
Minimum Dominating Set Approximation

in Graphs of Bounded Arboricity

Christoph Lenzen and Roger Wattenhofer

Computer Engineering and Networks Laboratory (TIK)
ETH Zurich

{lenzen,wattenhofer}@tik.ee.ethz.ch

Abstract. Since in general it is NP-hard to solve the minimum dominat-
ing set problem even approximatively, a lot of work has been dedicated
to central and distributed approximation algorithms on restricted graph
classes. In this paper, we compromise between generality and efficiency
by considering the problem on graphs of small arboricity a. These fam-
ily includes, but is not limited to, graphs excluding fixed minors, such
as planar graphs, graphs of (locally) bounded treewidth, or bounded
genus. We give two viable distributed algorithms. Our first algorithm
employs a forest decomposition, achieving a factor O(a2) approximation
in randomized time O(log n). This algorithm can be transformed into a
deterministic central routine computing a linear-time constant approxi-
mation on a graph of bounded arboricity, without a priori knowledge on
a. The second algorithm exhibits an approximation ratio of O(a log ∆),
where ∆ is the maximum degree, but in turn is uniform and determinis-
tic, and terminates after O(log ∆) rounds. A simple modification offers a
trade-off between running time and approximation ratio, that is, for any
parameter α ≥ 2, we can obtain an O(aα log

α
∆)-approximation within

O(log
α

∆) rounds.

1 Introduction

We are interested in the distributed complexity of the minimum dominating
set (MDS) problem, a classic both in graph theory and distributed computing.
Given a graph, a dominating set is a subset D of nodes such that each node
in the graph is either in D, or has a direct neighbor in D. There are various
applications where it is beneficial to find dominating sets of small cardinality,
for instance in routing. We want to find a minimum dominating set (MDS)—or
a dominating set that is not much larger than an MDS—fast, if possible even in
constant time.

Regrettably, it has been shown that in general graphs, small dominating sets
cannot be computed in constant time [15]. In some special graphs, however, this
is simple. In a tree, for instance, we can get a constant approximation of the
MDS problem by choosing all inner nodes, because a third of the inner nodes
must be in any MDS. In fact, one can approximate an MDS quickly and up
to a constant for more general graphs, for instance planar graphs [18]. What

about graph classes between planar and general? One property of planar graphs
is sparsity, i.e., the number of edges is at most linear in the number of nodes.
Hence it seems natural to raise the question on which side of the boundary
between “easy” and “hard” sparse graphs reside.

Unfortunately, a constant MDS approximation cannot be computed quickly
in sparse graphs, as the hardness of the general MDS problem can be enclosed
into a small part of the graph whose contribution to the global solution is de-
cisive. Just take n − √

n nodes, and connect them as a star. The remaining√
n nodes can be connected arbitrarily, yielding a sparse graph with less than

n +
√

n
2

= 2n edges. Whereas the star is dominated by its center alone, we can
just apply the lower bound [15] to the remaining

√
n nodes.

Consequently, we need a different definition of sparseness, one that applies
“everywhere” in the graph. In this work we consider graphs of bounded arboric-

ity, subsuming planar graphs, graphs of bounded genus or treewidth, and, more
generally, graphs excluding any fixed minor. The arboricity of a graph can be
defined in two equivalent ways: (i) the minimum number of forests into which
the edge set can be partitioned and (ii) the maximum ratio of edges to nodes
in any subgraph. We present two distributed algorithms, each of which exploits
one of these properties. Generally speaking, both algorithms run in logarithmic
time and feature an approximation guarantee that depends on the arboricity of
the graph. This can be seen as the result of a balancing act between generality
of feasible inputs on the one hand and approximation quality and running time
on the other hand: On graphs of small arboricity, we outperform the so far best
algorithm designed for general graphs; faster routines achieving similar approx-
imations are currently known only for severely constrained inputs like planar
graphs or graphs of bounded growth.

As a corollary, we observe that based on a forest decomposition, a central
algorithm can compute a constant-factor approximation in a linear number of
operations in any graph of bounded arboricity. In contrast, asymptotically opti-
mum solutions are intractable in general graphs (and thus also on sparse graphs),
where it is known to be NP-hard to obtain any sublogarithmic approximation
ratio [23]. To the best of our knowledge, graphs of bounded arboricity represent
the so far most general family of graphs for which a constant MDS approxima-
tion can be computed efficiently. Finally, given that all our algorithms are simple
and the distributed routines require only small messages, we believe them to be
suitable for use in practice.

2 Related Work

It is safe to say that computing small dominating sets is one of the most classical
and fundamental graph problems. The task of finding a minimum dominating
set was among the first to be recognized as NP-complete [11] and—dominating
set being a quite general special case of set cover—Raz and Safra proved that it
is NP-hard to achieve a c log ∆-approximation, where ∆ is the maximum node
degree and c > 0 a constant [23]. Ironically, a ((1 − o(1)) log ∆)-approximation

can be obtained by a naive greedy algorithm, a strategy which was shown to
be optimal for polynomial-time algorithms unless NP is contained in the class
of problems that can be solved deterministically in time nO(log log n) (where n is
the number of nodes) by Feige [10].

