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Abstract

Despite incredible progress, many neural architectures fail
to properly generalize beyond their training distribution. As
such, learning to reason in a correct and generalizable way is
one of the current fundamental challenges in machine learn-
ing. In this respect, logic puzzles provide a great testbed, as
we can fully understand and control the learning environ-
ment. Thus, they allow to evaluate performance on previously
unseen, larger and more difficult puzzles that follow the same
underlying rules. Since traditional approaches often struggle
to represent such scalable logical structures, we propose to
model these puzzles using a graph-based approach. Then, we
investigate the key factors enabling the proposed models to
learn generalizable solutions in a reinforcement learning set-
ting. Our study focuses on the impact of the inductive bias of
the architecture, different reward systems and the role of re-
current modeling in enabling sequential reasoning. Through
extensive experiments, we demonstrate how these elements
contribute to successful extrapolation on increasingly com-
plex puzzles. These insights and frameworks offer a system-
atic way to design learning-based systems capable of gener-
alizable reasoning beyond interpolation.

Introduction
Neural architectures have made significant strides in various
domains, yet a fundamental challenge persists: the ability
to generalize effectively beyond their training distribution.
This limitation is particularly evident in tasks requiring log-
ical reasoning, where the structured nature of the problem
amplifies the consequences of poor generalization. Consider
a neural network trained to solve 3x3 Sudoku puzzles. While
it may excel within this confined space, it often fails when
presented with 4x4 or 9x9 grids, despite the underlying log-
ical principles remaining the same. This toy example under-
scores a critical issue: many neural models achieve good per-
formance during training, but fail to extract the fundamental
logical relationships and dynamics governing the problem.
The ultimate goal of these neural architectures is not to just
interpolate between seen examples, but to genuinely under-
stand, extract, and correctly reapply the underlying reason-
ing and knowledge. The key lies in developing systems that
can comprehend and reason with core logical structures, en-
abling them to apply this knowledge to novel, more com-
plex scenarios. This level of generalization - moving beyond
interpolation to true logical understanding - is essential for

creating future machine learning systems capable of robust
reasoning across diverse contexts, including those that go
beyond their training experiences.
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Figure 1: We focus on logic puzzles of varying sizes in order
to systematically evaluate the ability of neural architectures
to extrapolate beyond the seen training data. By modelling
the problem instances through a unifying graph framework,
we can naturally encompass and evaluate on instances where
generalization capabilities are required.

Logic puzzles provide an ideal testbed for addressing
the generalization challenge in neural architectures. These
puzzles offer a unique environment with clear rules and
scalability. This allows us to systematically investigate a
model’s ability to reason beyond its training distribution by
applying it to larger puzzle sizes. The inherent advantage
of evaluating generalization through extrapolation is that
larger puzzle configurations clearly lie outside the training
distribution while the underlying rules stay the same. There-
fore, we desire models that cannot only learn the correct
principles from simpler scenarios, but also be applied to
entirely new contexts. By controlling the difficulty and
structure of puzzles, we can create such scenarios by testing
whether a model has truly grasped the underlying logical
principles or merely memorized patterns. Moreover, the
unambiguous nature of puzzle solutions enables objective
and exact measurement of performance.

We choose to study this problem using Reinforcement
Learning (RL), as it offers distinct advantages, particu-
larly in modeling the sequential decision-making process
inherent in puzzle-solving. This approach mirrors human
problem-solving strategies, allowing the agent to learn and
refine its approach over time. The RL framework balances



exploration of new strategies with exploitation of known ef-
fective approaches, which can be beneficial for discovering
generalizable solutions. Supervised generalization bench-
marks such as CLRS (Velickovic et al. 2022) often rely
on intermediate hints to match the ground-truth algorithm
during the training process. In the RL framework, on the
other hand, the agent is free to pursue any algorithm that
ensures high reward. Moreover, RL’s customizable reward
structure enables us to encourage true understanding over
mere memorization by rewarding not just correct solutions,
but also the application of sound logical principles.

An inherent challenge with testing generalization is the
need for the neural agent to be able to handle logic puzzles
of different sizes. For many neural architectures, it is not
possible to even represent instances of different sizes, or
they struggle to properly adapt as the scale of the problem
changes. This limitation severely constrains their ability to
generalize to larger, more complex puzzles. To address this
challenge, we propose to represent logic puzzles as graphs.
In our graph-based modeling, puzzle elements become
nodes, while the relationships and constraints between these
elements are represented as edges, providing a level of
abstraction as depicted in Figure 1. This approach allows
us to apply Graph Neural Networks (GNNs), which can
naturally adapt to various puzzle sizes while maintaining
a consistent structure. As puzzle size increases, the graph
simply expands without fundamentally altering the underly-
ing representation.

