
DeFi Auditing: Mechanisms, Effectiveness, and
User Perceptions

Ding Feng1, Rupert Hitsch2, Kaihua Qin3, Arthur Gervais4, Roger
Wattenhofer2, Yaxing Yao5, and Ye Wang1

1 University of Macau, Macau, China
mc25944@um.edu.mo, wangye@um.edu.mo

2 ETH Zurich, Zurich, Switzerland
hitsch.rupert@gmail.com, wattenhofer@ethz.ch

3 Imperial College London, London, United Kingdom
kaihua.qin@imperial.ac.uk

4 University College London, London, United Kingdom
a.gervais@ucl.ac.uk

5 University of Maryland, Baltimore County, Baltimore, United States
yaxingyao@umbc.edu

Abstract. Decentralized Finance (DeFi), a blockchain-based financial
ecosystem, suffers from smart contract vulnerabilities that led to a loss
exceeding 3.24 billion USD by April 2022 [67]. To address this, blockchain
firms audit DeFi applications, a process known as DeFi auditing. Our re-
search aims to comprehend the mechanism and efficacy of DeFi auditing.
We discovered its ability to detect vulnerabilities in smart contract logic
and interactivity with other DeFi entities, but also noted its limitations
in communication, transparency, remedial action implementation, and in
preventing certain DeFi attacks. Moreover, our interview study delved
into user perceptions of DeFi auditing, unmasking gaps in awareness,
usage, and trust, and offering insights to address these issues.

Keywords: Decentralized finance · auditing · blockchain.

1 Introduction

Decentralized Finance (DeFi), an ecosystem built on blockchain’s smart con-
tracts, has experienced significant growth, with a Total Value Locked (TVL)
surpassing 110 billion USD in 2022. Despite its expansion, DeFi is frequently
targeted by cyber-attacks due to the lack of legal and industry standards and its
inherent decentralization. The immutable nature of deployed DeFi project code,
coupled with potential user vulnerabilities, worsens the scenario. An escalating
number of auditing firms are striving to meet the demand for dependable safety
assessments.

Nonetheless, DeFi projects continue to be compromised despite these audits,
questioning these firms’ reliability and credibility. Additionally, a universal stan-
dard for DeFi auditing is currently lacking. Consequently, our study explores the
following crucial questions:

2 Authors Suppressed Due to Excessive Length

RQ1 How does DeFi auditing identify DeFi application security vulnerabilities?
RQ2 Which vulnerabilities persist despite DeFi auditing?
RQ3 How do DeFi users perceive the role of DeFi auditing in DeFi?

We analyze the mechanisms and effectiveness of DeFi auditing in our study by
conducting mixed-method research across nine top DeFi auditing firms, 45 DeFi
projects, and real-world DeFi incidents. Furthermore, we explore user perception
through interviews, revealing that DeFi auditing steps are largely unknown to
users, suggesting an understanding deficit in this field.

2 Data Collection

We curated a dataset of DeFi auditing through three main avenues: DeFi attacks,
DeFi auditing firms and DeFi applications, and DeFi vulnerabilities.

2.1 DeFi Attacks

We examined real-world DeFi attacks between April 2018 and April 2022, using
a dataset encompassing 181 attacks reported on platforms such as Rekt News[4],
SlowMist[5], PeckShield[3], and Medium [2]. Each attack can be instigated by
multiple vulnerabilities across several system layers, adding complexity to their
logistics.

2.2 DeFi Auditing Firms and DeFi Applications

We selected nine prominent auditing firms, based on criteria like number of com-
pleted audits, reputation of audited DeFi projects, and development of popular
security tools. Security information was collected from the firms’ websites and
social media.

Furthermore, 45 recent projects audited by these firms were selected to ex-
plore current DeFi auditing practices. Our dataset included the audit reports,
official websites, and social media of these projects. Refer to Table 4 for detailed
information.

2.3 DeFi Vulnerabilities and Taxonomy

We adopted Zhou et al.’s [67] taxonomy to categorize DeFi vulnerabilities, focus-
ing on smart contract layer, protocol layer, and third-party layer vulnerabilities.
We derived our vulnerability dataset from academic papers and 45 audit reports,
resulting in 49 identified vulnerabilities. See Appendix A for a detailed list and
explanation of these vulnerabilities.

3 DeFi Auditing Mechanisms

In this section, we elucidate how DeFi auditing discovers DeFi application secu-
rity vulnerabilities (RQ1).

DeFi Auditing: Mechanisms, Effectiveness, and User Perceptions 3

3.1 DeFi Auditing Workflow

Method To understand DeFi auditing mechanisms, we reviewed 45 audit re-
ports from nine different firms (Table 4), as well as their official websites. We
identified various auditing steps each firm took during their audit process. This
was done by direct mentions or inferences made from reading audit reports in
depth. Inclusion was also made for steps cited on the firms’ websites and GitHub
pages detailing their audit process. We assumed all tools developed by the firms
were employed for auditing when their websites mentioned them.

Findings We find that DeFi audits can be divided into two distinct method-
ologies: tool-assisted analysis and manual analysis. Additionally, auditors rec-
ommend solutions for any problems identified through the utilization of these
techniques. The statistics and further explanation of these audit steps are pre-
sented in Appendix C.

4 Effectiveness of DeFi Auditing

We scrutinize the efficiency of DeFi auditing via a detailed analysis, focusing on
its merits and flaws in real-life situations to answer RQ2.

4.1 Audited vs Non-Audited Projects - Vulnerabilities and Attacks

Method We studied harmful DeFi attacks and classified them as audited or
non-audited projects based on the occurrence of audits prior to the attack. The
nature of exploited vulnerabilities and the handling of identified vulnerabilities
in audits were analysed. We also investigated the rectification status of these
vulnerabilities to discern if the exploits were due to negligence or inadequate
rectification.

Findings The dataset included 189 exploited vulnerabilities, out of which 140
were from non-audited projects and 43 from audited ones. Most vulnerabilities
were located at the smart contract and protocol layers. While audited projects
had a slightly higher proportion of vulnerabilities at the smart contract layer,
non-audited projects had a significantly higher proportion at the third-party
layer. The efficacy of auditing in curbing third-party layer issues was statistically
confirmed using a U test method. Refer to Figure 1 for detailed information.