Arguably, for distributed algorithms things are even worse. Even if mes-
sage size is unbounded and nodes may perform arbitrary local computations (in
particular solve NP-hard problems!), Ω(log ∆/ log log ∆) and Ω(log n/ log log n)
communication rounds are required to guarantee a polylogarithmic approxima-
tion [15]. Currently, the best known randomized algorithm yields an expected1

O(log ∆)-approximation in O(log n) time [17]. Considering that a better approx-
imation ratio is (supposing P6=NP, of course) intractable, this is optimal up to
a factor of O(log n log log ∆/ log ∆) in time complexity. However, for this algo-
rithm no non-trivial bound on the message size holds. The authors give a second
algorithm whose messages are of size at most O(log ∆), trading in for a time
complexity of O(log2 ∆). To the best of our knowledge, the deterministic dis-
tributed complexity of MDS approximations on general graphs is more or less a
blind spot, as so far neither fast (polylogarithmic time) algorithms nor stronger
lower bounds are known.

In light of the strong negative results, it is natural to consider restricted
families of graphs. Here we get a colorful picture. The ((1−o(1)) log ∆)-hardness
result of Feige has been extended to bipartite and split graphs by Chleb́ık and
Chleb́ıková [4], and thus also to chordal graphs and their complements. The case
of trees is trivial for centralized algorithms. Distributed algorithms need time in
the order of the depth of the tree for an optimal solution, while a constant
approximation is also trivial. For series-parallel graphs a linear-time centralized
algorithm was devised by Takamizawa et al. [25]. This algorithm generalizes to
a polynomial-time one in graphs of bounded treewidth.

More interesting are less extreme cases. For instance, both in planar and unit
disk graphs, it remains NP-complete to solve MDS exactly [5, 11], but PTAS have
been given [2, 13]. These graph classes are also comparatively well understood
in the distributed setting. On unit disk graphs, or more generally the family of
graphs of bounded growth,2 a constant approximation can be found in O(log∗ n)
rounds [24]. The respective algorithm outputs a maximal independent set (which
must also be a dominating set); because the number of independent neighbors of
any node in an optimal solution is bounded by a constant, so is the approxima-
tion ratio of the algorithm. Using the same argument, a constant approximation
can be found on graphs of bounded independence, however, the so far best known
maximal independent set algorithms on this graph class have randomized run-
ning time O(log n) with high probability [1, 21]. For deterministic algorithms on
unit disk graphs, the product of approximation ratio and running time cannot
be in o(log∗ n) [19], implying that the upper bound from [24] is asympotically

1 This can be improved to hold with high probability [14].
2 “Bounded independence” means that the number of independent nodes in neigh-

borhoods is constant. “Bounded growth” refers to the stronger property that the
number of independent nodes in an r-neighborhood is polynomially bounded in r.

optimal. The same result also implies a constant lower bound on the approxi-
mation ratio of deterministic distributed algorithms running on planar graphs
in o(log∗ n) rounds, which was proved independently in [6]. On the other hand,
a deterministic constant-time algorithm that outputs a 74-approximation on
planar graphs was given in [18]. Shortly thereafter, Czygrinow et al. devised a
(1+ ε)-approximation on planar graphs [6] (for any constant ε > 0) in O(log∗ n)
time. Their algorithm utilizes a different constant-time approximation for pla-
nar graphs with a constant, but much larger approximation ratio than in [18];
intriguingly, a closer look reveals that this routine does not require planarity
at all, but works for any graph free of K3,3-minors. Earlier, two of the authors
of this work gave slower (polylogarithmic time with large exponent) algorithms
yielding (1 + o(1))-approximations in graphs excluding any fixed minor [7, 8]. It
should be mentioned, though, that the algorithms from [7, 8, 6] have in common
that they compute optimal solutions to subproblems on subgraphs of bounded
diameter, implying that NP-hard problems are solved. Therefore, the respec-
tive results are mainly theoretic statements on distributed time complexity and
probably infeasible in practice.

Returning to centralized algorithms, Baker’s PTAS for planar graphs [2] is
based on the fact that planar graphs admit an O(D) tree decomposition in time
O(Dn), where D denotes the diameter of the graph. Building on Baker’s ideas,
Eppstein extended the approach to minor-closed families excluding a specific
apex graph [9]. Finally Grohe generalized the technique further, giving PTAS
for any minor-closed family that does not contain all minors [12].

