the entire system as the sought-after files are no longer found, and that
this imposed censorship would frustrate the users. Moreover, the possibility
of leveraging the immense computational resources of the entire system to
attack arbitrary machines constitutes a serious threat. We argue that the
presented attacks can basically be launched in any peer-to-peer system that
does not incorporate sound peer authentication mechanisms. While certain
vulnerabilities can be mitigated to a certain extent, more research is needed
on how to avert attacks on p2p networks, such as those presented in this
chapter.

Chapter 13

Related Work

Papadimitriou [183] has argued that the Internet has surpassed the von Neu-
mann computer as the most complex computational artifact of our time. In
particular, he pointed out that the Internet has a socio-economic complex-
ity whose understanding requires techniques from mathematical economics
and game theory [180]. Since then, game theoretic approaches have become
increasingly popular to study selfish behavior on all layers of distributed
systems. Specifically, researchers have been keen to study the inherent loss
of efficiency in a system caused by the participant’s selfishness in networks.
Consequently, the Price of Anarchy and its complexity have been investi-
gated in various system settings, for example in routing [67, 206] (see also
the book by Roughgarden [205]): Roughgarden has observed that the data
packets which usually “rocket along the Internet at the speed of light” [29]
can be significantly slowed down by selfish routers—a phenomenon which
has been known also in civil engineering in the context of road planning.
Besides being a useful toolkit to understand strategic interactions occurring
in today’s Internet, game theory itself offers exciting questions for mathe-
maticians and computer scientists. For instance, while it is known that Nash
equilibria always exist if the players’ strategies are convex sets (such sets can
for example be obtained by using probability distributions over strategies),
in general, the complexity of finding a Nash equilibrium is believed to be
one of the most important open questions on the boundary of the complexity
class P, besides factoring [183]. Despite decades of effort, the computational
complexity of computing a Nash equilibrium for a general-sum normal-form
game remains unknown.

Economic literature has studied game theory for several decades, for vari-
ous problems from climate change to questions related to war and peace [28].
Since the influential work of brilliant mathematicians like John von Neumann,
Oskar Morgenstern or John Nash [172, 238, 239], a great number of results
have been obtained in this area. In this endeavor, several generalizations
have been proposed, taking into account many aspects of reality. A prime
example is Harsanyi’s historical work on incomplete information games [110]

148 CHAPTER 13. RELATED WORK

which opened the door to many new economic fields. Before this work, it
has been thought that game theory is only applicable if the payoff matrix is
completely known [71]. Also the rationality frontier has been weakened and
there are suggestions that game theory need not even assume that players be
utility maximizers [27]. Recently, quantum game theory [44] has shown that
there exist interesting new solutions to classic problems like the prisoner’s
dilemma.

Adar and Huberman [5] noticed that selfish behavior is a reality also in
peer-to-peer systems, and that there exists a large fraction of free riders in
the file sharing network Gnutella. The problem of selfish behavior in peer-to-
peer systems has been a hot topic in p2p research ever since, e.g. [113, 216],
and many mechanisms to encourage cooperation have been proposed, for ex-
ample in [91, 105, 209, 231, 237]. Perhaps the simplest fairness mechanism
is to directly incorporate contribution monitoring into the client software.
For instance, in the file-sharing system Kazaa, the client records the con-
tribution of its user. However, such a solution can simply be bypassed by
implementing a different client that hard-wires the contribution level to the
maximum, as it was the case with Kazaa Lite. Inspired by real economies,
some researchers have also proposed the introduction of some form of vir-
tual money which is used for the transactions. However, these monetary or
credit based approaches have a substantial overhead in terms of communi-
cation costs and infrastructure, and are inefficient [100, 241]. Often, these
systems also require market regulating mechanisms [237] to cope with infla-
tion or deflation—a complex issue. Additionally, monetary based systems
may deter users from participating [177].

BitTorrent [66] has incorporated a fairness mechanism from the begin-
ning. Although this mechanism has similarities to the well known tit-for-tat
scheme [40], the mechanism employed in BitTorrent distinguishes itself from
the classic tit-for-tat mechanism in many respects [118]. It has also been
the subject of active research recently (e.g., [48, 99, 196]). Based on Plan-
etLab tests, [118] has argued that BitTorrent lacks appropriate rewards and
punishments and therefore peers might be tempted to freeload. The authors
further propose a tit-for-tat-oriented mechanism based on the iterated pris-
oner’s dilemma [40] in order to deter peers from freeloading. However, in
their work, a peer is already considered a free rider if it contributes consid-
erably less than other peers. BitThief, on the other hand, aims at attaining
fast downloads strictly without uploading any data. This is often desirable,
since in many countries downloading certain media content is legal whereas
uploading is not.

In [150], Liogkas et al. implement three selfish BitTorrent exploits and
evaluate their effectiveness. They come to the conclusion that while peers
can sometimes benefit slightly from being selfish, BitTorrent is fairly robust.
Our case study extends [150] in that, rather than concentrating on individual
attacks, we have implemented a client that combines several attacks (an
open question in [150]). In contrast to the work presented in Chapter 8, the
authors examine the effect of free riders on the overall system and argue that
the quality of service is not severely affected by the presence of some peers
that contribute only marginally. We have focused strictly on maximizing

149

the download rate of a single, selfish peer, regardless of what effect this
peer has on the system. In [16], the cooperation in BitTorrent communities
has been studied. It has been shown that community-specific policies can
boost cooperation. We have demonstrated that cheating is often easy in
communities and selfish behavior is even more rewarding.

Shortly after the publication of BitThief, Piatek et al. [190] announced
their BitTyrant client—a modification of the Azureus client implemented in
Java. BitTyrant’s strategy is to exploit the BitTorrent protocol in order
to maximize download rates. In contrast to BitThief, BitTyrant does not
free ride. For instance, BitTyrant uses a smart neighbor selection strategy
and connects to those peers with the best reciprocation ratios. BitTyrant
seeks to provide the minimal necessary contribution, and also increases the
active set if this is beneficial to the download rate. The authors claim that
their client provides a median 70% performance gain in certain environments.
Finally, note that in a work by Shneidman, Parkes and Massoulié [217], a
manual backtracing method is introduced which allows to discover potentially
harmful protocol manipulations of protocols in an algorithmic way; with their
backtracing graph, the faithfulness of Internet algorithms such as BitTorrent
can be analyzed. So far, we have not made use of their approach.

The game-theoretic model of our locality game (cf Chapter 9) has been
inspired by the paper by Fabrikant et al. [87] which studies the Internet’s
architecture as built by economic agents, e.g., by Internet providers or au-
tonomous systems. Recent subsequent work on network creation in various
settings includes [12, 21, 60, 69, 75, 84]. In contrast to all these works, our
model takes into account many of the intrinsic properties of p2p systems.
For instance, it captures the important locality properties of p2p systems,
i.e., the desire to reduce the latencies (expressed as the stretch) experienced
when performing look-up operations. Furthermore, the fact that a peer can
decide to which other peers it wishes to store pointers and thus maintain
links yields a scenario with directed links. Building structured systems that
explicitly exploit locality properties has been a flourishing research area in
networking and p2p computing (e.g. [2, 207, 243]). In early literature on
distributed hash tables, the major measure of system quality has been the
number of hops required for look-up operations. While this hop-distance is
certainly of importance, it has been argued that the delay of communication
(i.e., the stretch between pairs of peers) is a more relevant quality measure.
Based on results achieved in [191], systems such as [2, 4, 207, 248] guarantee
a provably bounded stretch with a limited number of links per peer. All
of these systems are structured and peers are supposed to participate in a
carefully predefined topology. Our work complements this line of research
by analyzing topologies as they are created by selfish peers, which are in-
terested only in optimizing their individual trade-off between locality and
maintenance overhead.

Security and robustness of distributed systems against malicious or Byzan-
tine faults are of prime importance and have been an active field of research
for many years. For instance, in [58], a Byzantine-fault-tolerant distributed
file system has been proposed (cf also the Microsoft’s distributed FARSITE
system [6]). Possibly the most well-known problem in this context has been

150 CHAPTER 13. RELATED WORK

that of reaching consensus among distributed parties. Possibility and impos-
sibility results on the Byzantine consensus problem have been achieved in a
variety of models and settings. Classic work in the synchronous and asyn-
chronous case includes [78, 138, 218] and [94], respectively. In addition to
the consensus problem, the distributed computing community has come up
with results and solutions for a wide variety of other problems with Byzan-
tine faults. Examples are clock synchronization [242], broadcast [134, 222],
or quorum systems [159]. All of the above works assume that non-Byzantine
players (or processes) are benevolent and attempt to reach a common goal.
Finally, Byzantine behavior is subject to intensive research in cryptography.
For instance, there is a large body of work in the area of secure multi-party
computation [246]. In this context, two interesting papers by Halpern and
Teague [109] and by Abraham et al. [3] need to be mentioned which consider
self-interested players, e.g., in secret sharing problems. In [3], it is shown that
Nash equilibria exist for secret sharing where no member of a coalition of size
up to k nodes can do better even if the entire coalition defects, provided that
players prefer to get the secret information than not to get it.

Chapter 10 strives for combining fault-tolerance research with game the-
ory. In this respect, our work is related to the notions of fault tolerant im-
plementation introduced by Eliaz [85] and of BAR fault tolerance introduced
by Aiyer et al. [9]. In [85], implementation problems are investigated with k
faulty players in the population, but neither their number nor their identity
is known. A planner’s objective then is to design an equilibrium where the
non-faulty players act according to his rules. In [9], the authors describe an
asynchronous state machine replication protocol which tolerates Byzantine,
Altruistic, and Rational behavior. Interestingly, they find that the presence
of Byzantine players can simplify the design of protocols if players are risk
averse. In contrast to our work, rather than evaluating the degradation due
to non-cooperative behavior, a concrete protocol for a cooperative backup
service is provided.