DeFi Auditing Detection Capability We found that in 43 audited projects
that were attacked, the audit reports mentioned the exploited vulnerabilities in
7 instances, searched for but did not detect the vulnerabilities in 11 instances,
and did not mention the exploited vulnerabilities in 25 instances. The statistics
of these three groups are presented in Table 6, Table 7 and Table 8.

4 Authors Suppressed Due to Excessive Length

Mentioned: Out of the 7 projects, two fixed the mentioned vulnerabilities,
one partially resolved them, three did not address the vulnerabilities, and in one
project the resolution status was unclear. This indicates the project owners’ lack
of urgency in addressing security risks.

Searched For, Not Detected: In 11 instances, auditors failed to detect
the vulnerabilities they searched for, implying limitations in the detection mech-
anisms.

Not Mentioned: 25 attack causes weren’t mentioned in audit reports, high-
lighting potential limitations in audit scope or transparency in communication.

5 DeFi Auditing: User Perceptions

This study explores users’ perceptions of DeFi auditing, a security practice in
the DeFi ecosystem. It examines how DeFi users understand the role of DeFi
auditing in affecting their transactions and investments.

5.1 Methodology

Through Twitter, Discord, Telegram, and personal contacts, we recruited partic-
ipants familiar with DeFi applications and smart contract auditing. From July
to December 2022, we interviewed 12 users via Zoom, each lasting about an
hour. Participants’ experience with DeFi ranged from under 2 years to over 2
years. We recorded and transcribed interviews with permission, analyzed data
using thematic analysis, and compiled results into a code book.

5.2 Findings

Necessity of DeFi Auditing Users viewed DeFi auditing as necessary for
three reasons: it helps non-technical users understand potential security issues,
enhances DeFi project security, and showcases a project’s commitment to im-
proving security.

Information Delivery of Auditing Some users found the technical nature
of auditing findings challenging to comprehend, indicating a need for more ac-
cessible explanations. Others mentioned difficulties finding specific information
within audit reports due to either overly abstract reporting or the absence of
certain audit aspects.

Auditing Effectiveness Despite acknowledging the importance of DeFi au-
diting, most interviewees felt the auditing effectiveness was inadequate. Reasons
include irregular quality among audit firms, difficulty covering all vulnerabilities
technically, and a flawed auditing workflow focusing too much on technical issues
without considering underlying business logic.

DeFi Auditing: Mechanisms, Effectiveness, and User Perceptions 5

References

1. Market manipulation. https://www.investor.gov/introduction-investing/

investing-basics/glossary/market-manipulation (date of access: August 1,
2022)

2. Medium. https://medium.com/ (date of access: September 5, 2022)

3. Peckshield. https://peckshield.medium.com/ (date of access: September 5, 2022)

4. rekt. https://rekt.news/ (date of access: September 5, 2022)

5. Slowmist hacked. https://hacked.slowmist.io/en/ (date of access: September
5, 2022)

6. What are liquidity pools in defi and how do they work? https://academy.

binance.com/en/articles/what-are-liquidity-pools-in-defi (date of access:
September 5, 2022)

7. What are cross-chain smart contracts? https://blog.chain.link/

cross-chain-smart-contracts/ (date of access: September 5, 2022) (2022)

8. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (sok). In: Maffei, M., Ryan, M. (eds.) Principles of Security and Trust. pp.
164–186. Springer Berlin Heidelberg, Berlin, Heidelberg (2017)

9. Beosin: Clip smart contract security audit. https://beosin.com/audits/CLIP_
202205101825.pdf (date of access: June 13, 2022) (2022)

10. Beosin: Crafting smart contract security audit. https://beosin.com/audits/

Crafting_202204141429.pdf (date of access: June 13, 2022) (2022)

11. Beosin: Masterchefv2 smart contract security audit. https://beosin.com/audits/
MasterChefV2_202204211554.pdf (date of access: June 13, 2022) (2022)

12. Beosin: Nftaq721 smart contract security audit. https://beosin.com/audits/

NFTAQ721_202204181629.pdf (date of access: June 13, 2022) (2022)

13. Beosin: Season swap smart contract security audit. https://beosin.com/audits/
SeasonSwap_202204221127.pdf (date of access: June 13, 2022) (2022)

14. CertiK: Security assessment argo - audit - addendum. https://www.certik.com/
projects/argo (date of access: June 13, 2022) (2022)

15. CertiK: Security assessment decaswap finance. https://www.certik.com/

projects/decaswap-finance (date of access: June 13, 2022) (2022)

16. CertiK: Security assessment hunny swap. https://www.certik.com/projects/

hunny-swap (date of access: June 13, 2022) (2022)

17. CertiK: Security assessment the space. https://www.certik.com/projects/

the-space (date of access: June 13, 2022) (2022)

18. CertiK: Security assessment vicstep. https://www.certik.com/projects/vicstep
(date of access: June 13, 2022) (2022)

19. Chen, H., Pendleton, M., Njilla, L., Xu, S.: A survey on ethereum systems secu-
rity: Vulnerabilities, attacks, and defenses. https://par.nsf.gov/servlets/purl/
10197180 (date of access: September 7, 2022) (2020)

20. ConsenSys: Locking pragmas. https://consensys.github.io/

smart-contract-best-practices/development-recommendations/

solidity-specific/locking-pragmas/ (date of access: September 3, 2022)

21. ConsenSys: Gluwacoin erc-20 wrapper. https://consensys.net/diligence/

audits/2021/10/gluwacoin-erc-20-wrapper/ (date of access: June 13, 2022)
(2021)