3 Contribution

In this work, we give practical approximation algorithms whose approximation
ratios depend on the arboricity of the underlying graph, i.e., the minimum num-
ber of forests into which the edge set can be decomposed. The family of graphs
of bounded arboricity contains all graphs excluding fixed minors, thus including
planar graphs, graphs of bounded genus, and graphs of bounded tree-width. It
is a proper superset of the family of graphs excluding some minor, as already
graphs of arboricity 2 may have K√

n-minors.3

Our first distributed algorithm computes, given a forest decomposition into f
forests, an f2-approximation in randomized time O(log n) with high probability.
The algorithms of Czygrinow et al. [6–8] also involve forest decompositions, but
they rely on additional properties of the underlying graph and are considerably
slower. Barenboim and Elkin applied essentially the same technique as Czy-
grinow et al. to obtain forest decompositions [3]. However, they stated slightly
different and more general results, better fitting our needs. More precisely, their

3 In contrast, graphs of bounded independence are fundamentally different. A clique
has maximum arboricity, but independent sets are of size one, while a star has
arboricity one, but the neighborhood of the center consists of n − 1 independent
nodes. The combination of bounded independence and arboricity implies bounded
degree and vice versa.

algorithms compute Θ(a)-forest decompositions of graphs of arboricity a in time
O(log n) provided that an upper bound in O(a) on a or an upper bound in O(nc)
on n (for a constant c ≥ 1) is known to the nodes. Employing their algorithm,
we thus get an O(a2)-approximation in O(log n) time on any graph of arboricity
a. In particular, the resulting routine guarantees constant approximation ratios
on graphs of bounded arboricity, using messages of size O(log n). From a col-
oring lower bound by Linial [20], Barenboim and Elkin inferred a lower bound
of Ω(log n/ log f) on the time to compute a forest decomposition into f forests
distributedly. Thus, no algorithm utilizing a forest decomposition can yield sub-
stantially better results. Using standard techniques, our algorithm can also be
transformed into an efficient central routine. In this case, we can remove the
logarithmic overhead in running time and the need for randomization, and we
need no a-priori knowledge on the arboricity of the graph. Hence, we achieve
a uniform, central O(a)-approximation within O(an) steps, i.e., a linear time
constant approximation on graphs of bounded arboricity.

We proceed by presenting a second, deterministic distributed algorithm that
features a smaller running time of O(log ∆), smaller messages of size O(log log ∆),
and is uniform, i.e., does not require any bounds on a or n as input. Interest-
ingly, this algorithm requires less symmetry breaking than the first one (which
apart from the forest decomposition computes a maximal independent set). In-
deed, a port numbering suffices, and if (an upper bound on) a is known to the
algorithm, also this condition can be dropped, i.e., the modified algorithm does
not rely on any non-topological symmetry breaking information at all. These ad-
vantages come not for free, as the approximation ratio of the second algorithm
now depends on the maximum degree, being O(a log ∆). A simple modification
of the algorithm permits to reduce the running time to O(log ∆/ log α), but
at the expense weakening the approximation guarantee to O(aα log ∆/ log α)
(for any α ≥ 2). We give an example where the approximation ratio of the sec-
ond algorithm is matched, i.e., better approximation guarantees require different
techniques.

4 Constant-Factor Approximation

In this section, we present an algorithm that computes a dominating set at most
O(a2) larger than optimum. After introducing the employed standard model
of distributed computation and some preliminary definitions, we proceed by
presenting the algorithm. After proving its approximation ratio, we review how
to obtain a (2a)-forest decomposition of a graph of arboricity a in O(an) central
operations. From these results, we conclude that on graphs of bounded arboricity
constant MDS approximations can be computed in O(log n) distributed rounds
and O(n) central steps.

4.1 Model

We model a distributed system as a simple, undirected graph G = (V,E), where
edges represent bidirectional communication links. Algorithms proceed in syn-

chronous rounds. In each round, nodes (i) send messages to their neighbors,
(ii) receive messages sent by their neighbors, and (iii) perform arbitrary (but
finite) local computations. Furthermore, we permit randomization, i.e., nodes
have access to an unlimited source of unbiased random bits. Initially, any node
v knows its inclusive neighborhood N+

v := {v}∪{w ∈ V | {v, w} ∈ E}. Similarly,
by N+

S :=
⋃

s∈S N+
s we denote the inclusive neighborhood of a set S ⊆ V .

Before we describe our first algorithm, we need to formalize some well-known
graph theoretic concepts.

Definition 1 (Dominating Sets). A dominating set is a subset of the nodes

D ⊆ V such that N+
D = V . A minimum dominating set (MDS) is a dominating

set of minimum cardinality. An α-approximation to an MDS is a dominating set

of size at most α|M |, where M is an MDS.

Definition 2 (Independent Sets). An independent set is a subset of the

nodes I ⊆ V containing no neighbors. A maximal independent set (MIS) is an

independent set for which adding any node destroys independence, i.e., N+
I = V

and I is also a dominating set.

Definition 3 (Forests and Forest Decompositions). A forest is a graph

containing no cycles. An oriented forest is a forest where edges have been oriented

such that outdegrees are at most one. If (v, w) ∈ E for two nodes in the forest, w
is called parent of v and v is a child of w. An f -forest decomposition of a graph

G is a decomposition of the edge set E = E1

·∪ E2

·∪ . . .
·∪ Ef together with an

appropriate orientation of the edges such that the subgraphs induced by each Ei,

i ∈ {1, . . . , f}, are oriented forests. Given a forest decomposition, we denote by

P (v) := {w ∈ V | (v, w) ∈ E} and P (S) :=
⋃

s∈S P (s) the set of parents of the

node v ∈ V and the set S ⊆ V , respectively. The arboricity a(G) of G is the

minimal number of forests in a forest decomposition of G. In the forthcoming,

we will write a instead of a(G) whenever the argument is clear from the context.