In this paper, we focus on how to best model and develop
techniques for neural architectures that use the proposed
graph structures in order to solve logic puzzles. More
precisely, we propose to tackle the problem using a multi-
agent context and utilize GNNs in order to directly exploit
the topological structure of the puzzles. This approach
allows us to represent both the puzzle structure and the
problem-solving agents within a unified framework. In
addition, we evaluate whether the inductive biases of GNNs
provide advantages over a more general architecture such
as transformers. Then, we explore what factors impact on
the ability to generalize and extrapolate. Here, we focus on
two key areas: the design of reward systems and the role of
recurrent modeling in sequential reasoning.

We summarize our contributions as follows:

• Introduction of a novel graph-based evaluation frame-
work for logic puzzles with a focus on scaling to varying
problem sizes, specifically designed to test extrapolation
beyond the training distribution.

• Proposal of a multi-agent reinforcement learning ap-
proach using Graph Neural Networks, which models
puzzle-solving as a collaborative task and enables learn-
ing of generalizable strategies across different puzzle
sizes and complexities.

• Insights into the factors that influence generalization in
logical reasoning tasks. This includes the inductive bias
of the architecture, the role of reward design, and sequen-

tial decision-making mechanisms.

• Demonstration of our approach’s effectiveness through
extensive experiments on a range of logic puzzles, show-
ing improved performance and generalization capabili-
ties compared to existing methods.

Related Work

Reasoning and Generalization Over the years the study
of reasoning with learning based approaches has often fo-
cused on the domain of games such as chess, shogi and
Go (Lai 2015; Silver et al. 2016, 2017, 2018), Poker (Dahl
2001; Heinrich and Silver 2016; Steinberger 2019; Zhao
et al. 2022) or board games (Ghory et al. 2004; Szita 2012;
Xenou, Chalkiadakis, and Afantenos 2019; Perolat et al.
2022). While these mainly focus on correct play or in-
distribution performance, the CLRS Algorithmic Reason-
ing Benchmark introduced by Velickovic et al. (2022) puts
emphasis on generalizable reasoning. It consists of a di-
verse collection of well known algorithms collected from
the textbook “Introduction to Algorithms” by Cormen et al.
(2022) providing a resource to assess algorithmic reason-
ing for learning based approaches. Moreover, there exists
a CLRS-Text (Markeeva et al. 2024) to better assess the
reasoning capabilities from a language perspective as well.
Abbe et al. (2024) provide a more theoretically supported
view on the generalization performance of some classes of
neural networks, trained with SGD. They specifically fo-
cus on Boolean functions, learned in a supervised training
regime.

Graph Neural Networks First introduced by the works
of Scarselli et al. (2008), Graph Neural Networks have seen
a recent emergence through a variety of new architecture
types and applications (Kipf and Welling 2017a; Xu et al.
2019; Veličković et al. 2018). The graph-based representa-
tion underlying these models is particularly powerful as it
provides a natural framework for capturing relational infor-
mation and structural dependencies between entities. This
has made GNNs especially interesting for tackling combi-
natorial optimization problems (Dai et al. 2018; Cappart
et al. 2022; Tönshoff et al. 2022) and reasoning tasks that
require understanding relationships between multiple ele-
ments (Battaglia et al. 2018). A key advantage of graph-
based approaches is their capability to handle problems of
varying sizes and complexities. One specific research direc-
tion focuses how these models generalize across different
problem instances and sizes (Xu et al. 2021; Schwarzschild
et al. 2021), with benchmarks like CLRS (Velickovic et al.
2022) providing a more systematic evaluation frameworks
for assessing algorithmic reasoning capabilities with a focus
on size generalization. This in turn has sparked more inves-
tigations into developing appropriate tools and architectures
for such reasoning (Ibarz et al. 2022; Numeroso, Bacciu, and
Veličković 2023; Minder et al. 2023; Mahdavi et al. 2023;
Bohde et al. 2024; Müller et al. 2024).



Preliminaries
PUZZLES Benchmark
The PUZZLES benchmark, introduced by Estermann et al.
(2024) is a comprehensive testing environment that aims
to evaluate and enhance the algorithmic reasoning capabil-
ities of reinforcement learning (RL) agents. It is centered
around Simon Tatham’s Portable Puzzle Collection (Tatham
2004) and encompasses 40 diverse logic puzzles that range
in complexity and configuration, providing a rich ground for
assessing RL algorithms’ performance in logical and algo-
rithmic reasoning tasks. In the PUZZLES benchmark, RL
agents can interact with the puzzles using either a visual rep-
resentation (e.g., images of the game) or a discretized repre-
sentation in the form of tabular data describing the current
state of the puzzle. The puzzle instances are configurable
in terms of difficulty and size, allowing researchers to test
different RL algorithms’ scalability and generalization abil-
ities. Additionally, PUZZLES is integrated into the widely-
used Gymnasium framework.