22. ConsenSys: pstake finance. https://consensys.net/diligence/audits/2021/

08/pstake-finance/ (date of access: June 13, 2022) (2021)

https://www.investor.gov/introduction-investing/investing-basics/glossary/market-manipulation
https://www.investor.gov/introduction-investing/investing-basics/glossary/market-manipulation
https://medium.com/
https://peckshield.medium.com/
https://rekt.news/
https://hacked.slowmist.io/en/
https://academy.binance.com/en/articles/what-are-liquidity-pools-in-defi
https://academy.binance.com/en/articles/what-are-liquidity-pools-in-defi
https://blog.chain.link/cross-chain-smart-contracts/
https://blog.chain.link/cross-chain-smart-contracts/
https://beosin.com/audits/CLIP_202205101825.pdf
https://beosin.com/audits/CLIP_202205101825.pdf
https://beosin.com/audits/Crafting_202204141429.pdf
https://beosin.com/audits/Crafting_202204141429.pdf
https://beosin.com/audits/MasterChefV2_202204211554.pdf
https://beosin.com/audits/MasterChefV2_202204211554.pdf
https://beosin.com/audits/NFTAQ721_202204181629.pdf
https://beosin.com/audits/NFTAQ721_202204181629.pdf
https://beosin.com/audits/SeasonSwap_202204221127.pdf
https://beosin.com/audits/SeasonSwap_202204221127.pdf
https://www.certik.com/projects/argo
https://www.certik.com/projects/argo
https://www.certik.com/projects/decaswap-finance
https://www.certik.com/projects/decaswap-finance
https://www.certik.com/projects/hunny-swap
https://www.certik.com/projects/hunny-swap
https://www.certik.com/projects/the-space
https://www.certik.com/projects/the-space
https://www.certik.com/projects/vicstep
https://par.nsf.gov/servlets/purl/10197180
https://par.nsf.gov/servlets/purl/10197180
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/locking-pragmas/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/locking-pragmas/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/locking-pragmas/
https://consensys.net/diligence/audits/2021/10/gluwacoin-erc-20-wrapper/
https://consensys.net/diligence/audits/2021/10/gluwacoin-erc-20-wrapper/
https://consensys.net/diligence/audits/2021/08/pstake-finance/
https://consensys.net/diligence/audits/2021/08/pstake-finance/

6 Authors Suppressed Due to Excessive Length

23. ConsenSys: Gamma. https://consensys.net/diligence/audits/2022/02/

gamma/ (date of access: June 13, 2022) (2022)

24. ConsenSys: Notional protocol. https://consensys.net/diligence/audits/2022/
03/notional-protocol-v2.1/ (date of access: June 13, 2022) (2022)

25. ConsenSys: Tribe dao - flywheel v2, xtribe, xerc4626. https://consensys.net/
diligence/audits/2022/04/tribe-dao-flywheel-v2-xtribe-xerc4626/ (date
of access: June 13, 2022) (2022)

26. Hacken: Smart contract code review and security analysis report for
onechain. https://hacken.io/wp-content/uploads/2022/06/Summonersarena_

01062022_SCAudit_Report.pdf (date of access: June 13, 2022) (2022)

27. Hacken: Smart contract code review and security analysis report for
paribus. https://hacken.io/wp-content/uploads/2022/06/Paribus_25052022_
SCAudit_Report_2.pdf (date of access: June 13, 2022) (2022)

28. Hacken: Smart contract code review and security analysis report for
tencoins. https://hacken.io/wp-content/uploads/2022/06/Bolide-Strategy_

08062022_SCAudit_Report_3.pdf (date of access: June 13, 2022) (2022)

29. Hacken: Smart contract code review and security analysis report for
thenextwar. https://hacken.io/wp-content/uploads/2022/05/The_Next_War_

02042022_SCAudit_Report_1.pdf (date of access: June 13, 2022) (2022)

30. Hacken: Smart contract code review and security analysis report for
vynksafe. https://hacken.io/wp-content/uploads/2022/05/VYNKSAFE_

03052022SCAudit_Report1.pdf (date of access: June 13, 2022) (2022)

31. Hertig, A.: What is a flash loan? https://www.coindesk.com/learn/2021/02/17/
what-is-a-flash-loan/ (date of access: July 31, 2022)

32. Homoliak, I., Venugopalan, S., Reijsbergen, D., Hum, Q., Schumi, R., Szalachowski,
P.: The security reference architecture for blockchains: Toward a standardized
model for studying vulnerabilities, threats, and defenses. https://ieeexplore.
ieee.org/stamp/stamp.jsp?arnumber=9239372 (date of access: September 7,
2022) (2020)

33. Jakobsson, M., Myers, S.: Phishing and countermeasures: understanding the in-
creasing problem of electronic identity theft. John Wiley & Sons (2006)

34. Jurzik, H.: 5 most common deployment mistakes. https://deploybot.com/blog/
5-most-common-deployment-mistakes (date of access: September 5, 2022) (2021)

35. Kaleem, M., Mavridou, A., Laszka, A.: Vyper: A security comparison with solidity
based on common vulnerabilities. https://arxiv.org/pdf/2003.07435.pdf (date
of access: September 7, 2022) (2020)

36. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security. pp. 254–269 (2016), https://eprint.iacr.org/2016/
633.pdf and https://github.com/enzymefinance/oyente (date of access: June
1, 2022)

37. Ng, F.: More than $4.7m stolen in uniswap fake to-
ken phishing attack. https://cointelegraph.com/news/

more-than-4-7m-stolen-in-uniswap-fake-token-phishing-attack (date
of access: September 5, 2022) (2022)

38. PeckShield: Smart contract audit report for arthswap masterchef.
https://github.com/peckshield/publications/blob/master/audit_reports/