4.2 Algorithm

Our first algorithm is based on the following observations. Given an f -forest
decomposition and an MDS M , the nodes can be partitioned into two sets. One
set contains the nodes which are dominated by a parent, the other contains
the remaining nodes, which thus are either themselves in M or have a child
in M . Since dominating set nodes can cover only f parents, the latter are at
most (f + 1)|M | many nodes. If each such node elects all its parents into the
dominating set, we have chosen at most f(f + 1)|M | nodes.

For the first set, we can exploit the fact that each node has at most f parents
in a more subtle manner. Covering the nodes in this set by parents only, we need
to solve a special case of set cover where each element is part of at most f
sets. Such instances can be approximated well by a simple sequential greedy
algorithm: Pick any element that is not yet covered and add all sets containing
it; repeat this until no element remains. Since in each step we add at least one

new set from an optimum solution, we get an f -approximation. This strategy
can be parallelized by computing a maximal independent set in the graph where
two nodes are adjacent exactly if they share a parent, as adding the parents of
the nodes in an independent set in any order would be a feasible execution of
the sequential greedy algorithm.

Putting these two observations together, first all parents of nodes from a
maximal independent set in a helper graph are elected into the dominating set.
In this helper graph, two nodes are adjacent if they share a parent. Afterwards,
the remaining uncovered nodes have no parents, therefore it is uncritical to select
them all. This approach is summarized in Algorithm 1.

Algorithm 1: Parent Dominating Set

input : f -forest decomposition of G
output: dominating set D
H := (V, F), where {v, w} ∈ F ⇔ P (v) ∩ P (w) 6= ∅ // neighbors in H share a1

parent in G
Compute a maximal independent set I on H2

D := P (I) // all parents of nodes in the independent set join D3

D := D ∪ (V \ N+

D
) // all still uncovered nodes may safely join D4

4.3 Analysis

Lemma 1. In Line 3 of Algorithm 1, at most f(f + 2)|M | many nodes enter

D, where M denotes an MDS of G.

Proof. Denote by Vc ⊆ V the set of nodes that have a child in M or are them-
selves in M . We have that |Vc| ≤ (f + 1)|M |, since no node has more than f
parents. Each such node adds at most f parents to D in Line 3 of the algorithm,
i.e., in total at most f(f + 1)|M | many nodes join D because they are elected
by children in I ∩ Vc.

Now consider the set of nodes Vp ⊂ V that have at least one parent in M ,
i.e., in particular the nodes in I ∩ Vp have at least one parent in M . By the
definition of F and the fact that I is an independent set, no node in M can
have two children in I. Thus, |I ∩ Vp| ≤ |M |. Since no node has more than f
parents, we conclude that at most f |M | many nodes join |D| after being marked
as candidate by a child in I ∩ Vp.

Finally, observe that since M is a dominating set, we have that Vc ∪ Vp = V
and thus

|D| ≤ f |I ∩ Vc| + f |I ∩ Vp| ≤ f(f + 1)|M | + f |M | = f(f + 2)|M | ,

concluding the proof. ⊓⊔

Theorem 1. Algorithm 1 outputs a dominating set D containing at most (f2 +
3f + 1)|M | many nodes, where M is an optimum solution.

Proof. By Lemma 1, at most f(f + 2)|M | nodes enter D in Line 3 of the al-
gorithm. Since I is a MIS in H, all nodes that have a parent are adjacent to
at least one node in D after Line 3. Hence, the nodes selected in Line 4 must
either be covered by a child or themselves be in M . As no node has more than
f parents, thus in Line 4 at most (f + 1)|M | many nodes join D. Altogether, at
most (f2 + 3f + 1)|M | many nodes may end up in D as claimed. ⊓⊔

Corollary 1. In any graph G, a factor O(a(G)2) approximation to the MDS

problem can be computed distributedly in O(log n) rounds with high probability.4

In particular, on graphs of bounded arboricity a constant-factor approximation

can be obtained in O(log n) rounds with high probability. This can be accomplished

with messages of size O(log n).

Proof. We run Algorithm 1 in a distributed fashion. To see that this is possi-
ble, observe that (i) nodes need only to know whether a neighbor is a parent
or a child, (ii) that H can be constructed locally in 2 rounds and (iii) a syn-
chronous round in H can be simulated by two rounds on G. Thus, we simply
may pick distributed algorithms to compute a forest decomposition of G and a
maximal independent set and plug them together to obtain a distributed variant
of Algorithm 1.

For the forest decomposition, we employ the algorithm from [3], yielding a
decomposition into O(a) forests in O(log n) rounds. A maximal independent
set can be computed in O(log n) rounds with high probability by well-known
algorithms [1, 21], or a more recent similar technique [22]. In total the algorithm
requires O(log n) rounds with high probability and according to Theorem 1 the
approximation guarantee is O(a).