To the best of our knowledge, the first paper to study equilibria with a
malicious player is by Karakostas and Viglas [121]. They consider a routing
application where a single malicious player uses his flow through the network
in an effort to cause the maximum possible damage. In order to evaluate the
impact of such malicious behavior, a coordination ratio is introduced which
compares the social costs of the worst Wardrop equilibrium to the social
costs of the best minimax saddle-point. A different basing point is used
where the benevolent coordinator cannot influence the malicious player: in
the “social optimum” only the costs of the players which can be coordinated
are minimized, while the malicious player seeks to maximize costs.

There exists other work on game theoretic systems in which not every
participating agent acts in a rational or selfish way. In the Stackelberg the-
ory [204], for instance, the model consists of a set of selfish players, but a
certain fraction of the entire population is controlled by a global leader. The
leader’s goal is to devise a strategy that induces an optimal or near optimal
so-called Stackelberg equilibrium.

An interesting follow-up work by Babaioff, Kleinberg and Papadimitrou
analyzes the so-called Windfall of Malice in the context of non-atomic conges-

151

tion games [41]. The authors investigate pure and mixed equilibria. Their
players are less risk-averse, and a different solution concept is employed.
Consider a game for three companies with three production strategies: clean
production of a good, production of a good which pollutes the environment,
and environmental inspection of the other companies. In their model, there
is a unique equilibrium where all three companies choose a polluting strat-
egy. Now assume a malicious company whose utility is the negative sum of
the other two companies’ payoffs. It can be shown that this malicious player
selects the inspection strategy, which yields an equilibrium where the two re-
maining companies go for a clean production. Eventually, the social welfare
is increased, and hence, a Windfall of Malice indeed exists. The author con-
jecture that there is no Windfall of Malice in their model in networks where
the set of paths is a matroid, and also find that the absence of a Windfall
of Malice may be related to the absence of some sort of generalized Braess’
paradox. Finally, note that there also exists work on auctions with agents
that derive utility from the disutility of others [55, 166]. Both papers derive
symmetric Bayes Nash equilibria for spiteful agents in 1st-price and 2nd-price
sealed bid auctions. The authors show that the revenue equivalence between
second-price and first-price auctions breaks down with spiteful agents, with
second-price outperforming first-price. Finally, a recent work by Roth [203]
has studied the Price of Malice in linear congestion games, making weaker
assumptions on the behavior of rational and malicious player, and using no-
regret analysis.

Of course, coordination and collaboration problems involving malicious
players also exist outside game theory. To just give one example, consider the
collaborative filtering problem studied in [32] (cf also [31]), where there are
Byzantine players among the n players participating in a reputation system
like eBay. The goal of the honest players is to find a good object, and they
can use a shared billboard to collaborate. The dilemma of an honest player
is how to balance between the desire to reduce her cost by taking advantage
of the reports posted by honest peers, and the fear of being exploited by
adopting reports posted by malicious players.

There exist many virus propagation models in literature. While tradi-
tional epidemiological models characterize infection in terms of birth rate
and death rate of the virus [43], more recently, models have been proposed
for all kind of graphs, including Internet-like power-law graphs [185]. In par-
ticular, the game theoretic virus propagation model of Chapter 10 is based
on [24]. The authors of [24] model the containment of the spread of viruses
in general graphs. They characterize equilibria in selfish environments and
also give an approximation algorithm for the centralized, non-selfish case.

In Chapter 11, the virus inoculation game has been studied on social net-
works which lay equal claims on the interest of social scientists, biologists,
ethnologists, psychologists, linguists, and communication scientists. In these
networks, nodes (individuals or organizations) are tied by a specific type of
interdependency, e.g., friendship, disease transmission, economic trade, sex-
ual relations, web links, and so on. In the last years, social network analysis
has moved from being a suggestive metaphor to an analytical paradigm, and
many different metrics have been explored on such graphs (e.g., centrality

152 CHAPTER 13. RELATED WORK

indices or clustering coefficients) [54]. The power of social network analysis
stems from its new perspective where the attributes of individuals are less
important than their relationships with other actors in the network. This
approach turned out to be useful to explain many phenomena.

Computer scientists are also attracted by these networks. Many social
networks exist today on the Internet, e.g., Facebook [88], LinkedIn [149],
MySpace [168], Orkut [179], or Xing [244], to name but a few. The popular
small world experiment [163] conducted by Stanley Milgram 1967 has gained
attention by the algorithm community [131] and sparked research on topics
such as decentralized search algorithms [132, 160], routing [98, 131, 148]
and the identification of communities [95, 173]. Computer scientists have
also proposed to use social networks to circumvent censorship, as millions
of people today suffer from censorship (blockage of various websites ranging
from YouTube, Flickr, Wikipedia or even Google have been reported) [221].

The dynamics of epidemic propagation of information or diseases has been
studied from an algorithmic perspective as well [133, 142]. Knowledge on
effects of the cascading behavior in social networks sheds light on phenomena
as diverse as word-of-mouth effects, the diffusion of innovation, the emergence
of bubbles in a financial market or the rise of a political candidate. It can
also help to identify sets of influential nodes in networks where marketing
is particularly efficient (viral marketing). For a good overview on economic
aspects of social networks, we refer the reader to [51], which also compares
random graph theory with game theoretic models for the formation of social
networks.

Recently, several misuses of social networks by viruses have been reported:
for instance, email viruses1 have used address lists to propagate to the users’
friends. Similar vulnerabilities have been exploited to spread worms on the
mobile phone network [96] and on the Internet telephony tool Skype2.

There is also other literature on game theory where players are influenced
by their neighbors. In graphical economics [120, 127], an undirected graph is
given where an edge between two players denotes that free trade is allowed
between the two parties, where the absence of such an edge denotes an em-
bargo or an other restricted form of direct trade. The payoff of a player is a
function of the actions of the players in her neighborhood only. In contrast
to our work, a different equilibrium concept is used and no social aspects are
taken into consideration.

Chapter 12 has investigated the feasibility of malicious attacks on Kad.
It is well-known that the immense computational resources of p2p networks
can often be exploited by attackers, and there is already a large body of
literature on the subject [57, 240].3 Reasons to attack a p2p system can
be manifold: besides the more or less passive “rational attacks” [174], a
malicious attacker may, for example, strive to partition the system or to
eclipse individual nodes. The eclipse attack [219] can be used by a set of
malicious peers to position themselves around a given peer in the network

1E.g., the Outlook worm Worm.ExploreZip.
2See http://news.softpedia.com/news/Skype-Attacked-By-Fast-Spreading-Virus-

52039.shtml.
3See also http://www.prolexic.com/news/20070514-alert.php/.

153

such that the peer’s contact list consists only of the colluding peers. In a Sybil
attack [81], a single entity creates multiple entities of itself in order to gain
control over a certain fraction of the system. Such an attack can undermine
redundancy mechanisms and is hard to counter in a completely decentralized
environment. Furthermore, the resources of a p2p system can be used to
attack any machine connected to the Internet regardless of whether it is part
of the p2p network or not. A denial of service attack can be launched in
various p2p systems, e.g., Gnutella [26], Overnet [170], and BitTorrent [74].
During this attack, information about the victim, i.e., the targeted machine
in the attack, is spread in the system. The victim is falsely declared as an
owner of popular content, causing other peers searching for this content to
contact the victim repeatedly. In BitTorrent, tracker information can be
faked which leads peers to believe that the victim is a tracker for the desired
content [74]. In the Kad network, DoS attacks can be launched by means of a
redirection attack where a queried peer, the attacker, will return a response
containing the address of the victim [230]. The attacks presented in this
thesis can also be used to launch a DoS attack. The work closest in spirit
to the one presented in Chapter 12 is the study of index poisoning attacks
in FastTrack and Overnet [146]. Their index poisoning attack is akin to our
publish attack where bogus information is pushed aggressively to the nodes
responsible for the desired keywords. However, while this attack is also quite
successful, it is not as effective in the Kad network as it is in FastTrack
and Overnet. We showed that a different, even simpler poisoning attack is
feasible. Moreover, our study of attacks in the Kad network is not limited to
content poisoning and index poisoning, but also considers the eclipse attack
to prevent peers from accessing a specific file. It is also worth pointing
out that, in comparison to Kad, it is generally easier to perform attacks on
Overnet, as it, e.g., does not check whether the sender of a publish message
provided its own IP address as the owner of the file, and no cryptography is
used for authentication.

While we believe that there are methods to contain the potential damage
caused by some of the attacks presented in Chapter 12 to some extent, it is
known that certain attacks require a logically centralized entity [81]. There
exists also an interesting theoretic work by Awerbuch and Scheideler on iden-
tifying and excluding large sets of colluding peers [38]. However, these results
cannot be used to counter our attacks as we require only a very small num-
ber of attackers close to a given ID, which is not sufficient to raise suspicion.
Recently, the same authors [37] have proposed a denial-of-service resistant
DHT. Concretely, a DHT is described which is robust to past insider attacks,
i.e., against an adversary who knows everything about the system up to some
time point t0 not known to the system. The problem of how to protect peers
in the DHT from participating in an attack themselves is not considered. For
a more thorough discussion of possible countermeasures against attacks in
p2p networks, the reader is referred to the corresponding literature [240].

Finally, there are several studies of the Kad network itself. Stutzbach et
al. [228] describe implementation details of Kad in eMule, and [227] presents
crawling results on the behavior of Kad peers. Steiner et al. [223] crawled
the Kad network during several weeks and found e.g. that different classes of

154 CHAPTER 13. RELATED WORK

participating peers exist inside the network. We have recently also conducted
a measurement study with an emphasis on the user behavior in the server-
based eDonkey network and in the server-less Kad. Our results are described
in [154].