PeckShield-Audit-Report-ArthSwap-MasterChef-v1.0.pdf (date of access:
June 13, 2022) (2022)

https://consensys.net/diligence/audits/2022/02/gamma/
https://consensys.net/diligence/audits/2022/02/gamma/
https://consensys.net/diligence/audits/2022/03/notional-protocol-v2.1/
https://consensys.net/diligence/audits/2022/03/notional-protocol-v2.1/
https://consensys.net/diligence/audits/2022/04/tribe-dao-flywheel-v2-xtribe-xerc4626/
https://consensys.net/diligence/audits/2022/04/tribe-dao-flywheel-v2-xtribe-xerc4626/
https://hacken.io/wp-content/uploads/2022/06/Summonersarena_01062022_SCAudit_Report.pdf
https://hacken.io/wp-content/uploads/2022/06/Summonersarena_01062022_SCAudit_Report.pdf
https://hacken.io/wp-content/uploads/2022/06/Paribus_25052022_SCAudit_Report_2.pdf
https://hacken.io/wp-content/uploads/2022/06/Paribus_25052022_SCAudit_Report_2.pdf
https://hacken.io/wp-content/uploads/2022/06/Bolide-Strategy_08062022_SCAudit_Report_3.pdf
https://hacken.io/wp-content/uploads/2022/06/Bolide-Strategy_08062022_SCAudit_Report_3.pdf
https://hacken.io/wp-content/uploads/2022/05/The_Next_War_02042022_SCAudit_Report_1.pdf
https://hacken.io/wp-content/uploads/2022/05/The_Next_War_02042022_SCAudit_Report_1.pdf
https://hacken.io/wp-content/uploads/2022/05/VYNKSAFE_03052022SCAudit_Report1.pdf
https://hacken.io/wp-content/uploads/2022/05/VYNKSAFE_03052022SCAudit_Report1.pdf
https://www.coindesk.com/learn/2021/02/17/what-is-a-flash-loan/
https://www.coindesk.com/learn/2021/02/17/what-is-a-flash-loan/
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9239372
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9239372
https://deploybot.com/blog/5-most-common-deployment-mistakes
https://deploybot.com/blog/5-most-common-deployment-mistakes
https://arxiv.org/pdf/2003.07435.pdf
https://eprint.iacr.org/2016/633.pdf
https://eprint.iacr.org/2016/633.pdf
https://github.com/enzymefinance/oyente
https://cointelegraph.com/news/more-than-4-7m-stolen-in-uniswap-fake-token-phishing-attack
https://cointelegraph.com/news/more-than-4-7m-stolen-in-uniswap-fake-token-phishing-attack
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-ArthSwap-MasterChef-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-ArthSwap-MasterChef-v1.0.pdf

DeFi Auditing: Mechanisms, Effectiveness, and User Perceptions 7

39. PeckShield: Smart contract audit report for beamswap. https:

//github.com/peckshield/publications/blob/master/audit_reports/

PeckShield-Audit-Report-Beamswap-v1.0.pdf (date of access: June 13,
2022) (2022)

40. PeckShield: Smart contract audit report for defiai. https://

github.com/peckshield/publications/blob/master/audit_reports/

PeckShield-Audit-Report-DeFiAI-v1.0.pdf (date of access: June 13, 2022)
(2022)

41. PeckShield: Smart contract audit report for duet bond. https:

//github.com/peckshield/publications/blob/master/audit_reports/

PeckShield-Audit-Report-Duet-Bond-v1.0.pdf (date of access: June 13,
2022) (2022)

42. PeckShield: Smart contract audit report for kaoyaswap. https:

//github.com/peckshield/publications/blob/master/audit_reports/

PeckShield-Audit-Report-KaoyaSwap-v1.0.pdf (date of access: June 13,
2022) (2022)

43. Quantstamp: Quantstamp security assessment certificate capsulenft. https://

certificate.quantstamp.com/full/capsule-nft (date of access: June 13, 2022)
(2022)

44. Quantstamp: Quantstamp security assessment certificate nomad. https://

certificate.quantstamp.com/full/nomad (date of access: June 13, 2022) (2022)
45. Quantstamp: Quantstamp security assessment certificate pine. https://

certificate.quantstamp.com/full/pine (date of access: June 13, 2022) (2022)
46. Quantstamp: Quantstamp security assessment certificate playswoops. https://

certificate.quantstamp.com/full/play-swoops (date of access: June 13, 2022)
(2022)

47. Quantstamp: Quantstamp security assessment certificate rara. https://

certificate.quantstamp.com/full/rara (date of access: June 13, 2022) (2022)
48. RuntimeVerification: Audit report alchemix v2. https://github.com/

runtimeverification/publications/blob/main/reports/smart-contracts/

Alchemix_v2.pdf (date of access: June 13, 2022) (2022)
49. RuntimeVerification: Audit report blockswap stakehouse. https://github.com/

runtimeverification/publications/blob/main/reports/smart-contracts/

Blockswap_Stakehouse.pdf (date of access: June 13, 2022) (2022)
50. RuntimeVerification: Security audit report algofi amm and nanoswap.

https://github.com/runtimeverification/publications/blob/main/

reports/smart-contracts/Algofi-dex-nanoswap.pdf (date of access: June
13, 2022) (2022)

51. RuntimeVerification: Security audit report atlendis protocol. https:

//github.com/runtimeverification/publications/blob/main/reports/

smart-contracts/atlendis-audit-report.pdf (date of access: June 13,
2022) (2022)

52. RuntimeVerification: Security audit report exa finance smart contracts.
https://github.com/runtimeverification/publications/blob/main/

reports/smart-contracts/EXA_Finance.pdf (date of access: June 13, 2022)
(2022)

53. SlowMist: Smart contract security audit report rotl. https://github.com/

slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/

SlowMist%20Audit%20Report%20-%20ROTL_en-us.pdf (date of access: June 13,
2022) (2021)

https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-Beamswap-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-Beamswap-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-Beamswap-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-DeFiAI-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-DeFiAI-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-DeFiAI-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-Duet-Bond-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-Duet-Bond-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-Duet-Bond-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-KaoyaSwap-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-KaoyaSwap-v1.0.pdf
https://github.com/peckshield/publications/blob/master/audit_reports/PeckShield-Audit-Report-KaoyaSwap-v1.0.pdf
https://certificate.quantstamp.com/full/capsule-nft
https://certificate.quantstamp.com/full/capsule-nft
https://certificate.quantstamp.com/full/nomad
https://certificate.quantstamp.com/full/nomad
https://certificate.quantstamp.com/full/pine
https://certificate.quantstamp.com/full/pine
https://certificate.quantstamp.com/full/play-swoops
https://certificate.quantstamp.com/full/play-swoops
https://certificate.quantstamp.com/full/rara
https://certificate.quantstamp.com/full/rara
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Alchemix_v2.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Alchemix_v2.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Alchemix_v2.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Blockswap_Stakehouse.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Blockswap_Stakehouse.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Blockswap_Stakehouse.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Algofi-dex-nanoswap.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Algofi-dex-nanoswap.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/atlendis-audit-report.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/atlendis-audit-report.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/atlendis-audit-report.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/EXA_Finance.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/EXA_Finance.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20ROTL_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20ROTL_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20ROTL_en-us.pdf