Regarding message size, we need to check that we do not require large mes-
sages because we compute a MIS on H. Formulated abstractly, the algorithm
from [22] breaks symmetry by making each node still eligible for the independent
set choosing a random value in each round and permitting it to join the indepen-
dent set if its value is a local minimum. This concept can for instance be realized
by taking O(log n) random bits as encoding of some number and comparing it to
neighbors. The respective values will with high probability differ. This approach
can be emulated using messages of size O(log n) in G: Nodes send their random
values to all parents in the forest decomposition, which then forward only the
smallest values to all children.5 ⊓⊔

4 I.e., with probability at least 1 − 1/nc for an arbitrary, but fixed constant c > 0.
5 If (an upper bound on) n is not known, one can start with constantly many bits

and double the number of used bits in each round where two nodes pick the same
value. This will not slow down the algorithm significantly and bound message size
by O(log n) with high probability.

4.4 Linear Time Central Algorithm

Employing well-known techniques, a central algorithm can compute a suitable
forest decomposition with linear complexity.

Lemma 2. A 2a(G)-forest decomposition of G can be computed in O(|E|+n) ⊆
O(an) computational steps.

Proof. For each node, we compute and store its degree (O(|E|) steps). Now we
place the nodes into buckets according to their degree. We pick a node with
smallest degree, we orient its edges, delete them, and update the assignment of
the nodes to the buckets. This is repeated until no more nodes remain. Assum-
ing appropriate data structures, the number of operations will be bounded by
O(|E| + n) ⊆ O(an), as each edge and node is accessed a constant number of
times. Since a graph of arboricity a and n′ nodes has less than an′ edges, the
smallest degree of any subgraph of G is at most 2a(G). Hence we obtain a forest
decomposition into 2a(G) forests. ⊓⊔

Hence, for any graph of arboricity a ∈ O(1), a deterministic, central algo-
rithm can compute an O(1)-approximation to the MDS problem with linear
complexity.

Corollary 2. Deterministically, an O(a)-approximation to an MDS can be com-

puted in O(|E| + n) ⊆ O(an) central steps.

Proof. Using Lemma 2, we can compute a forest decomposition within the stated
complexity bounds. In a central setting, Algorithm 1 can easily be implemented
using O(|E| + n) steps. The approximation guarantee follows from Theorem 1.

⊓⊔

5 A Solution in the Port Numbering Model

Algorithm 1 might be unsatisfactory with regard to several aspects. Its running
time is logarithmic in n even if the maximum degree ∆ is small. This cannot be
improved upon by any approach that utilizes a forest decomposition, as a lower
bound of Ω(log n/ log f) is known on the time to compute a forest decomposi-
tion into f forests [3]. The algorithm is not uniform, as it necessitates global
knowledge of a bound on a(G) or n.

Moreover, the algorithm requires randomization in order to compute a MIS
quickly. Considering deterministic algorithms, one might pose the question how
much initial symmetry breaking information needs to be provided to the nodes.
While randomized algorithms may randomly generate unique identifiers of size
O(log n) in constant time with high probability, many deterministic algorithms
assume them to be given as input. Milder assumptions are the ability to distin-
guish neighbors by means of a port numbering and/or an initial orientation of
the edges.

In this section, we show that an uniform, deterministic algorithm exists that
requires a port numbering only, yet achieves a running time of O(log ∆) and a

good approximation ratio. The size of the computed dominating set is bounded
linearly in the product of the arboricity a(G) of the graph and the logarithm
of the maximum degree ∆. Interestingly, we will observe later that if (an upper
bound on) the arboricity is known to the algorithm, one can even drop the
assumption of a port numbering.

5.1 The Port Numbering Model

In this section, we consider the so-called port numbering model. Again an undi-
rected and simple graph G = (V,E) is given. Communication is synchronous
and computation is deterministic. Nodes refer to their neighbors by means of a
port numbering, i.e., each node v uniquely maps the numbers {1, . . . , δ} to its
edges (where δ is the degree of v). Nodes can distinguish from which of their
neighbors they received a specific message. However, in contrast to the previous
setting where nodes had unique identifiers, different nodes now may refer to the
same destination by different port numbers.

Note that this model is quite harsh. For instance, it is impossible to reliably
discover cycles, compute a MIS, or determine the diameter of the graph.

5.2 Algorithm

The basic idea of Algorithm Greedy-by-Degree (Algorithm 2) is that it is always
feasible to choose nodes of high residual degree (by which we mean the number
of uncovered nodes in the inclusive neighborhood) simultaneously, i.e., all the
nodes that cover up to a constant factor as many nodes as the one covering the
most uncovered nodes. This permits to obtain strong approximation guarantees
without the structural information provided by knowledge of a(G) or a forest
decomposition; the mere fact that the graph must be “locally sparse” enforces
that if many nodes are elected into the set, also the dominating set must be large.
A difficulty arising from this approach is that nodes are not aware of the current
maximum residual degree in the graph. Hence, every node checks whether there
is a node in its 2-hop neighborhood having a residual degree larger by a factor
2. If not, nodes may join the dominating set (even if their degree is not large
from a global perspective), implying that the maximum residual degree drops
by a factor of 2 in a constant number of rounds.