Chapter 14

Conclusion

Since the introduction of Napster (in June 1999) and Gnutella (in March
2000), the proliferation of peer-to-peer technology has enabled millions of in-
dividuals from all over the planet to self-organize and collaborate in the dis-
semination of various contents. However, already 6 months after Gnutella’s
public release—and long before the first copyright infringement lawsuits—two
thirds of the Gnutella network consisted of free riders who did not upload
anything at all. [175]

Non-cooperation is a threat to the p2p paradigm which relies on voluntary
resource contributions. Part II of this thesis has aimed at gaining deeper
insights into the effects of both selfish and malicious behavior. We have
shown that free-riding in today’s BitTorrent is possible despite the tit-for-tat
inspired barter algorithms. Free-riding can be particularly attractive for users
in countries where uploading is expensive or prohibited by law. Moreover,
it can be appealing to certain “malicious” participants to harm the system’s
availability or performance, e.g., because copyrighted music and movies are
distributed illegally.

Why do today’s systems still not effectively solve the cooperation chal-
lenge? Certainly, one explanation is that finding good solutions is difficult:
p2p networks are typically large, have a high turn-over rate and provide a
certain user anonymity. Many defections cannot be detected and peers can
often create multiple identities for free. How difficult it is to design coopera-
tion mechanisms also depends on the application. In case of live streaming,
peers can be punished more easily as already a small fraction of late packets
can reduce the streaming quality significantly. Our streaming tool Pulsar
employs a time-constrained version of the tit-for-tat mechanism [152]. The
bootstrap problem is tackled by providing only a subset of blocks for free to
a peer, and this subset depends on the peer’s ID. For on-demand p2p stream-
ing, the picture looks different: peers which started to watch the movie later
in time do not have any data to contribute to earlier peers. The online
storage tool Wuala applies a shared history approach [105]: due to coding,
there are many transactions and hence repeated interactions between the

156 CHAPTER 14. CONCLUSION

same peers. Finally, in the grid computing project, we exploit the presence
of a centralized entity to monitor the collaboration: our server assigns vir-
tual credit points to peers depending on their CPU cycles. These points
allow to reward hard-working clients in different ways; for instance, there is
a project website listing the project’s top overall contributors, or the “user of
the day” [45]. Alternatively, the credit points could be used in a lottery [82]
which offers the chance of monetary compensations for active participants.
In order to prevent that peers obtain credits for free, a distributed checking
algorithm [137] is applied which verifies whether the peer’s results have been
computed properly.

Another question is of course why the recording industry, e.g., the Record-
ing Industry Association of America (RIAA)1, does not make use of the vul-
nerabilities presented in Chapter 12 in order to remove copyrighted material.
One explanation is that these vulnerabilities may not be known yet. However,
it is likely that a different strategy is pursued: instead of actively harming the
infrastructure, a passive approach is taken in the sense that contravention is
monitored and logged.2

The goal of designing better cooperation algorithms should be a driving
force when setting up future p2p research agendas. Currently, game theory
is our power house to improve our scientific understanding of the economic
aspects of peer-to-peer computing. Game theory allows us to identify weak-
nesses in protocols and to give formal proofs on the incentive-compatibility of
a proposed solution. Of course, the obtained conclusions cannot be strong if
the underlying assumptions are unrealistic. This thesis has argued that pro-
viding the right incentives for selfish players alone is not sufficient to solve
the non-cooperation problem, as there might be malicious players benefitting
from a reduced social welfare in a system. A system should try to prevent
such players from joining the network or to apply other means external to
the system to ensure a good performance.

Peer-to-peer systems probably include many more types of players be-
sides altruistic, selfish or malicious ones. It is impossible to assess all these
players’ cost or utility functions, and such behavior is often outside of typical
game-theoretic models. People also react differently to the provided cooper-
ation incentives. While some users can be motivated by the “geek chic” [82]
associated with high contribution levels published on web sites others may

1See http://www.riaa.org/.
2The RIAA claims that p2p software results in a reduction of profits of 4.2 billion USD

per year for the music industry worldwide [201]. Many lawsuits against users have been
filed in the last years, which has been described by the New York Times as a campaign to
raise the users’ awareness that not everything is free in the Internet. However, note that
the logging of IP addresses (and subsequently trying to find the corresponding users’ real
addresses or phone numbers) can be problematic, as it threatens rights of privacy (e.g.,
see the Swiss Bundesgesetz über den Datenschutz (DSG)).

Also observe that recently, there have indeed been reports on attacks by specialized
anti-p2p companies working on behalf of the RIAA and specific record labels [76]. The
music and film industry have started hiring companies to impede specific “assets” from
being distributed, e.g., in BitTorrent.

Today, many judical questions remain open, and it is believed that it will take the
laws of society some time to catch up with the technological shift introduced by p2p
software [197].

157

demand monetary compensations. Moreover, peer-to-peer games are often
dynamic games in the sense that the same players interact repeatedly in com-
plex ways, where the individual players’ utility functions can also evolve over
time. It is possible that a player chooses a strategy that might seem irrational
in the short term but can be beneficial in the long term. Experiments have
also shown that people often do not play the Nash equilibrium strategy (cf
also the paradox of the traveler’s dilemma). Moreover, many studies today,
including the one presented in this thesis, assume that nodes have a global
knowledge of the network’s state. In a distributed setting, it takes time to
gather such information, and it would be interesting to adapt the equilibrium
concepts for the case where the nodes’ horizon is bounded. In addition, com-
putation and communication power of players is often limited, and they may
fail to pick the strategy maximizing the expected utility (bounded-rational
players). Finally, it is well-known (e.g., cf [72, 90, 165, 216]) that also the
network topology can have an influence on the design of a (distributed) algo-
rithmic incentive mechanism: in a message-passing environment, during an
auction on a large p2p network for example, it can be rational for nodes to
drop messages instead of forwarding them to their neighbors.

Ignoring some of these aspects which are important in practice can distort
the results, or even render them useless in practice. One difficulty with game
theory is that it is hard to obtain impossibility results or lower bounds, as the
model’s point of view is not normative but rather analytical. For comparison,
consider a connectivity model for wireless sensor networks. If we can prove
the correctness and performance of an algorithm for a unit disk graph, this
algorithm might fail after deployment. However, when we can give such a
formal proof for general connectivity graphs, then we can be pretty sure that
connectivity will not be a problem for this algorithm in practice. However,
obtaining similar guarantees for selfish environments is difficult: assuming
the most general utility functions is likely to render an analysis cumbersome
and will not provide many hard results. Observe that such a system would
essentially consist of an entirely Byzantine population.

Much game-theoretic research today is conducted on specific network lay-
ers. However, it is not clear whether all these protocols on the different layers
can be seamlessly combined, and it would be interesting to further investi-
gate the feasibility of an entire incentive-compatible protocol stack, not only
for p2p systems, but also for other distributed systems like wireless sensor
networks.

In a broader context, cooperation and collaboration are of course very
fundamental subjects of research in many distributed systems or societies. An
interesting example is the Wikipedia project which has managed to motivate
thousands of volunteers around the world to contribute articles to the online
encyclopedia. Also here, despite the great success, many challenges remain.
For instance: how can the quality of Wikipedia articles be guaranteed or
even improved in future without sacrificing the principles of collaboration
and scalability, i.e., without the need for supervisors? We believe that lessons
learnt in such alternative environments could also be useful in the context of
peer-to-peer computing. However, only future can tell whether algorithmic
solutions to these interdisciplinary questions exist.

Bibliography

[1] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, and
E. Pavlov. A Generic Scheme for Building Overlay Networks in Ad-
versarial Scenarios. In Proc. 17th Int. Symposium on Parallel and Dis-
tributed Processing (IPDPS), 2003.

[2] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, and S. Ron.
Practical Locality-Awareness for Large Scale Information Sharing. In
Proc. 4th Int. Workshop on Peer-to-Peer Systems (IPTPS), 2005.

[3] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed Com-
puting Meets Game Theory: Robust Mechanisms for Rational Secret
Sharing and Multiparty Computation. In Proc. 25th Annual Sympo-
sium on Principles of Distributed Computing (PODC), Denver, Col-
orado, USA, 2006.

[4] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch (1+e) Local-
ity Aware Networks for DHTs. In Proc. 15th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 550–559, 2004.

[5] E. Adar and B. A. Huberman. Free Riding on Gnutella. First Monday,
5(10), 2000.

[6] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer.
FARSITE: Federated, Available, and Reliable Storage for an Incom-
pletely Trusted Environment. In Proc. 5th Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

[7] V. Aggarwal, A. Feldmann, and C. Scheideler. Can ISPs and P2P
Users Cooperate for Improved Performance? ACM Computer Com-
munication Review, 2007.

[8] W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén. Adaptive
Packet Routing for Bursty Adversarial Traffic. In Proc. 13th Annual
ACM Symposium on Theory of Computing (STOC), pages 359–368,
New York, NY, USA, 1998.

159

160 BIBLIOGRAPHY

[9] A. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth.
BAR Fault Tolerance for Cooperative Services. In Proc. 20th ACM
Symposium on Operating Systems Principles (SOSP), pages 45–58,
2005.

[10] A. Akella, S. Seshan, and A. Shaikh. An Empirical Evaluation of
Wide-Area Internet Bottlenecks. In Proc. ACM Internet Measurement
Conference (IMC), 2003.

[11] S. B. Akers and B. Krishnamurthy. A Group-Theoretic Model for Sym-
metric Interconnection Networks. IEEE Transactions on Computing,
38(4):555–566, 1989.

[12] S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On
Nash Equilibria for a Network Creation Game. In Proc. 17th ACM
Symposium on Discrete Algorithms (SODA), 2006.

[13] K. Albrecht, R. Arnold, M. Gähwiler, and R. Wattenhofer. Aggregating
Information in Peer-to-Peer Systems for Improved Join and Leave. In
Proc. 4th IEEE Int. Conference on Peer-to-Peer Computing (P2P),
2004.

[14] D. Aldous. Ultimate Instability of Exponential Back-off Protocol
for Acknowledgement Based Transmission Control of Random Access
Communication Channels. IEEE Transactions on Information Theory,
1987.

[15] D. P. Anderson. BOINC: A System for Public-Resource Computing and
Storage. In Proc. 5th IEEE/ACM Int. Workshop on Grid Computing
(GRID), pages 4–10, 2004.