8 Authors Suppressed Due to Excessive Length

54. SlowMist: Smart contract security audit report arowana. https://github.com/
slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/

SlowMist%20Audit%20Report%20-%20Arowana_en-us.pdf (date of access: June
13, 2022) (2022)

55. SlowMist: Smart contract security audit report cheersup. https://github.com/
slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/

SlowMist%20Audit%20Report%20-%20CheersUp_alpha8_en-us.pdf (date of
access: June 13, 2022) (2022)

56. SlowMist: Smart contract security audit report laqiratoken. https:

//github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/

smart-contract/SlowMist%20Audit%20Report%20-%20LaqiraToken_en-us.pdf

(date of access: June 13, 2022) (2022)

57. SlowMist: Smart contract security audit report starcrazy. https://github.com/
slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/

SlowMist%20Audit%20Report%20-%20Starcrazy_en-us.pdf (date of access: June
13, 2022) (2022)

58. Stevens, R.: Inflationary and deflationary cryptocurren-
cies: What’s the difference? https://www.coindesk.com/learn/

inflationary-and-deflationary-cryptocurrencies-whats-the-difference/

(date of access: September 5, 2022)

59. Swende, M.H.: Eip-1884: Repricing for trie-size-dependent opcodes. https://eips.
ethereum.org/EIPS/eip-1884#motivation (date of access: July 31, 2022)

60. Torres, C.F., Steichen, M., et al.: The art of the scam: Demystifying hon-
eypots in ethereum smart contracts. https://www.usenix.org/system/files/

sec19-torres.pdf (date of access: September 7, 2022) (2019)

61. TrailofBits: Advanced blockchain security assessment. https:

//github.com/trailofbits/publications/blob/master/reviews/

AdvancedBlockchainQ12022.pdf (date of access: June 13, 2022) (2022)

62. TrailofBits: Degate security assessment. https://github.com/trailofbits/

publications/blob/master/reviews/DeGate.pdf (date of access: June 13, 2022)
(2022)

63. TrailofBits: Looksrare security assessment. https://github.com/trailofbits/

publications/blob/master/reviews/LooksRare.pdf (date of access: June 13,
2022) (2022)

64. TrailofBits: Maple labs security assessment. https://github.com/trailofbits/
publications/blob/master/reviews/MapleFinance.pdf (date of access: June 13,
2022) (2022)

65. TrailofBits: Perpetual protocol v2 security assessment. https://github.com/

trailofbits/publications/blob/master/reviews/PerpetualProtocolV2.pdf

(date of access: June 13, 2022) (2022)

66. Wang, Y., Zuest, P., Yao, Y., Lu, Z., Wattenhofer, R.: Impact and user perception
of sandwich attacks in the defi ecosystem. In: CHI Conference on Human Factors
in Computing Systems. pp. 1–15 (2022)

67. Zhou, L., Xiong, X., Ernstberger, J., Chaliasos, S., Wang, Z., Wang, Y., Qin, K.,
Wattenhofer, R., Song, D., Gervais, A.: Sok: Decentralized finance (defi) attacks.
Cryptology ePrint Archive (2022)

https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20Arowana_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20Arowana_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20Arowana_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20CheersUp_alpha8_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20CheersUp_alpha8_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20CheersUp_alpha8_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20LaqiraToken_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20LaqiraToken_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20LaqiraToken_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20Starcrazy_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20Starcrazy_en-us.pdf
https://github.com/slowmist/Knowledge-Base/blob/master/open-report-V2/smart-contract/SlowMist%20Audit%20Report%20-%20Starcrazy_en-us.pdf
https://www.coindesk.com/learn/inflationary-and-deflationary-cryptocurrencies-whats-the-difference/
https://www.coindesk.com/learn/inflationary-and-deflationary-cryptocurrencies-whats-the-difference/
https://eips.ethereum.org/EIPS/eip-1884#motivation
https://eips.ethereum.org/EIPS/eip-1884#motivation
https://www.usenix.org/system/files/sec19-torres.pdf
https://www.usenix.org/system/files/sec19-torres.pdf
https://github.com/trailofbits/publications/blob/master/reviews/AdvancedBlockchainQ12022.pdf
https://github.com/trailofbits/publications/blob/master/reviews/AdvancedBlockchainQ12022.pdf
https://github.com/trailofbits/publications/blob/master/reviews/AdvancedBlockchainQ12022.pdf
https://github.com/trailofbits/publications/blob/master/reviews/DeGate.pdf
https://github.com/trailofbits/publications/blob/master/reviews/DeGate.pdf
https://github.com/trailofbits/publications/blob/master/reviews/LooksRare.pdf
https://github.com/trailofbits/publications/blob/master/reviews/LooksRare.pdf
https://github.com/trailofbits/publications/blob/master/reviews/MapleFinance.pdf
https://github.com/trailofbits/publications/blob/master/reviews/MapleFinance.pdf
https://github.com/trailofbits/publications/blob/master/reviews/PerpetualProtocolV2.pdf
https://github.com/trailofbits/publications/blob/master/reviews/PerpetualProtocolV2.pdf

DeFi Auditing: Mechanisms, Effectiveness, and User Perceptions 9

A DeFi Vulnerability

A.1 Smart Contract Layer Vulnerabilities

1. Under-priced Opcodes: An imbalance between the gas price of executing an
operation in the EVM and the resource consumption (CPU time, memory
etc.) can be exploited, e.g. by flooding the network, leading to “denial of
service” [59].