Figure 2: Some Example puzzles of the PUZZLES library,
inspired by the collection of Simon Tatham.

PUZZLES allows for the use of different observation
spaces, including pixel-based inputs similar to those used in
classic RL benchmarks like Atari (Bellemare et al. 2013), as
well as discrete state representations that can be more suit-
able for logic-intensive tasks. Even though, the PUZZLES
framework already allows to test generalization across dif-
ferent puzzles sizes in principle, preliminary results show
that the proposed RL baselines struggle a lot in that domain.
One current limitation is that the puzzle interface used for
these test do not allow for an easy or natural way of adjust-
ing to larger puzzle instances. In our work, we propose to
overcome this issue by using a graph-based representation
interface.

Graph Neural Networks
Graph Neural Networks (GNNs) are a class of neural net-
works specifically designed to operate on graph-structured
data. Traditional neural architectures, such as Convolutional
Neural Networks or Recurrent Neural Networks are tailored
for processing image or sequential data. In contrast, GNNs
are specifically designed to handle relational data by incor-
porating important symmetries of the data within its archi-
tecture.

A graph G = (V,E) consists of V , the set of nodes and
E, the set of edges. Each node v ∈ V and each edge e =

(u, v) ∈ E may have associated feature vectors hv and he,
respectively. Most common GNNs operate on the principle
of message-passing which involves iterative neighborhood
aggregation and node updates. Importantly, the mechanism
is shared across all nodes in the graph, which allows GNNs
to be applied to graphs of varying sizes, regardless of the
number of nodes or edges. We follow the notion of Xu et al.
(2019) to express the t-th layer as follows:

atv = AGGREGATEt({{htu | u ∈ N(v)}})
ht+1
v = COMBINEt(htv, a

t
v).

The original input features of the nodes are defined as h0v and
messages from the neighborhood N(u) are aggregated and
then combined with the previous state. In practice, we rely
on parameterized functions ψ and ϕ and use a permutation
invariant aggregator

⊕
such as sum.

ht+1
v = ϕ

ht
v,
⊕

u∈N (v)

ψ
(
hk
u,h

k
v ,huv

)
With each added layer or round of message passing, the
receptive field of the nodes is increased. After k rounds,
a node’s representation has been influenced by its k-hop
neighborhood. This relationship between the number of
rounds and the receptive field size is crucial for capturing
local and global graph structures effectively. Moreover, we
usually distinguish between node and graph level prediction
tasks:

yv = φ
(
hkv
)

yG = φG

(⊕
u∈V

φ
(
hku
))

.

For node prediction yv , the output of each node is typically a
transformation of the last embedding after k rounds of mes-
sage passing. Whereas for graph level prediction yG, we usu-
ally apply a graph-pooling operation to aggregate all final
node embeddings into a graph representation.

Reinforcement Learning
Reinforcement learning (RL) focuses on training agents to
make sequential decisions in an environment to maximize
cumulative rewards. An RL agent learns through trial and
error by interacting with the environment: observing the cur-
rent state, taking an action, and receiving a reward. This
process is repeated, with the agent aiming to learn a pol-
icy π(a|s) that maximizes cumulative rewards over time. A
common way to formalize an RL problem is as a Markov
Decision Process (MDP), defined by states S, actions A,
transition probabilities P , rewards R, and a discount fac-
tor γ. The agent’s goal is to find a policy that maximizes the
expected cumulative discounted reward:

Eπ

[ ∞∑
t=0

γtR(st, at, st+1)

]
.

In this work, we use a model-free RL approach with Prox-
imal Policy Optimization (PPO) (Schulman et al. 2017) to
train agents on a subset of the PUZZLES benchmark. PPO
is a popular model-free algorithm known for its stability and
efficiency in finding effective policies.



Methodology
Modeling Puzzles as Graphs
The PUZZLES benchmark (Estermann et al. 2024) provides
a starting point for the selection of appropriate logic puzzles.
While this benchmark already provides access to varying
difficulties and puzzle sizes, there are a few details that make
it challenging to study size generalization directly. The in-
terface only provides the pixel observations or a discretized
tabular view of the puzzle. This makes the development of
models which can incorporate such a representation well
when the size is varying challenging. Another aspect is that
not all puzzles are equally suitable for the study of extrapo-
lation. Indeed, some have interactive elements which make
them more complex by design, while others rely on novel el-
ements when increased in size. This adds another challenge
of value generalization, even if the rules were learned cor-
rectly. For example Sudoku introduces new actions and ele-
ments in the form of additional numbers in larger instances.
We aim to select a subset of puzzles which is large and
diverse enough, but at the same time tries to decouple un-
necessary complexities for the goal of evaluating extrapola-
tion. Additionally, PUZZLES proposes an action space that
involves moving a cursor around the playing field to then
change the game state at its position. While this helps in
providing a consistent action space for all puzzles, it adds an
additional layer of complexity to the learning process. We
therefore propose to focus on the following criteria:

1. Action Space
The ability to describe the game as a collection of atomic
cells that together represent the full state of the game.