[16] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu.
Influences on Cooperation in BitTorrent Communities. In Proc. 3rd
ACM SIGCOMM Workshop on Economics of Peer-to-Peer Systems
(P2PEcon), 2005.

[17] M. Andrews, B. Awerbuch, A. Fernández, T. Leighton, Z. Liu, and
J. Kleinberg. Universal-Stability Results and Performance Bounds for
Greedy Contention-Resolution Protocols. Jounal ACM, 48(1):39–69,
2001.

[18] Andy Oram (Ed.). Peer-to-Peer: Harnessing the Power of Disruptive
Technologies. O’Reilly, 2001.

[19] D. Angluin, J. Aspnes, J. Chen, Y. Wu, and Y. Yin. Fast Construc-
tion of Overlay Networks. In Proc. 17th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 145–154, 2005.

[20] F. Annexstein, M. Baumslag, and A. L. Rosenberg. Group Action
Graphs and Parallel Architectures. SIAM Journal Comput., 19(3):544–
569, 1990.

BIBLIOGRAPHY 161

[21] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and
T. Roughgarden. The Price of Stability for Network Design with Fair
Cost Allocation. In Proc. 45th Symposium on Foundations of Computer
Science (FOCS), pages 295–304, 2004.

[22] S. Arora and B. Brinkman. A Randomized Online Algorithm for Band-
width Utilization. In Proc. 13th Annual ACM Symposium on Discrete
Algorithms (SODA), pages 535–539, Philadelphia, PA, USA, 2002.

[23] S. Ashby, G. Eulisse, S. Schmid, and L. Tuura. Parallel Compilation
of CMS Software. In Proc. Computing in High Energy and Nuclear
Physics Conference (CHEP), 2004.

[24] J. Aspnes, K. Chang, and A. Yampolskiy. Inoculation Strategies for
Victims of Viruses and the Sum-of-Squares Partition Problem. In Proc.
16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 43–52, 2005.

[25] J. Aspnes and G. Shah. Skip Graphs. In Proc. 14th Ann. ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 384–393, 2003.

[26] E. Athanasopoulos, K. G. Anagnostakis, and E. P. Markatos. Misus-
ing Unstructured P2P Systems to Perform DoS Attacks: The Network
That Never Forgets. In Proc. 4th Int. Conference on Applied Cryptog-
raphy and Network Security (ACNS), 2006.

[27] R. J. Aumann. Correlated Equilibrium as an Expression of Bayesian
Rationality. Econometrica, 55:1–18, 1987.

[28] R. J. Aumann. War and Peace. Nobel Prize Lecture, Discussion Paper
No 428, 2006.

[29] I. Austen. Like a Swerving Commuter, a Selfish Router Slows Traffic.
The New York Times, 2003.

[30] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Vargh-
ese. Time Optimal Self-Stabilizing Synchronizers Using Phase Clocks.
IEEE Trans. on Dependable Systems, 2007.

[31] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Tuttle. Collaboration
of Untrusting Peers with Changing Interests. In Proc. ACM Conference
on Electronic Commerce (EC), pages 112–119, 2004.

[32] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Tuttle. Adaptive Col-
laboration in Peer-to-Peer Systems. In Proc. 25th IEEE International
Conference on Distributed Computing Systems (ICDCS), pages 71–80,
2005.

[33] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-Stabilization By
Local Checking and Correction. In Proc. IEEE Symposium on Foun-
dations of Computer Science (FOCS), 1991.

162 BIBLIOGRAPHY

[34] B. Awerbuch and C. Scheideler. The Hyperring: A Low-Congestion
Deterministic Data Structure for Distributed Environments. In Proc.
15th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 318–327, 2004.

[35] B. Awerbuch and C. Scheideler. Robust Random Number Generation
for Peer-to-Peer Systems. In Proc. 10th International Conference on
Principles of Distributed Systems (OPODIS), 2006.

[36] B. Awerbuch and C. Scheideler. Towards a Scalable and Robust DHT.
In Proc. 18th ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), 2006.

[37] B. Awerbuch and C. Scheideler. A Denial-of-Service Resistant DHT. In
Proc. 21st Ann. Conference on Distributed Computing (DISC), pages
33–47, 2007.

[38] B. Awerbuch and C. Scheideler. Towards Scalable and Robust Over-
lay Networks. In Proc. 6th Int. Workshop on Peer-To-Peer Systems
(IPTPS), 2007.

[39] B. Awerbuch and M. Sipser. Dynamic Networks Are as Fast as Static
Networks. In Proc. IEEE Symposium on Foundations of Computer
Science (FOCS), 1988.

[40] R. Axelrod. The Evolution of Cooperation. Science, 211(4489):1390-6,
1981.

[41] M. Babaioff, R. Kleinberg, and C. Papadimitriou. Congestion Games
with Malicious Players. In Proc. ACM Conference on Electronic Com-
merce (EC), San Diego, CA, USA, 2007.

[42] A. Bagchi, A. Bhargava, A. Chaudhary, D. Eppstein, and C. Scheideler.
The Effect of Faults on Network Expansion. In Proc. 16th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), 2004.

[43] N. Bailey. The Mathematical Theory of Infectious Diseases and Its
Applications. Hafner Press, 1975.

[44] S. C. Benjamin and P. M. Hayden. Multiplayer Quantum Games. Phys.
Rev., 2001.

[45] Berkeley Open Infrastructure for Network Computing. BOINC Com-
bined Statistics. In http://boinc.netsoft-online.com/, 2006.

[46] K. Berman. Vulnerability of Scheduled Networks and a Generalization
of Menger’s Theorem. Networks, 28:125–134, 1996.

[47] R. Bhagwan, S. Savage, and G. Voelker. Understanding Availability.
In Proc. 2nd Int. Workshop on Peer-to-Peer Systems (IPTPS), 2003.

BIBLIOGRAPHY 163

[48] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing and
Improving a BitTorrent Network’s Performance Mechanisms. In Proc.
IEEE Conference on Computer Communications (INFOCOM), pages
36–46, 2006.

[49] A. Bhargava, K. Kothapalli, C. Riley, C. Scheideler, and M. Thober.
Pagoda: A Dynamic Overlay Network for Routing, Data Management,
and Multicasting. In Proc. 16th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 170–179, 2004.

[50] BitTorrent. Website. http://www.bittorrent.com/.

[51] R. Blundell, W. Newey, and Torsten Persson (Eds). Advances in Eco-
nomics and Econometrics (Chapter 1: The Economics of Social Net-
works). 2006.

[52] A. Borodin and R. El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[53] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P.
Williamson. Adversarial Queuing Theory. In Proc. 28th Annual Sym-
posium on Foundations of Computer Science (STOC), 1996.

[54] U. Brandes and Thomas Erlebach (Eds). Network Analysis. Springer,
2005.

[55] F. Brandt, T. Sandholm, and Y. Shoham. Spiteful Bidding in Sealed-
bid Auctions. In Proc. 20th International Joint Conference on Artificial
Intelligence (IJCAI), 2007.

[56] Caleido. Website. http://www.caleido.com/.

[57] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-
lach. Secure Routing for Structured Peer-to-Peer Overlay Networks.
In Proc. 5th Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 299–314, 2002.

[58] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In
Proc. 3rd Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 173–186, 1999.

[59] H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On Hierarchical
Routing in Doubling Metrics. In Proc. 17th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 762–771, 2005.

[60] H.-L. Chen and T. Roughgarden. Network Design with Weighted Play-
ers. In Proc. 18th ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA), pages 29–38, 2006.

[61] Christoph Renner (Advisors: Michael Kuhn and Stefan Schmid).
BOINC and Distributed Checking. In Semester Thesis, 2007.

164 BIBLIOGRAPHY

[62] Christoph Schwank (Advisors: Michael Kuhn and Stefan Schmid).
BOINC and Distributed Checking. In Master Thesis, 2007.

[63] B.-G. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. H. Papadimitriou,
and J. Kubiatowicz. Selfish Caching in Distributed Systems: A Game-
theoretic Analysis. In Proc. 23rd Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC), pages 21–30, 2004.

[64] D. Clark. Face-to-Face with Peer-to-Peer Networking. Computer, pages
18–21, January 2001.

[65] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley. Pro-
tecting Free Expression Online with Freenet. IEEE Internet Comput-
ing, 2002.

[66] B. Cohen. Incentives Build Robustness in BitTorrent. In Proc. 1st
Workshop on Economics of Peer-to-Peer Systems (P2PEcon), 2003.

[67] R. Cole, Y. Dodis, and T. Roughgarden. How Much Can Taxes Help
Selfish Routing? Journal Comput. Syst. Sci., 72(3):444–467, 2006.

[68] S. A. Cook. The Complexity of Theorem-Proving Procedures. In Proc.
3rd ACM Symposium on Theory of Computing (STOC), pages 151–158,
1971.

[69] J. Corbo and D. C. Parkes. The Price of Selfish Behavior in Bilateral
Network Formation. In Proc. 24th ACM Symposium on Principles of
Distributed Computing (PODC), pages 99–107, 2005.

[70] G. Cybenko. Dynamic Load Balancing for Distributed Memory Mul-
tiprocessors. Journal on Parallel Distributed Computing, 7:279–301,
1989.

[71] P. Dasgupta, D. Gale, O. Hart, and E. Maskin. Economic Analysis
of Markets and Games: Essays in Honor of Frank Hahn. MIT Press,
pages 214–227, 1992.

[72] R. K. Dash, N. R. Jennings, and D. C. Parkes. Computational-
Mechanism Design: A Call to Arms. IEEE Intelligent Systems,
18(6):40–47, 2003.

[73] A. Datta and K. Aberer. Internet-Scale Storage Systems Under Churn.
In Proc. 6th IEEE Int. Conference on Peer-to-Peer Computing (P2P),
2006.

[74] K. E. Defrawy, M. Gjoka, and A. Markopoulou. BotTorrent: Misusing
BitTorrent to Launch DDoS Attacks. In Proc. 3rd Workshop on Steps
to Reducing Unwanted Traffic on the Internet (SRUTI), 2007.