2. Outdated Compiler Version: The smart contract is compiled using an out-
dated compiler version, which might contain unresolved bugs and vulnera-
bilities [35, p.6].

3. Compiler version not fixed / Different Solidity versions used: The source code
specified the compiler version with the caret operator “ˆ”, allowing it to be
compiled with a future compiler version, which might not ensure backward
compatibility, be buggy, or introduce syntax changes [20].

4. Call to the unknown: The smart contract calls other smart contracts that
execute untrusted code, such as some of the primitives used in Solidity to
invoke functions and to transfer ether, e.g. call, may have the side effect of
invoking the fallback function of the callee or recipient. [8, p.169]

5. Reentrancy: The external callee’s contact calls back a function in the caller’s
contract (that is, a circular call) before the caller’s contract expires, allowing
an attacker to bypass validation until the calling contract runs out of ether
or the transaction runs out of gas [19, p.9].

6. Delegatecall / call injection: To facilitate code-reuse, the Ethereum Virtual
Machine (EVM) provides an opcode, delegatecall, for inserting a callee con-
tract’s bytecode into the bytecode of the caller contract, [19, p.9] hence the
malicious callee contract is called in the context of caller contract and can
directly modify or manipulate its state variables.

7. Unchecked call return value / Unhandled or mishandled exception: Return
values of functions may return important information about the program
state, or success or failure of execution. A discrepancy exists in Solidity’s
handling of exceptions occurring in the execution of callee contracts: If the
exception occurs directly referencing a callee contract’s instance, the transac-
tion is reverted and the exception is propagated to the caller, if the exception
occurs by invoking send, call, or delegatecall, false is returned to the caller
[8, p.170 f.].

8. Call stack depth limit: The EVM implementation limits the call stack’s depth
to 1024 frames and deliberately exceeding the call stack’s depth limit causes
instructions to fail. [19, p.13].

9. Locked or frozen assets: Allowing users to deposit their money to their con-
tract accounts, but preventing them from spending their money from those
accounts, effectively freezing their money. This can be accomplished by e.g.
contracts not providing any function for spending money, relying on the
money-spending function of another contract, e.g. a library, and the library
being killed [19, p.9].

10 Authors Suppressed Due to Excessive Length

10. Integer overflow or underflow: The result of an arithmetic operation can
fall outside of the range of a Solidity data type, causing e.g. unauthorized
manipulation of balance or state variables [19, p.10].

11. Absence of coding logic or sanity check: Method arguments and return values
that could cause malicious actions during the execution of the method are
not checked or validated.

12. Short address: Manipulation of the data padding scheme to change function
parameters (e.g. ether value) by providing an address, which is too short, as
a function parameter.

13. Casting: The Solidity compiler does not check if types match in all cases
and does not throw exceptions, hence the caller is not aware that code is
executed in an unexpected manner [8, p.172].

14. Unbounded or gas costly operation: Each block has a “gas limit” field that
specifies the maximum total amount of gas that can be consumed by the
transactions in a block. When the amount of gas required for executing
a contract exceeds the block gas limit, e.g. by looping over a large data
structure, the transaction will not be executed [19, p.11].

15. Other arithmetic mistakes: Programming oversight when performing com-
puter arithmetic, not unique to smart contracts.

16. Other non-arithmetic mistakes: Programming oversight not relating to com-
puter arithmetic, from erroneous constructor names to faults in translating
business logic into smart contract code.

17. Inconsistent or improper access control: The smart contract does not ade-
quately authenticate access to restricted fields, allowing e.g. permissions to
be overwritten or funds to be siphoned to external accounts.

18. Visibility error: Solidity provides four types of visibility to restrict access to
a contract’s functions, namely, public, external, internal, and private, which
respectively says that a function can be called arbitrarily, only externally,
only within the contract and derived contracts, or only within the contract.
When visibility is incorrectly specified, it can permit unauthorized access
[19, p.10].

19. Lackluster test coverage: The percentage of smart contract code, for which
functionality tests are written, is too low, or the tests do not sufficiently test
corner cases.

20. Other smart contract layer vulnerabilities: Other security vulnerabilities lo-
cated in the smart contract layer according to the taxonomy laid out in
Chapter 2.3.

A.2 Protocol Layer Vulnerabilities

1. Front-running: The result of certain transactions depends on the order in
which they are executed. Since transactions are publicly broadcast to the
network, a malevolent Externally Owned Account (EOA) can offer a higher
gas price to have its transactions included in blocks sooner than others’.
Moreover, a malicious miner can always pick up its own transactions irre-
spective of the gas price [19, p.13].

DeFi Auditing: Mechanisms, Effectiveness, and User Perceptions 11

2. Back-running: The result of certain transactions depends on the order in
which they are executed. Since transactions are publicly broadcast to the
network, a malevolent EOA can offer a lower gas price to have its transactions
included in blocks later than others’. Further, a malicious miner can always
pick up its own transactions irrespective of the gas price [19, p.13].

3. Sandwiching: An attacker observes a non-executed transaction purchasing
an asset and quickly front-runs it by purchasing that asset for a low price.
As the supply of the twice-bought asset is low, its value increases by the
design of the bonding curve. The attacker then back-runs by selling the
asset shortly after the victim transaction to make a profit [66, p.1].

4. Other transaction order dependency: The result of certain transactions de-
pends on the order in which they are executed, which can be manipulated
by means other than front-/back-running or a combination thereof.

5. Transaction / strategy replay: Transactions are often validated with digital
signatures. If a digital signature does not depend on due information, e.g. a
nonce, a malicious entity could use a digital signature multiple times, e.g. to
withdraw extra payments.

6. Randomness: Relying on the pseudo-random or predictable data, such as the
block number or timestamp, as a source of randomness, e.g. for encryption,
is not safe, since it can allow a prediction of the next “random” number [19,
p.13f.].

7. Other block state dependency: Other means by which manipulable elements
of the block state are depended upon, e.g. a contract may use the block
timestamp, which can be manipulated as a triggering condition to execute
some critical operations [36, p.4].