A second problem occurs once residual degrees become small. In fact, it may
happen that a huge number of already covered nodes can each dominate the
same small set of a(G)−1 nodes. For this reason, it is mandatory to ensure that
not more nodes may join the dominating set than actually need to be covered.
To this end, nodes that still need to be covered elect one of their neighbors (if
any) that are feasible according to the criterion of (locally) large residual degree.
This scheme is described in Algorithm 2.

Note that nodes may never leave D once they entered it. Thus, nodes may
terminate based on local knowledge only when executing the algorithm, as they
can cease executing the algorithm as soon as δv = 0, i.e., their complete neigh-
borhood is covered by D. Moreover, it can easily be verified that one iteration

Algorithm 2: Greedy-by-Degree.

output: dominating set D
D := ∅1

while V 6= N+

D
do2

C := ∅ // candidate set3

for v ∈ V in parallel do4

δv := |N+
v \ N+

D
| // residual degree5

∆v := max
w∈N

+
v

{δw} // maximum residual degree within one hop6

∆v := max
w∈N

+
v

{∆w} // maximum residual degree within two hops7

if ⌈log δv⌉ ≥ ⌈log ∆v⌉ then8

C := C ∪ {v}9

end10

if v ∈ N+

C
\ N+

D
then11

w := any node from C ∩N+
v (break symmetry by port numbers)12

D := D ∪ {w} // uncovered nodes select a candidate joining D13

end14

end15

end16

of the loop can be executed by a local algorithm in the port numbering model
using 6 rounds.

5.3 Analysis

In the sequel, when we talk of a phase of Algorithm 2, we refer to a complete
execution of the while loop. We start by proving that not too many nodes with
small residual degrees enter D.

Lemma 3. Denote by M an MDS. During the execution of Algorithm 2, in

total at most 16a|M | nodes join D in Line 13 of the algorithm after computing

δv ≤ 8a in Line 5 of the same phase.

Proof. Fix a phase of the algorithm. Consider the set S consisting of all nodes
v ∈ V that become covered in this phase by some node w ∈ N+

v that computes
δw ≤ 8a and joins D. As according to Line 8 nodes join D subject to the condition
that residual degrees throughout their 2-hop neighborhoods are less than twice
as large as their own, no node m ∈ M can cover more than 16a many nodes in
S. Hence, |S| ≤ 16a|M |. Because of the rule that a node needs to be elected by
a covered node in order to enter D, this is also a bound on the number of nodes
joining D in a phase when they have residual degree at most 8a. ⊓⊔

Next, we show that in each phase, at most a constant factor more nodes of
large residual degree are chosen than are in an MDS.

Lemma 4. If M is an MDS, in each phase of Algorithm 2 at most 16a|M | nodes

v that compute δv > 8a in Line 5 join D in Line 13.

Proof. Denote by D′ the nodes v ∈ V joining D in Line 13 of a phase in which
they computed δv > 8a and by V ′ the set of nodes that had not been covered at
the beginning of this phase. Define for i ∈ {0, . . . , ⌈log n⌉} that

Mi := {v ∈ M | δv ∈ (2i−1, 2i]}

Vi :=

{

v ∈ V ′
∣

∣

∣

∣

max
w∈N+

v

{δw} ∈ (2i−1, 2i]

}

Di := {v ∈ D′ | δv ∈ (2i−1, 2i]} .

Note that
⋃⌈log n⌉

i=⌈log 8a⌉ Di = D′.

Consider any j ∈ {⌈log 8a⌉, . . . , ⌈log n⌉}. By definition, nodes in Vj may only

be covered by nodes from Mi for i ≤ j. Thus,
∑j

i=0 2i|Mi| ≥ |Vj |.
Nodes v ∈ Dj cover at least 2j−1 +1 nodes from the set

⋃

i∈{j,...,⌈log n⌉} Vi, as
by definition they have no neighbors in Vi for i < j. On the other hand, Lines 5
to 8 of the algorithm impose that these nodes must not have any neighbors of
residual degree larger than 2⌈log δv⌉ = 2j , i.e., these nodes cannot be in a set
Vi for i > j. Hence, each node v ∈ Dj has at least 2j−1 + 1 neighbors in Vj .
This observation implies that the subgraph induced by Dj ∪ Vj has at least
2j−2|Dj | ≥ 2a|Dj | edges. On the other hand, by definition of the arboricity, this
subgraph has less than a(|Dj | + |Vj |) edges. It follows that

|Dj | ≤
a|Vj |

2j−2 − a
≤ 23−ja|Vj | ≤ 23−ja

j
∑

i=0

2i|Mi| .