[75] E. D. Demaine, M. T. Hajiaghayi, H. Mahini, and M. Zadimoghaddam.
On the Topologies Formed by Selfish Peers. In Proc. 26th Annual
Symposium on Principles of Distributed Computing (PODC), 2007.

BIBLIOGRAPHY 165

[76] P. Dhungel, D. Wu, B. Schonhorst, and K. W. Ross. A Measurement
Study of Attacks on BitTorrent Leechers. In Proc. 7th Int. Workshop
on Peer-to-Peer Systems (IPTPS), 2008.

[77] E. W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control.
Commun. ACM, 17(11), 1974.

[78] D. Dolev. The Byzantine Generals Stike Again. Journal of Algorithms,
3(1):14–30, 1982.

[79] S. Dolev. Self-Stabilization. MIT Press, 2000.

[80] Dominik Grolimund and Luzius Meisser (Advisor: Stefan Schmid).
Kangoo/Wuala (see http://www.caleido.com/kangoo/). In Labs and
Theses, 2007.

[81] J. R. Douceur. The Sybil Attack. In Proc. 1st Int. Workshop on Peer-
to-Peer Systems (IPTPS), pages 251–260, 2002.

[82] J. R. Douceur and T. Moscibroda. Lottery Trees: Motivational Deploy-
ment of Networked Systems. In Proc. ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, 2007.

[83] H. Dweighter (a.k.a. J. E. Goodman). American Mathematical
Monthly, 82, 1975.

[84] S. Eidenbenz, V. Kumar, and S. Zust. Equilibria in Topology Con-
trol Games for Ad Hoc Networks. In Proc. ACM Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC), 2003.

[85] K. Eliaz. Fault Tolerant Implementation. Review of Economic Studies,
69:589–610, 2002.

[86] Emule Project. Website. http://www.emule-project.net/.

[87] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and
S. Shenker. On a Network Creation Game. In Proc. 22nd ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 347–351,
2003.

[88] Facebook. Website. http://www.facebook.com/.

[89] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the Cost
of Multicast Transmissions. Journal of Computer and System Sciences,
63(1):21–41, 2001.

[90] J. Feigenbaum and S. Shenker. Distributed Algorithmic Mechanism De-
sign: Recent Results and Future Directions. In Proc. 6th International
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications (DIALM-POMC), pages 1–13, 2002.

166 BIBLIOGRAPHY

[91] M. Feldman and J. Chuang. Overcoming Free-Riding Behavior in Peer-
to-Peer Systems. ACM Sigecom Exchanges, 6, 2005.

[92] A. Fiat and J. Saia. Censorship Resistant Peer-to-Peer Content Ad-
dressable Networks. In Proc. 13th Symposium on Discrete Algorithms
(SODA), 2002.

[93] A. Fiat, J. Saia, and M. Young. Making Chord Robust to Byzantine
Attacks. In Proc. European Symposium on Algorithms (ESA), 2005.

[94] M. Fischer, N. Lynch, and M. S. Paterson. Impossibility of Distributed
Consensus with one Faulty Processor. Journal ACM, 32(2):374–382,
1985.

[95] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee. Self-
Organization and Identification of Web Communities. Computer,
35(3):66–71, 2002.

[96] C. Fleizach, M. Liljenstam, P. Johansson, G. M. Voelker, and A. Mehes.
Can You Infect Me Now? Malware Propagation in Mobile Phone Net-
works. In Proc. 2007 ACM Workshop on Recurring Malcode (WORM),
pages 61–68, 2007.

[97] R. Flury and R. Wattenhofer. MLS: An Efficient Location Service for
Mobile Ad Hoc Networks. In Proc. 7th ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MOBIHOC), 2006.

[98] P. Fraigniaud, C. Gavoille, and C. Paul. Eclecticism Shrinks Even
Small Worlds. In Proc. 23rd Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 169–178, 2004.

[99] P. Ganesan and M. Seshadri. On Cooperative Content Distribution
and the Price of Barter. In Proc. 25th IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 81–90, 2005.

[100] F. D. Garcia and J.-H. Hoepman. Off-Line Karma: A Decentralized
Currency for Peer-to-Peer and Grid Applications. In Proc. 3rd Applied
Cryptography and Network Security (ACNS).

[101] M. R. Garey and D. S. Johnson. Computers and Intractability : A
Guide to the Theory of NP-Completeness (Series of Books in the Math-
ematical Sciences). W. H. Freeman, January 1979.

[102] Gnutella. Website. http://www.gnutella.com/.

[103] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing Churn in Dis-
tributed Systems. In Proc. ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Com-
munications, 2006.

[104] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer. Cryptree:
A Folder Tree Structure for Cryptographic File Systems. In Proc. 25th
IEEE Symposium on Reliable Distributed Systems (SRDS), 2006.

BIBLIOGRAPHY 167

[105] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer. Havelaar:
A Robust and Efficient Reputation System for Active Peer-to-Peer Sys-
tems. In Proc. 1st Workshop on the Economics of Networked Systems
(NetEcon), June 2006.

[106] S. Guha, N. Daswani, and R. Jain. An Experimental Study of the
Skype Peer-to-Peer VoIP System. In Proc. 5th Int. Workshop on Peer-
to-Peer Systems (IPTPS), 2006.

[107] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall. Improving the Reliability of Internet Paths with One-hop
Source Routing. In Proc. Symposium on Operating Systems Design &
Implementation (OSDI), 2004.

[108] A. Haeberlen, A. Mislove, A. Post, and P. Druschel. Fallacies in Eval-
uating Decentralized Systems. In Proc. 5th Int. Workshop on Peer-to-
Peer Systems (IPTPS), 2006.

[109] J. Halpern and V. Teague. Rational Secret Sharing and Multiparty
Computation. In Proc. 36th Annual ACM Symposium on Theory of
Computing (STOC), pages 623–632, 2004.

[110] J. C. Harsanyi. Games of Incomplete Information Played by Bayesian
Players. Management Science, 14, 1967.

[111] N. Harvey and J. Munro. Deterministic SkipNet. Inf. Process. Lett.,
90(4):205–208, 2004.

[112] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
SkipNet: A Scalable Overlay Network with Practical Locality Proper-
ties. In Proc. 4th USENIX Symposium on Internet Technologies and
Systems (USITS), 2003.

[113] D. Hughes, G. Coulson, and J. Walkerdine. Free Riding on Gnutella
Revisited: The Bell Tolls? IEEE Distributed Systems Online, 6(6),
2005.

[114] Jan Kostka (Advisors: Thomas Moscibroda and Stefan Schmid).
Byzantine Caching Game. In Semester Thesis, 2006.

[115] Jean-Luc Geering (Advisors: Thomas Locher and Stefan Schmid). To-
wards Peer-to-Peer Games. In Master Thesis, 2007.

[116] Jie Wu (Ed.). Handbook on Theoretical and Algorithmic Aspects of
Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks. Auerbach Pub-
lications, 2006.

[117] Joost. Website. http://www.joost.com/.

[118] S. Jun and M. Ahamad. Incentives in BitTorrent Induce Free Riding. In
Proc. 3rd ACM SIGCOMM Workshop on Economics of Peer-to-Peer
Systems (P2PEcon), 2005.

168 BIBLIOGRAPHY

[119] Jun Li (Advisors: Thomas Locher and Stefan Schmid). Implementation
of eQuus. In Lab, 2007.

[120] S. M. Kakade, M. Kearns, and L. E. Ortiz. Graphical Economics. In
Proc. 17th Annual Conference on Learning Theory (COLT), 2004.

[121] G. Karakostas and A. Viglas. Equilibria for Networks with Malicious
Users. Mathematical Programming A, 110(3):591–613.

[122] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In Proc.
29th ACM Symposium on Theory of Computing (STOC), pages 654–
663, 1997.

[123] D. R. Karger and M. Ruhl. Finding Nearest Neighbors in Growth-
Restricted Metrics. In Proc. 34th ACM Symposium on Theory of Com-
puting (STOC), pages 741–750, 2002.

[124] A. Karlin, C. Kenyon, and D. Randall. Dynamic TCP Acknowledge-
ment and Other Stories about e/(e− 1). In Proc. 41st Annual Sympo-
sium on Foundations of Computer Science (STOC), 2001.

[125] R. M. Karp. Reducibility Among Combinatorial Problems. Complexity
of Computer Computations, pages 85–103, 1972.

[126] R. M. Karp, E. Koutsoupias, C. H. Papadimitriou, and S. Shenker.
Optimization Problems in Congestion Control. In Proc. Symposium
on Foundations of Computer Science (FOCS), pages 66–74, 2000.

[127] M. Kearns, M. Littman, and S. Singh. Graphical Models for Game
Theory. In Proc. Conference on Uncertainty in Artificial Intelligence
(UAI), pages 253–260, 2001.

[128] F. Kelly. Mathematical Modelling of the Internet. Mathematics Un-
limited – 2001 and Beyond (Springer), 2001.

[129] D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based Computation of
Aggregate Information. In Proc. 44th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2003.

[130] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and Interference
Problems for Temporal Networks. In Proc. 32nd ACM Symposium on
Theory of Computing (STOC), 2000.

[131] J. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspec-
tive. In Proc. 32nd ACM Symposium on Theory of Computing (STOC),
2000.

[132] J. Kleinberg. Complex Networks and Decentralized Search Algorithms.
In Proc. International Congress of Mathematicians (ICM), 2006.

BIBLIOGRAPHY 169

[133] J. Kleinberg. Algorithmic Game Theory. Chapter 24 : Cascading Be-
havior in Networks: Algorithmic and Economic Issues. N. Nisan, T.
Roughgarden, E. Tardos, and V. V. Vazirani (Eds), Cambridge Uni-
versity Press, 2007.

[134] C.-Y. Koo. Broadcast in Radio Networks Tolerating Byzantine Ad-
versial Behavior. In Proc. 23rd ACM Symposium on the Principles of
Distributed Computing (PODC), pages 275–282, 2004.