8. On-chain oracle manipulation: To circumvent relying on third parties for
pricing assets, some DeFi applications solely retrieve prices from on-chain
oracles, which can be manipulated, e.g. with flash loans [31].

9. Governance flash borrow or purchase: Protocols that implement decentral-
ized governance may employ governance tokens, holders of which can propose
and vote to change the protocol. Through flash loans [31], entities may tem-
porarily amass a large enough share of tokens to unilaterally change the
protocol.

10. Fake token: Real tokens have certain token standards to abide by and fraud-
ulent token creators build in mechanisms to steal token owners’ money, not
adhering to these standards. Fake tokens may pose as legitimate tokens,
though they are not of equal value, for instance, in attempts to extract in-
formation about unsuspecting users [37].

11. Token standard incompatibility: Token standards like ERC20 are Ethereum’s
technical standards for the implementation of cryptocurrency tokens. They
define a standard list of rules that tokens should follow within the larger
Ethereum ecosystem, allowing developers to predict exactly how the tokens
will interact. Smart contracts are missing return values or missing function-
ality specified in the standard, potentially leading to undefined behavior.
Alternatively, smart contract code is not compatible with special types of
tokens, e.g. deflationary tokens [58].

12 Authors Suppressed Due to Excessive Length

12. Other unsafe DeFi protocol dependency: Other DeFi protocol risks that may
occur due to external dependencies.

13. Unfair slippage protection: When performing trades on a blockchain, where
asset prices adapt according to the order in which trades are executed, users
may wish to only execute a trade if the price variation does not exceed a
previously specified tolerance (“slippage”). Applications may not execute
trades according to the user-defined slippage.

14. Unfair liquidity providing: Liquidity providers may manipulate the supply of
liquidity to control the price of currencies in a liquidity pool [6], e.g. through
variants of sandwich attacks.

15. Other unsafe DeFi protocol interaction: Other ways in which interacting
with a DeFi protocol could be unsafe.

16. Other protocol layer vulnerabilities: Other security vulnerabilities located in
the protocol layer according to the taxonomy laid out in Chapter 2.3.

A.3 Third-Party Layer Vulnerabilities

1. Compromised private key / wallet: The attacker can gain control of the
private key or wallet and is able to extract all money, ransoms the account,
or the attacker disables wallet usage.

2. Weak password: A third party can hack into an ether account and steal funds
by simply correctly guessing a weak password.

3. Deployment mistake: Deployment of smart contracts suffers from risks of
regular software deployment, e.g. deploying code manually (inconsistently),
not tracking code changes properly between different versions [34], but also
suffer deployment challenges related to interoperability between different
blockchains [7].

4. Malicious oracle updater: Entities responsible for updating real-time data
feeds may benefit from providing manipulated information, often to the detri-
ment of users, e.g. in prediction markets, where people can trade contracts
that pay based on the outcomes of unknown future events [32, p.22].

5. Malicious data source: Centralized data feeds provide arbitrary data from a
single centralized source, and they build on existing blockchain platforms.
Centralized data feeds rely on a trusted party that may misbehave or acci-
dentally produce wrong data, harming users in the process [32, p.22].

6. External market manipulation: Adversaries can manipulate the market price
of assets off-chain by disseminating false or misleading information about a
company, engaging in a series of transactions to make it appear that the
security is being traded more actively, or rigging prices, quotes, or trades to
manipulate the perception of demand [1].

7. Backdoor / Honeypot: Honeypots are smart contracts that have an obvious
flaw in their design, where users a priori commit a certain amount of ether to
a contract, thus allowing ether to be extracted from the contract. However, if
a user were to attempt to exploit this apparent vulnerability, it would open a
second, as-yet-unknown trapdoor for him, preventing him from successfully
ejecting ether. [60, p.3]. The attacker takes the money that the victim lost
in the exploitation attempt.

DeFi Auditing: Mechanisms, Effectiveness, and User Perceptions 13

8. Insider activities: Since DeFi is less regulated than CeFi, acting on confiden-
tial or non-public information for one’s benefit or collusion is more common.

9. Phishing attack: Phishing is a form of social engineering in which an attacker
sends deceptive messages or deploys malicious software designed to cajole
people into disclosing sensitive information to the perpetrator. As a result,
unwanted funds are transferred to the attacker [33, p.1].

10. Authority control or breach of promise: Creators or administrators of DeFi
projects, such as coins or platforms, may act maliciously by breaking implicit
or explicit commitments of trustworthiness to users.

11. Faulty wallet provider: Third-party wallet providers, which DeFi projects
rely on, may include, deliberately or negligently faulty, exploitable code in
the provided wallets.

12. Faulty API / RPC: The JSON-RPC of an Ethereum client exposes various
APIs for EOAs to communicate with the Ethereum network. For security
reasons, an attacker could access his client remotely via a JSON request, so
the interface should not be reachable from the internet [19, p.17].

13. Other third-party layer vulnerabilities: Other security vulnerabilities located
in the third-party layer according to the taxonomy laid out in Chapter 2.3.

Table 1: Smart contract layer vulnerabilities grouped by their respective causes.
Explanations of each vulnerability can be found in Appendix A.1.
Vulnerability Cause Vulnerability Type

State transition design /
implementation error

Under-priced opcodes
Oudated compiler version
Compiler version not fixed / Different Solidity versions used

Untrusted callee
Call to the unknown
Reentrancy
Delegatecall / call injection

Coding mistake

Unchecked call return value / Unhandled or mishandled exception
Call-stack depth limit
Locked or frozen assets
Integer overflow or underflow
Absence of coding logic or sanity check
Short address
Casting
Unbounded or gas costly operation
Other arithmetic mistakes
Other non-arithmetic mistakes

Access control error
Inconsistent or improper access control
Visibility error

Sub-par code maintenance Lackluster test coverage

Other Other smart contract layer vulnerabilities

14 Authors Suppressed Due to Excessive Length

Table 2: Protocol layer vulnerabilities grouped by their respective causes. Ex-
planations of each vulnerability can be found in Appendix A.2.
Vulnerability Cause Vulnerability Type