We conclude that

⌈log n⌉
∑

j=⌈log 8a⌉
|Dj | ≤

⌈log n⌉
∑

j=⌈log 8a⌉
23−ja

j
∑

i=0

2i|Mi| ≤ 8a

⌈log n⌉
∑

j=0

j
∑

i=0

2i−j |Mi|

< 8a

⌈log n⌉
∑

i=0

∞
∑

j=i

2i−j |Mi| = 16a

⌈log n⌉
∑

i=0

|Mi| = 16a|M | ,

as claimed. ⊓⊔
We now can bound the approximation quality of the algorithm.

Theorem 2. Assume that G has maximum degree ∆. Then an execution of Al-

gorithm 2 on G terminates within 6⌈log(∆+1)⌉ rounds and outputs a dominating

set at most a factor 16a(G) log ∆ larger than optimum. The worst-case approxi-

mation ratio of the algorithm is Θ(a(G) log ∆). Message size can be bounded by

O(log log ∆).

Proof. We first examine the running time of the algorithm. Denote by ∆(i) the
maximum residual degree after the ith phase, i.e., ∆(0) = ∆ + 1 (as a node also
covers itself). As observed earlier, each phase of Algorithm 2 takes six rounds.
Because all nodes v computing a δv satisfying ⌈log δv⌉ = ⌈log ∆(i)⌉ join C in

phase i and any node in N+
C becomes covered, we have that ⌈log ∆(i + 1)⌉ ≤

⌈log ∆(i)⌉ − 1 for all phases i. Since the algorithm terminates at the end of the
subsequent phase once ∆(i) ≤ 2, in total at most ⌈log ∆(0)⌉ = ⌈log(∆ + 1)⌉
phases are required.

Having established the bound on the running time of the algorithm, its ap-
proximation ratio directly follows6 by applying Lemmas 3 and 4. The bound
on the message size follows from the observation that in each phase nodes need
to exchange residual degrees rounded to powers of 2 and a constant number of
binary values only.

For the lower bound of Ω(a log ∆), we briefly sketch appropriate input graphs.
We start with a(G) being constant. For k ∈ N, k ≥ 2 an optimal solution consists
of 4 nodes of degree 2k−1. Half of their inclusive neighborhood is covered by a
node having degree 2k, another quarter by a node of degree 2k−1, one eighth
by a node of degree 2k−2, and so on. In each phase, the algorithm will choose
one of the latter nodes, namely the one of highest degree. Thus it will choose
k ∈ Θ(log ∆) nodes, whereas an optimal solution contains 4 ∈ O(1) nodes.
This bound extends to arbitrarily large values of n by replicating this graph
sufficiently often. The described graph has constant arboricity, as each node is
covered at most constantly often. Similarly, we could decide to cover each node
multiple times by nodes in the suboptimal solution computed by the algorithm
(i.e., half of the neighborhood of a node in the optimal solution is covered by
Θ(a) nodes, a quarter by another Θ(a) nodes, etc.). Hence, for any value of a
and arbitrarily large n, we can construct a graph of n nodes where Algorithm 2
computes a solution by factor Ω(a log ∆) worse than the optimum. ⊓⊔

Like with the algorithms by Kuhn et al. [16, 17], we can sacrifice accuracy in
order to speed up the computation.

Corollary 3. For any α ≥ 2, Algorithm 2 can be modified such that it has a

running time of O(logα ∆) and approximation ratio O(a(G)α logα ∆).

Proof. We simply change the base of the logarithms in Line 8 of the algorithm,
i.e., instead of rounding residual degrees to integer powers of two, we round to
integer powers of α. Naturally, this linearly affects the approximation guarantees.
In the proof of Lemma 4, we just replace the respective powers of 2 by α as well,
yielding a bound of O(a(G)+α logα ∆) on the approximation ratio by the same
reasoning as in Theorem 2. ⊓⊔

If it was not for the computation of a MIS, we could speed up Algorithm 1 in
almost the same manner (accepting a forest decomposition into a larger number
of forests). However, the constructed helper graph is of bounded independence,
but not arboricity or growth. For this graph class currently no distributed algo-
rithm computing a MIS in time o(log n) is known.

We conclude this section with some final remarks. If nodes know a(G) (or
a reasonable upper bound), a port numbering is not required anymore. In this
case, nodes will join D without the necessity of being elected by a neighbor,
however only if the prerequisite δv > 8a is satisfied. To complete the dominating

6 Note that in the last three phases the maximum degree is at most 8 ≤ 8a.

set, uncovered nodes may join D independently of δv once their neighborhood
contains no more nodes of residual degree larger than 8a. It is not hard to see
that with this modification, essentially the same analysis as for Algorithm 2
applies, both with regard to time complexity and approximation ratio.

6 Conclusion

We presented efficient distributed minimum dominating set approximation algo-
rithms for graphs of bounded arboricity. Compared to the best known solution
for general graphs using reasonably sized messages, we can either (i) reduce the
running time by a factor of Θ(log ∆) (Algorithm 2) or (ii) change the running
time from Θ(log2 ∆) to Θ(log n) and improve on the approximation quality by
a factor of Θ(log ∆) (Algorithm 1). Moreover, our algorithms provide deter-
ministic approximation guarantees. The Algorithms by Kuhn et al. [16] utilize
randomized rounding, thus yielding probabilistic bounds. The faster of the two
given algorithms is entirely deterministic. In contrast, Algorithm 1 necessitates
the computation of a maximal independent set on a graph of bounded inde-
pendence; deterministic solutions of running time linear in ∆ are known, but a
respective variant of the algorithm would be slow in comparison.