[135] K. Kothapalli and C. Scheideler. Supervised Peer-to-Peer Systems. In
Proc. International Symposium on Parallel Architectures, Algorithms,
and Networks (I-SPAN), pages 188–193, 2005.

[136] F. Kuhn, T. Locher, and R. Wattenhofer. Tight Bounds for Distributed
Selection. In Proc. 19th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2007.

[137] M. Kuhn, S. Schmid, and R. Wattenhofer. Distributed Asymmetric
Verification in Computational Grids. In Proc. 22nd IEEE Int. Parallel
and Distributed Processing Symposium (IPDPS), 2008.

[138] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Prob-
lem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[139] J.-Y. Le Boudec and P. Thiran. Network Calculus. Springer LNCS
2050 Tutorial, 2001.

[140] F. Leighton, B. Maggs, and S. Rao. Universal Packet Routing Al-
gorithms. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 256–269, 1988.

[141] F. T. Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann, 1991.

[142] J. Leskovec, L. A. Adamic, and B. A. Huberman. The Dynamics of
Viral Marketing. ACM Transactions on the Web, 2007.

[143] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph Evolution: Den-
sification and Shrinking Diameters. ACM Transactions on Knowledge
Discovery from Data, 1(2), 2007.

[144] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil. A
Performance vs Cost Framework for Evaluating DHT Design Tradeoffs
under Churn. In Proc. 24th Annual IEEE Conference on Computer
Communications (INFOCOM), 2005.

[145] X. Li, J. Misra, and C. G. Plaxton. Active and Concurrent Topology
Maintenance. In Proc. 18th Ann. Conference on Distributed Computing
(DISC), 2004.

[146] J. Liang, N. Naoumov, and K. W. Ross. The Index Poisoning Attack
in P2P File Sharing Systems. In Proc. 25th Annual IEEE Conference
on Computer Communications (INFOCOM), 2006.

170 BIBLIOGRAPHY

[147] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the
Evolution of Peer-to-Peer Systems. In Proc. 21st Annual Symposium
on Principles of Distributed Computing (PODC), pages 233–242, 2002.

[148] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, and A. Tomkins.
Geographic Routing in Social Networks. Number 33, pages 11623–
11628. National Acad Sciences, 2005.

[149] LinkedIn. Website. http://www.linkedin.com/.

[150] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploiting BitTorrent
For Fun (But Not Profit). In Proc. 5th Int. Workshop on Peer-to-Peer
Systems (IPTPS), 2006.

[151] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer. Push-to-Pull
Peer-to-Peer Live Streaming. In 21st Int. Symposium on Distributed
Computing (DISC), 2007.

[152] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer. Fairness in Peer-
to-Peer Live Streaming. In Under submission., 2008.

[153] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free Riding in
BitTorrent is Cheap. In Proc. 5th Workshop on Hot Topics in Networks
(HotNets), 2006.

[154] T. Locher, D. Mysicka, S. Schmid, and R. Wattenhofer. Server vs DHT:
A Peer Activity Study in eDonkey & Kad. In Under submission, 2008.

[155] T. Locher, S. Schmid, and R. Wattenhofer. eQuus: A Provably Ro-
bust and Locality-Aware Peer-to-Peer System. In Proc. 6th IEEE Int.
Conference on Peer-to-Peer Computing (P2P), 2006.

[156] T. Locher, S. Schmid, and R. Wattenhofer. Rescuing Tit-for-Tat with
Source Coding. In Proc. 7th IEEE Int. Conference on Peer-to-Peer
Computing (P2P), September 2007.

[157] Z. Lotker, B. Patt-Shamir, and A. Rosén. New Stability Results for
Adversarial Queuing. SIAM J. Comput., 33(2):286–303, 2004.

[158] P. Mahlmann and C. Schindelhauer. Peer-to-Peer Netzwerke. Springer,
2007.

[159] D. Malkhi and M. Reiter. Byzantine Quorum Systems. Journal of
Distributed Computing, 11(4):203–213, 1998.

[160] G. S. Manku, M. Naor, and U. Wieder. Know thy Neighbor’s Neighbor:
the Power of Lookahead in Randomized P2P Networks. In Proc. 36th
ACM Symposium on Theory of Computing (STOC), 2004.

[161] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric. In Proc. 1st Int. Workshop on
Peer-to-Peer Systems (IPTPS), 2002.

BIBLIOGRAPHY 171

[162] M. Mense and C. Scheideler. SPREAD: An Adaptive Scheme for Re-
dundant and Fair Storage in Dynamic Heterogeneous Storage Systems.
In Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithm
(SODA), 2008.

[163] S. Milgram. The Small World Problem. Psychology Today, pages 60–67,
1967.

[164] B. Mitra, S. Ghose, and N. Ganguly. Effect of Dynamicity on Peer-
to-Peer Networks. In Proc. 14th International Conference on High
Performance Computing (HiPC), 2007.

[165] D. Monderer and M. Tennenholtz. Distributed Games: From Mech-
anisms to Protocols. In Proc. 16th National Conference on Artificial
Intelligence (AAAI), pages 32–37, 1999.

[166] J. Morgan, K. Steiglitz, and G. Reis. The Spite Motive and Equilibrium
Behavior in Auctions. Contricutions to Economic Analysis & Policy,
2(1), 2003.

[167] D. Mosk-Aoyama and D. Shah. Computing Separable Functions via
Gossip. In Proc. 25th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 113–122, 2006.

[168] MySpace. Website. http://www.myspace.com/.

[169] M. Naor and U. Wieder. Novel Architectures for P2P Applications: the
Continuous-Discrete Approach. In Proc. 15th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 50–59, 2003.

[170] N. Naoumov and K. Ross. Exploiting P2P systems for DDoS attacks.
In Proc. 1st Int. Conference on Scalable Information Systems (INFOS-
CALE), 2006.

[171] Napster. Website. http://www.napster.com/.

[172] J. Nash. Equilibrium Points in n-Person Games. In Proc. National
Academy of the USA, pages 48–49, 1950.

[173] M. E. J. Newman and M. Girvan. Finding and Evaluating Community
Structure in Networks. Physical Review E, 69, 2004.

[174] S. J. Nielson, S. Crosby, and D. S. Wallach. A Taxonomy of Rational
Attacks. In Proc. 4th Int. Workshop on Peer-to-Peer Systems (IPTPS),
pages 36–46, 2005.

[175] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, 2007.

[176] R. O’Dell and R. Wattenhofer. Information Dissemination in Highly
Dynamic Graphs. In Proc. 3rd ACM Joint Workshop on Foundations
of Mobile Computing (DIALM-POMC), 2005.

172 BIBLIOGRAPHY

[177] A. M. Odlyzko. The Case Against Micropayments. In Financial Cryp-
tography, pages 77–83, 2003.

[178] M. Onus, A. W. Richa, and C. Scheideler. Linearization: Locally Self-
Stabilizing Sorting in Graphs. In Proc. Workshop on Algorithmic En-
gineering & Experiments (ALENEX), 2007.

[179] Orkut. Website. http://www.okkut.com/.

[180] M. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press,
2000.

[181] G. Pandurangan, P. Raghavan, and E. Upfal. Building Low-Diameter
P2P Networks. In Proc. 42nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2001.

[182] C. Papadimitriou. Private Communication. In Visit at ETH Zurich,
2006.

[183] C. H. Papadimitriou. Algorithms, Games, and the Internet. In Proc.
33rd ACM Symposium on Theory of Computing (STOC), pages 749–
753, 2001.

[184] A. Pasick. File-sharing Network Thrives Beneath the Radar. In Yahoo!
News, 2004.

[185] R. Pastor-Satorras and A. Vespiagnani. Immunization of Complex Net-
works. Physical Review Letter, 65, 2002.

[186] B. Patt-Shamir. A Note on Efficient Aggregate Queries in Sensor Net-
works. Theor. Comput. Sci., 370(1-3):254–264, 2007.

[187] D. Peleg. Distributed Computing: A Locality-sensitive Approach. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

[188] D. Peleg and E. Upfal. The Token Distribution Problem. SIAM Journal
on Computing, 18(2):229–243, 1989.

[189] R. Peterson and E. G. Sirer. Going Beyond Tit-for-Tat: Designing
Peer-to-Peer Protocols for the Common Good. In Proc. Workshop on
Future Directions in Distributed Computing, 2007.

[190] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkatarami. Do Incentives Build Robustness in BitTorrent? In
Proc. 4th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI), 2007.

[191] C. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies
of Replicated Objects in a Distributed Environment. In Proc. 9th ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages
311–320, 1997.

BIBLIOGRAPHY 173

[192] C. G. Plaxton. Load Balancing, Selection and Sorting on the Hyper-
cube. In Proc. 1st Ann. ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 64–73, 1989.

[193] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby
Copies of Replicated Objects in a Distributed Environment. In Proc.
9th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 311–320, 1997.

[194] PPLive. Website. http://www.pplive.com/.

[195] Y. Qiao and F. E. Bustamante. Structured and Unstructured Overlays
Under the Microscope – A Measurement-based View of Two P2P Sys-
tems that People Use. In Proc. USENIX Annual Technical Conference,
2006.

[196] D. Qiu and R. Srikant. Modeling and Performance Analysis of
BitTorrent-like Peer-to-Peer Systems. In Proc. ACM SIGCOMM Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, 2004.

[197] J. S. Rakoff. Copyright Law and the Internet. NYSBA Entertainment,
Arts and Sports Law Journal, 14(2), 2003.

[198] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A
Scalable Content-Addressable Network. In Proc. ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, pages 161–172, 2001.

[199] S. Rhea, B.-G. Chun, J. Kubiatowicz, and S. Shenker. Fixing the
Embarrassing Slowness of OpenDHT on PlanetLab. In Proc. 2nd Con-
ference on Real, Large Distributed Systems (WORLDS), 2005.

[200] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in
a DHT. In Proc. USENIX Ann. Technical Conference, 2004.