Transaction order dependency error

Front-running
Back-running
Sandwiching
Other transaction order dependency

Replayable design error Transaction / strategy replay

Block state dependency error
Randomness
Other block state dependency

Unsafe DeFi protocol dependency

On-chain oracle manipulation
Governance flash borrow or purchase
Fake token
Token standard incompatibility
Other unsafe DeFi protocol dependency

Unsafe DeFi protocol interaction
Unfair slippage protection
Unfair liquidity providing
Other unsafe DeFi protocol interaction

Other Other protocol layer vulnerabilities

Table 3: Third-party layer vulnerabilities grouped by their respective causes.
Explanations of each vulnerability can be found in Appendix A.3.
Vulnerability Cause Vulnerability Type

Faulty operation
Compromised private key / wallet
Weak password
Deployment mistake

Off-chain oracle manipulation
Malicious oracle updater
Malicious data source
External market manipulation

Greedy project owners or other internet entities

Backdoor / Honeypot
Insider activities
Phishing attack
Authority control or breach of promise

Faulty blockchain service provider
Faulty wallet provider
Faulty API / RPC

Other Other third-party layer vulnerabilities

DeFi Auditing: Mechanisms, Effectiveness, and User Perceptions 15

B Data Collection

Table 4: The sampled DeFi applications of each audit company.
Company Sampled DeFi Projects

CertiK
Vicstep [18], The Space [17], Argo [14]
Hunny Swap [16], Decaswap Finance [15]

ConsenSys
Fei Labs [25], pSTAKE Finance [22], Gluwacoin [21]
Gamma [23], Notional Protocol [24]

Trail of Bits
Advanced Blockchain [61], DeGate [62], Looks Rare [63]
Maple Labs [64], Perpetual Protocol V2 [65]

Beosin
Alpha Quark [12] Clip [9], SeasonSwap [13]
MasterChefV2 [11], Crafting [10]

SlowMist
ROTL [53], LaqiraToken [56], CheersUp [55]
Arowana [54], Starcrazy [57]

PeckShield
DeFiAI [40], KaoyaSwap [42], ArthSwap [38]
Beamswap [39], Duet Bond [41]

Quantstamp
PlaySwoops [46], CapsuleNFT [43], Pine [45]
Rara [47], Nomad [44]

Hacken
Paribus [27], TheNextWar [29], VYNKSAFE [30]
Onechain [26], Bolide [28]

Runtime Verification
Algofi [50], EXA Finance [52], Blockswap Stakehouse [49]
Atlendis Protocol [51], Alchemix v2 [48]

16 Authors Suppressed Due to Excessive Length

C Auditing Mechanism Findings

Table 5: Core steps of DeFi auditing. We include companies if they consider
the specific step during their audits. A: CertiK, B: ConsenSys, C:Trail of Bits,
D: Beosin, E: SlowMist, F: PeckShield, G: Quantstamp, H: Hacken, I: Runtime
Verification.

Category Auditing Step Companies

Tool-Assisted Analysis

Static Analysis A, B, C, D, E, F, G,
H, I

Symbolic Execution B, C, G, H, I
Fuzzing B, C, D, E, H
Formal Verification A, B, C, D, I

Manual Analysis
Vulnerability Verifica-
tion and Testing

A, B, C, D, E, F, G,
H, I

Advanced DeFi
Scrutiny

A, B, C, D, E, F, G,
H, I

Semantic Consistency
Analysis

A, B, D, F, G, H, I

Suggest Remediations
Vulnerability Remedi-
ation

A, B, C, D, E, F, G,
H, I

Coding Practice Rec-
ommendation

A, B, C, D, E, F, G,
H, I

Tool-assisted analysis aims to identify potential vulnerabilities in smart contract
codes through automated scrutiny, negating the need for an in-depth analysis of
the protocol’s business logic. Various tools are used to achieve this, with firms
like Quantstamp and Trail of Bits explicitly mentioning their usage of specific
tools such as Slither and Echidna respectively in their reports.

Manual Analysis is often employed to expand the scope and increase the ac-
curacy of vulnerabilities identified. This step is crucial as automated tools may
generate false positives. After collecting potential vulnerabilities identified by
tools, auditors manually verify them, perform code testing, and conduct ad-
vanced DeFi scrutiny and semantic consistency analysis.

Remediation Suggestion provides solutions for each identified vulnerability. Au-
dit reports contain detailed descriptions of all vulnerabilities found, including
their severity, type, example exploit, and remediation recommendations. They
also provide suggestions for coding practices improvement and compliance with

DeFi Auditing: Mechanisms, Effectiveness, and User Perceptions 17

industry standards. The reports also state whether the vulnerabilities have been
resolved after auditing, with statuses categorized as Resolved, Partially resolved,
Acknowledged, or No Information provided.

18 Authors Suppressed Due to Excessive Length

D Auditing Effectiveness Findings

Fig. 1: Percentage distribution of 43 exploited vulnerabilities across different lay-
ers.

DeFi Auditing: Mechanisms, Effectiveness, and User Perceptions 19

Table 6: The frequency of appearance of auditing firms in Not Mentioned Group
Audit Company Number of cases

CertiK 8

Haechi 2

Solidity 2

OpenZepplin 2

ZOKYO 2

Harborn 1

Onmniscia 1

Arcadia 1

Cleanunicorn 1

InterFi Network 1

Consensys 1

Hacken 1

Solidified 1

Nick Johnson(Personal) 1

Table 7: The frequency of appearance of auditing firms in Searched For Group
Audit Company Number of cases

CertiK 5

PeckShield 2

TechRate 1

Harborn 1

Quantstamp 1

Personal Audit 1

Table 8: The category of vulnerablities in Searched For Group
Cause of attack Number of cases

Absence of code logic or sanity check 5

Call to untrusted contract 3

Reentrancy 1

Oracle manipulation 1

Fake Token 1

	DeFi Auditing: Mechanisms, Effectiveness, and User Perceptions