Of independent interest might be that on graphs of bounded arboricity, a
central version of Algorithm 1 obtains a constant-factor approximation within a
linear number of operations, without the need for randomization. In summary,
minimum dominating sets are substantially easier to approximate on graphs of
small arboricity, for distributed as well as for central algorithms.

Acknowledgements

We would like to thank Jukka Suomela for inspiring discussions and Topi Musto
and the anonymous reviewers for many valuable comments that helped to im-
prove this paper.

References

1. Alon, N., Babai, L., Itai, A.: A Fast and Simple Randomized Parallel Algorithm
for the Maximal Independent Set Problem. J. Algorithms 7(4), 567–583 (1986)

2. Baker, B.S.: Approximation Algorithms for NP-Complete Problems on Planar
Graphs. J. ACM 41(1), 153–180 (1994)

3. Barenboim, L., Elkin, M.: Sublogarithmic Distributed MIS algorithm for Sparse
Graphs using Nash-Williams Decomposition. Distributed Computing pp. 1–17
(2009)

4. Chlebk, M., Chlebkov, J.: Approximation Hardness of Dominating Set Problems in
Bounded Degree Graphs. Information and Computation 206(11), 1264–1275 (2008)

5. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit Disk Graphs. Discrete Math.
86(1-3), 165–177 (1990)

6. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast Distributed Approxima-
tions in Planar Graphs. In: Proc. 22nd International Symposium on Distributed
Computing (DISC). pp. 78–92 (2008)

7. Czygrinow, A., Hańćkowiak, M.: Distributed Almost Exact Approximations for
Minor-Closed Families. In: Proc. 14th conference on Annual European Symposium
(ESA). pp. 244–255 (2006)

8. Czygrinow, A., Hanckowiak, M.: Distributed Approximation Algorithms for
Weighted Problems in Minor-Closed Families. In: Proc. 13th Computing and Com-
binatorics Conference (COCOON). pp. 515–525 (2007)

9. Eppstein, D.: Diameter and Treewidth in Minor-Closed Graph Families. Algorith-
mica 27(3), 275–291 (2000)

10. Feige, U.: A Threshold of lnn for Approximating Set Cover. J. ACM 45(4), 634–652
(1998)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

12. Grohe, M.: Local Tree-Width, Excluded Minors, and Approximation Algorithms.
Combinatorica 23(4), 613–632 (2003)

13. Hunt, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: NC-Approximation Schemes for NP- and PSPACE-Hard Problems
for Geometric Graphs. Journal of Algorithms 26(2), 238–274 (1998)

14. Kuhn, F.: (2010), personal communication
15. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot Be Computed Locally!

In: Proc. 23rd annual ACM symposium on Principles of distributed computing
(PODC) (2004)

16. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The Price of Being Near-Sighted. In:
Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2006)

17. Kuhn, F., Wattenhofer, R.: Constant-Time Distributed Dominating Set Approxi-
mation. Distrib. Comput. 17(4), 303–310 (2005)

18. Lenzen, C., Oswald, Y.A., Wattenhofer, R.: What can be Approximated Locally?
In: 20th ACM Symposium on Parallelism in Algorithms and Architecture (SPAA)
(June 2008)

19. Lenzen, C., Wattenhofer, R.: Leveraging Linial’s Locality Limit. In: 22nd Interna-
tional Symposium on Distributed Computing (DISC) (September 2008)

20. Linial, N.: Locality in Distributed Graph Algorithms. SIAM Journal on Computing
21(1), 193–201 (1992)

21. Luby, M.: A Simple Parallel Algorithm for the Maximal Independent Set Problem.
SIAM J. Comput. 15(4), 1036–1055 (1986)

22. Métivier, Y., Robson, J.M., Saheb Djahromi, N., Zemmari, A.: An Optimal Bit
Complexity Randomised Distributed MIS Algorithm. In: Proc. 16th International
Colloquium on Structural Information and Communication Complexity. pp. 1–15.
Piran Slovenia (2009)

23. Raz, R., Safra, S.: A Sub-Constant Error-Probability Low-Degree Test, and a Sub-
Constant Error-Probability PCP Characterization of NP. In: Proc. of the 29th
annual ACM Symposium on Theory of Computing (STOC). pp. 475–484. ACM,
New York, NY, USA (1997)

24. Schneider, J., Wattenhofer, R.: A Log-Star Distributed Maximal Independent Set
Algorithm for Growth-Bounded Graphs. In: Proc. of the 27th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC) (August 2008)

25. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-Time Computability of Combina-
torial Problems on Series-Parallel Graphs. J. ACM 29(3), 623–641 (1982)