[201] RIAA. http://www.riaa.com/issues/piracy/default.asp. Issues: Anti-
Piracy.

[202] A. Rosén. A Note on Models for Non-Probabilistic Analysis of Packet
Switching Networks. Inf. Process. Lett., 84(5):237–240, 2002.

[203] A. Roth. The Price of Malice in Linear Congestion Games. In Under
submission, 2008.

[204] T. Roughgarden. Stackelberg Scheduling Strategies. In Proc. 33rd
ACM Symposium on Theory of Computing (STOC), pages 104–113,
2001.

[205] T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press,
2005.

174 BIBLIOGRAPHY

[206] T. Roughgarden and E. Tardos. How Bad is Selfish Routing? Journal
ACM, 49(2), 2002.

[207] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems. In Proc.
IFIP/ACM Int. Conference on Distributed Systems Platforms (Mid-
dleware), pages 329–350, 2001.

[208] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynamically
Fault-Tolerant Content Addressable Networks. In Proc. 1st Int. Work-
shop on Peer-to-Peer Systems (IPTPS), 2002.

[209] S. Sanghavi and B. Hajek. A New Mechanism for the Free-rider Prob-
lem. In Proc. 3rd ACM SIGCOMM Workshop on Economics of Peer-
to-Peer Systems (P2PEcon), 2005.

[210] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study
of Peer-to-Peer File Sharing Systems. In Proc. Multimedia Computing
and Networking (MMCN), 2002.

[211] C. Scheideler. Models and Techniques for Communication in Dynamic
Networks. In Proc. 19th Symposium on Theoretical Aspects of Com-
puter Science (STACS), pages 27–49, 2002.

[212] C. Scheideler. How to Spread Adversarial Nodes? Rotate! In Proc.
37th ACM Symposium on Theory of Computing (STOC), 2005.

[213] C. Schindelhauer and G. Schomaker. Weighted Distributed Hash Ta-
bles. In Proc. 17th ACM Symposium on Parallel Algorithms and Ar-
chitectures (SPAA), 2005.

[214] S. Sen and J. Wang. Analyzing Peer-to-Per Traffic Across Large Net-
works. IEEE/ACM Transactions on Networking, 12(2), 2003.

[215] B. A. Shirazi, K. M. Kavi, and A. R. Hurson. Scheduling and Load
Balancing in Parallel and Distributed Systems. IEEE Computer Science
Press, 1995.

[216] J. Shneidman and D. C. Parkes. Rationality and Self-Interest in Peer
to Peer Networks. In Proc. 2nd Int. Workshop on Peer-to-Peer Systems
(IPTPS), 2003.

[217] J. Shneidman, D. C. Parkes, and L. Massoulié. Faithfulness in Internet
Algorithms. In Proc. Workshop on Practice and Theory of Incentives
and Game Theory in Networked Systems (PINS), 2004.

[218] R. Shostak, M. Pease, and L. Lamport. Reaching Agreement in the
Presence of Faults. Journal ACM, 27(2):228–234, 1980.

[219] A. Singh, T.-W. J. Ngan, P. Druschel, and D. S. Wallach. Eclipse
Attacks on Overlay Networks: Threats and Defenses. In Proc. 25th
Annual IEEE Conference on Computer Communications (INFOCOM),
2006.

BIBLIOGRAPHY 175

[220] Skype. Website. http://www.skype.com/.

[221] Y. Sovran, A. Libonati, and J. Li. Pass It On: Social Networks Stymie
Censors. In Proc. 7th Int. Workshop on Peer-to-Peer Systems (IPTPS),
2008.

[222] T. K. Srikant and S. Toueg. Simulating Authenticated Broadcasts
to Derive Simple Fault-Tolerant Algorithms. Journal of Distributed
Computing, 2(2):80–94, 1987.

[223] M. Steiner, E. W. Biersack, and T. Ennajjary. Actively Monitoring
Peers in KAD. In Proc. 6th Int. Workshop on Peer-to-Peer Systems
(IPTPS), 2007.

[224] R. Steinmetz and Klaus Wehrle (Eds). Peer-to-Peer Systems and Ap-
plications. Springer, 2005.

[225] R. Stevens and G. R. Wright. TCP/IP Illustrated Vol. 2 (The Imple-
mentation). Addison-Wesley, 1995.

[226] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions. In Proc. ACM SIGCOMM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
2001.

[227] D. Stutzbach and R. Rejaie. Understanding Churn in Peer-to-Peer
Networks. In Proc. 6th Internet Measurement Conference (IMC), 2006.

[228] D. Stutzback and R. Rejaie. Improving Lookup Performance over a
Widely-Deployed DHT. In Proc. 25th Annual IEEE Conference on
Computer Communications (INFOCOM), 2006.

[229] R. Subramanian and Brian D. Goodman (Eds). Peer-to-Peer Comput-
ing: The Evolution of a Disruptive Technology. IGI Global, 2005.

[230] X. Sun, R. Torres, and S. Rao. Preventing DDoS Attacks with P2P
Systems through Robust Membership Management. Technical Report
TR-ECE-07-13, Purdue University, 2007.

[231] K. Tamilmani, V. Pai, and A. Mohr. SWIFT: A System with Incentives
for Trading. In Proc. 2nd Workshop on Economics of Peer-to-Peer
Systems (P2PEcon), 2004.

[232] J. Tian and Y. Dai. Understanding the Dynamic of Peer-to-Peer Sys-
tems. In Proc. 6th Int. Workshop on Peer-to-Peer Systems (IPTPS),
2007.

[233] C. A. Tovey. A Simplified NP-Complete Satisfiability Problem. Dis-
crete Applied Mathematics, 8:85–89, 1984.

[234] J. Travers and S. Milgram. An Experimental Study of the Small World
Problem. Sociometry, 32(4):425–443, 1969.

176 BIBLIOGRAPHY

[235] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A Robust
and Scalable Technology for Distributed System Monitoring, Manage-
ment, and Data Mining. ACM Transactions on Computing Systems,
21(2):164–206, 2003.

[236] R. van Renesse and A. Bozdog. Willow: DHT, Aggregation, and Pub-
lish/Subscribe in One Protocol. In Proc. 3rd Int. Workshop on Peer-
To-Peer Systems (IPTPS), 2004.

[237] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A
Secure Economic Framework for P2P Resource Sharing. In Proc. 1st
Workshop on Economics of Peer-to-Peer Systems (P2PEcon), 2003.

[238] J. von Neuman. Zur Theorie der Gesellschaftsspiele. Mathematische
Annalen, 100:295–320, 1928.

[239] J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1944.

[240] D. S. Wallach. A Survey of Peer-to-Peer Security Issues. In Int. Sym-
posium on Software Security, 2002.

[241] W. Wang and B. Li. Market-driven Bandwidth Allocation in Selfish
Overlay Networks. In Proc. IEEE Conference on Computer Commu-
nications (INFOCOM), pages 36–46, 2005.

[242] J. L. Welch and N. Lynch. A New Fault-Tolerant for Clock-
Synchronization. Information and Communication, 77:1–36, 1988.

[243] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A Lightweight Net-
work Location Service Without Virtual Coordinates. In Proc. ACM
SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, 2005.

[244] Xing. Website. http://www.xing.com/.

[245] M. Yang, H. Chen, B. Y. Zhao, Y. Dai, and Z. Zhang. Deployment of
a Large Scale Peer-to-Peer Social Network. In Proc. 1st Workshop on
Real, Large Distributed Systems, 2004.

[246] A. C. Yao. Protocols for Secure Computations. In Proc. 23rd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 160–
164, 1982.

[247] Zattoo. Website. http://www.zattoo.com/.

[248] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A Resilient Global-Scale Overlay for
Service Deployment. IEEE Journal on Selected Areas in Communica-
tions, 2003.

Curriculum Vitae

July 31, 1978 Born in Hedingen, Switzerland

1985–1991 Primary and secondary school in Hedingen

1991–1998 High school (Matura type B) at the Kantonsschule
Limmattal, Urdorf, Switzerland

1999–2004 Studies in computer science, ETH Zurich, Switzerland
Minor subject: Micro and macro economics
Internship: CERN, Geneva

September 2004 MSc in computer science, ETH Zurich, Switzerland

2004 – 2008 PhD student, research and teaching assistant, Dis-
tributed Computing Group, Prof. Dr. Roger Watten-
hofer, ETH Zurich, Switzerland

April 2008 PhD defense and PhD degree, Distributed Computing
Group, ETH Zurich, Switzerland
Advisor: Prof. Dr. Roger Wattenhofer
Co-examiners: Prof. Dr. Boaz Patt-Shamir

Tel Aviv University, Tel Aviv, Israel
Prof. Dr. Tim Roughgarden
Stanford University, California, USA

Publications

The following lists all publications written during the roughly three and a half
years of my PhD time at ETH Zurich. Note that—due to space constraints
and in order to have a consistent subject—only a subset of these papers
are presented in this thesis, namely the papers focusing on the peer-to-peer
dynamics and cooperation challenge. In Part I, Chapter 3 is based on the
papers at IPTPS 2005 and IWQoS 2006, and Chapter 4 is based on the
paper at HiPC 2006 (an extension for wireless networks is studied in the
paper at WICON 2006). In Part II, the BitThief chapter (Chapter 8) has
been published at HotNets 2006, Chapter 9 has been published at IPTPS
2006 and PODC 2006, Chapter 10 also at PODC 2006, and Chapter 11 at
EC 2008. Finally, some results of this thesis have not been published yet.

1. Distributed Computation of the Mode. Fabian Kuhn, Thomas Locher,
and Stefan Schmid. 27th ACM Symposium on the Principles of Dis-
tributed Computing (PODC), Toronto, Canada, August 2008.

2. Tight Bounds for Delay-Sensitive Aggregation. Yvonne Anne Oswald,
Stefan Schmid, and Roger Wattenhofer. 27th ACM Symposium on
the Principles of Distributed Computing (PODC), Toronto, Canada,
August 2008.

3. On the Windfall of Friendship: Inoculation Strategies on Social Net-
works. Dominic Meier, Yvonne Anne Oswald, Stefan Schmid, and
Roger Wattenhofer. ACM Conference on Electronic Commerce (EC),
Chicago, Illinois, USA, July 2008.

4. Distributed Disaster Disclosure. Bernard Mans, Stefan Schmid, and
Roger Wattenhofer. 11th Scandinavian Workshop on Algorithm The-
ory (SWAT), Gothenburg, Sweden, July 2008. Springer Lecture Notes
in Computer Science, LNCS 5124.

5. Distributed Asymmetric Verification in Computational Grids. Michael
Kuhn, Stefan Schmid, and Roger Wattenhofer. 22nd IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), Mi-
ami, Florida, USA, April 2008.

6. Structuring Unstructured Peer-to-Peer Networks. Stefan Schmid and
Roger Wattenhofer. 14th Annual IEEE International Conference on

High Performance Computing (HiPC), Goa, India, December 2007.
Springer Lecture Notes in Computer Science, LNCS 4873.

7. Manipulation in Games. Raphael Eidenbenz, Yvonne Anne Oswald,
Stefan Schmid, and Roger Wattenhofer. 18th International Sympo-
sium on Algorithms and Computation (ISAAC), Sendai, Japan, De-
cember 2007. Springer Lecture Notes in Computer Science, LNCS
4835.

8. Push-to-Pull Peer-to-Peer Live Streaming. Thomas Locher, Remo
Meier, Stefan Schmid, and Roger Wattenhofer. 21st International
Symposium on Distributed Computing (DISC), Lemesos, Cyprus, Sep-
tember 2007. Springer Lecture Notes in Computer Science, LNCS
4731.

9. Rescuing Tit-for-Tat with Source Coding. Thomas Locher, Stefan Schm-
id, and Roger Wattenhofer. 7th IEEE International Conference on
Peer-to-Peer Computing (P2P), Galway, Ireland, September 2007.

10. Mechanism Design by Creditability. Raphael Eidenbenz, Yvonne Anne
Oswald, Stefan Schmid, and Roger Wattenhofer. 1st International
Conference on Cominatorial Optimization and Applications (COCOA),
Xi’an, Shaanxi, China, August 2007. Springer Lecture Notes in Com-
puter Science, LNCS 4616.

11. Dynamic Internet Congestion with Bursts. Stefan Schmid and Roger
Wattenhofer. 13th Annual IEEE International Conference on High
Performance Computing (HiPC), Bangalore, India, December 2006.
Springer Lecture Notes in Computer Science, LNCS 4297.

12. Free Riding in BitTorrent is Cheap. Thomas Locher, Patrick Moor,
Stefan Schmid, and Roger Wattenhofer. 5th Workshop on Hot Topics
in Networks (HotNets), Irvine, California, USA, November 2006.

13. Cryptree: A Folder Tree Structure for Cryptographic File Systems. Do-
minik Grolimund, Luzius Meisser, Stefan Schmid, and Roger Wat-
tenhofer. 25th IEEE Symposium on Reliable Distributed Systems
(SRDS), Leeds, United Kingdom, October 2006.

14. eQuus: A Provably Robust and Locality-Aware Peer-to-Peer System.
Thomas Locher, Stefan Schmid, and Roger Wattenhofer. 6th IEEE In-
ternational Conference on Peer-to-Peer Computing (P2P), Cambridge,
United Kingdom, September 2006.

15. A TCP with Guaranteed Performance in Networks with Dynamic Con-
gestion and Random Wireless Losses. Stefan Schmid and Roger Wat-
tenhofer. 2nd International Wireless Internet Conference (WICON),
Boston, Massachusetts, USA, August 2006.

16. When Selfish Meets Evil: Byzantine Players in a Virus Inoculation
Game. Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer.
25th ACM Symposium on the Principles of Distributed Computing
(PODC), Denver, Colorado, USA, July 2006.

17. On the Topologies Formed by Selfish Peers. Thomas Moscibroda, Ste-
fan Schmid, and Roger Wattenhofer. 25th ACM Symposium on the
Principles of Distributed Computing (PODC), Denver, Colorado, USA,
July 2006.

18. A Blueprint for Constructing Peer-to-Peer Systems Robust to Dynamic
Worst-Case Joins and Leaves. Fabian Kuhn, Stefan Schmid, Joest
Smit, and Roger Wattenhofer. 14th IEEE International Workshop on
Quality of Service (IWQoS), Yale University, New Haven, Connectitut,
USA, June 2006.

19. Havelaar: A Robust and Efficient Reputation System for Active Peer-
to-Peer Systems. Dominik Grolimund, Luzius Meisser, Stefan Schmid,
and Roger Wattenhofer. 1st Workshop on the Economics of Networked
Systems (NetEcon), University of Michigan, Ann Arbor, Michigan,
USA, June 2006.

20. Algorithmic Models for Sensor Networks. Stefan Schmid and Roger
Wattenhofer. 14th International Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS), Island of Rhodes, Greece, April 2006.
An extended version of this paper will appear as a book chapter in
Algorithms and Protocols for Wireless Sensor Networks (Editor: Azze-
dine Boukerche), John Wiley & Sons Inc, ISBN: 0471798134, expected
publication date: October 2008.

21. On the Topologies Formed by Selfish Peers. Thomas Moscibroda, Ste-
fan Schmid, and Roger Wattenhofer. 5th International Workshop
on Peer-to-Peer Systems (IPTPS), Santa Barbara, California, USA,
February 2006.

22. A Robust Interference Model for Wireless Ad-Hoc Networks. Pas-
cal von Rickenbach, Stefan Schmid, Roger Wattenhofer, and Aaron
Zollinger. 5th International Workshop on Algorithms for Wireless,
Mobile, Ad Hoc and Sensor Networks (WMAN), Denver, Colorado,
USA, April 2005.

23. A Self-Repairing Peer-to-Peer System Resilient to Dynamic Adversar-
ial Churn. Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer.
4th International Workshop on Peer-to-Peer Systems (IPTPS), Cornell
University, Ithaca, New York, USA, February 2005. Springer Lecture
Notes in Computer Science, LNCS 3640.

24. Parallel Compilation of CMS Software. Shaun Ashby, Giulio Eulisse,
Stefan Schmid, and Lassi Tuura. Computing in High Energy and Nu-
clear Physics Conference (CHEP), Interlaken, Switzerland, September
2004.

Series in Distributed Computing

edited by Roger Wattenhofer

Vol. 1: Aaron Zollinger. Networking Unleashed: Routing and Topology Control
in Ad Hoc and Sensor Networks. ISBN 3-86628-022-X

Vol. 2: Fabian Kuhn. The Price of Locality: Exploring the Complexity of Dis-
tributed Coordination Primitives. ISBN 3-86628-041-6

Vol. 3: Thomas Moscibroda. Locality, Scheduling, and Selfishness: Algorith-
mic Foundations of Highly Decentralized Networks. ISBN 3-86628-104-
8

Vol. 4: Regina O’Dell. Understanding Ad hoc Networks. From Geometry to
Mobility. ISBN 3-86628-113-7

Vol. 5: Keno Albrecht. Mastering Spam. A Multifaceted Approach with the
Spamato Filter System. ISBN 3-86628-126-9

Vol. 6: Stefan Schmid. Dynamics and Cooperation: Algorithmic Challenges in
Peer-to-Peer Computing. ISBN 3-86628-205-2

Hartung-Gorre Verlag Konstanz (http://www.hartung-gorre.de)

Dynamics anD cooperation
algorithmic challenges in peer-to-peer computing

Stefan Schmid

Hartung-Gorre Verlag Konstanz

ISSN1861-1591 ISBN-10: 3-86628-205-2 ISBN-13: 978-3-86628-205-6 64.–

Series in Distributed Computing Volume 6 2008 Series in Distributed Computing
Edited by Roger Wattenhofer

Peer-to-peer (p2p) computing is one of the most intriguing new network-
ing paradigms. At the heart of the paradigm lies the idea of leveraging
the resources of the system’s participants. Thus, potentially scalable and
robust architectures can be built. However, making use of the decen-
tralized resources is challenging. The peers are under the control of the
individual users who may only connect to the network for a short pe-
riod of time. Consequently, there are frequent membership changes and
p2p systems are highly dynamic. Peer-to-peer solutions are also faced
with the fact that it is not always in the (anonymous) users’ interest to
contribute their resources. Rather, a user may seek to exploit the system
without reciprocating.

This volume studies the challenges of the dynamics and cooperation in
p2p computing. Algorithms for p2p systems are presented that main-
tain desirable network properties in dynamic environments. Our measure-
ment study of BitTorrent – one of the most traffic intensive applications
on the Internet – shows that today’s peer-to-peer networks still fail to fend
off uncooperative peers. The game-theoretic analysis of unstructured
p2p networks indicates that both the performance and the stability of a
system can suffer severely in case of selfish behavior. Finally, we in-
troduce a new mathematical framework which allows us to evaluate a sys-
tem’s robustness to malicious attacks and which is also useful for the
analysis of social networks. The theoretic findings are complemented by a
case study which identifies vulnerabilities in the popular Kad network.

About the author:

Stefan Schmid received his MSc degree in computer science from the
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland in
2004. In the same year, he joined the Distributed Computing Group of
Professor Roger Wattenhofer at ETH Zurich as a PhD student and
teaching assistant. In 2008, he earned his PhD degree for his work on
algorithmic challenges in peer-to-peer computing.

Hartung-Gorre Verlag Konstanz

s
c
h
m

iD

D
y
n
a
m

ic
s
 a

n
D
 c

o
o
p
e
r
a
ti

o
n
:

a
lg

o
r
it

h
m

ic
 c

h
a
ll

e
n
g
e
s
 i

n
 p

e
e
r
-t

o
-p

e
e
r
 c

o
m

p
u
ti

n
g

SCH001_Coverillu_DRUCK_2.indd 2 11.6.2008 9:20:11 Uhr

	PhDStefan
	cover