2. Independence
Each cell can take an action independently of the actions
of other cells. The resulting configuration does not nec-
essarily have to be valid.

3. Solvability
The games have no point of no return (e.g., chess). At
every time step, from the current state of the game, it is
always possible to solve the game.

4. Complete Information
There are no interactive or stochastic elements in the
game. Given just the initial state of the game, it is pos-
sible to derive its solution.

5. Value Generalization
The game limits it’s exposure to new concepts (new ele-
ments, increased value ranges) as it increases in size. The
number of actions remains constant.

To create a strong and diverse benchmark, we select six
puzzles that fit the above listed criteria: Light Up, Loopy,
Mosaic, Net, Tents, and Unruly also shown in Figure 3. For
an in-depth description of the puzzles and the rules we refer
to the Appendix.

As previously stated, in order to have an appropriate rep-
resentation that can facilitate testing extrapolation on var-
ious puzzle sizes, we propose to use graphs as a unify-
ing structure for the puzzles. By representing the puzzles
as graphs, they can naturally accommodate different sizes,
while preserving the local relationships of the puzzle. For

Figure 3: We provide a new graph interface in order to ease
the testing for size generalization on six puzzles. From top
left to bottom right: Light Up, Loopy, Mosaic, Net, Tents
and Unruly.

each puzzle type, we provide an interface that transforms the
given puzzle state into a graph. This transformation is spec-
ified by the graph topology, the types of nodes and edges,
their annotated features and the allowed actions that each
node can take. In general, we try to provide a very general
and unified interface as not to impose design choices onto
the model architectures.

Each graph representation consists of two types of nodes,
which we will exemplify by the game Loopy depicted in
Figure 4. The decision-nodes, which represent the atomic
cells of a game and the meta-nodes which contain shared in-
formation about a collection of nodes. Each decision-node
directly influences the state of the game, as it can take an
action. In Loopy, every edge of the original grid is modeled
as a decision-node, which determines if an edge should be
present or not. The meta-nodes cannot directly alter the state
of the game, instead they contain information such as a con-
straint or if a violation is present. In Loopy, these are the
faces of the original grid. The edges of the graph usually rep-
resent neighboring cells in the original game, here adjacent
edges or faces. Moreover, each node and edge is assigned a
feature vector containing information about the state of the
game or the direction of the edge. Note that as the puzzle
is scaled to larger instances, the local graph representation
remains identical across puzzle sizes. A detailed explana-
tion on how each puzzle is modeled and details on the graph
topology and action spaces is contained in the Appendix.

Training
We follow the training process outlined in PUZZLES (Es-
termann et al. 2024), using PPO as a relatively simple, yet
solid training algorithm. Corresponding to the graph obser-
vation, each decision node in the graph represents a possi-
ble action in the game. For each puzzle, we have a distinct
set of actions associated with every decision node. The fi-
nal action for each node is selected independently using a
softmax layer. Once the actions are chosen for all nodes,
they are executed simultaneously, resulting in a new state of
the game. This approach differs from the cursor model used
in the PUZZLES benchmark, however, it removes an addi-
tional layer of complexity and improves training efficiency.
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Figure 4: Illustration of the modeling of the puzzle Loopy. In this case, each decision-node (black or blue circles) corresponds
to an edge of the original game grid. Each face of the game grid is represented as a meta-node (red circle), which is connected
to its four adjacent decision-nodes. The nodes and edges of the graph have features, which determine the current state. The next
state is determined by the collective actions of all decision-nodes. The local graph representation remains the same across all
puzzle sizes.

For this reason and our more dense reward scheme, we are
able to drastically reduce the rollout length, leading to more
efficient training.

For each combination of puzzle and presented architec-
ture configuration we report the performance over three
different model seeds. In order to offer some insight into
the generalization capabilities, model selection is performed
on slightly larger configurations similar to previous work
(Müller et al. 2024; Jung and Ahn 2023). For model selec-
tion, we assess the performance every 100 training iterations
on the validation step which contains puzzles one size larger
than during training.

Extrapolation Evaluation
The most important aspect about our benchmark is to test
the capability of generalizing outside the training distribu-
tion to larger puzzles. While other metrics such as training
behaviour or in-distribution-performance are of interest, we
want to provide a comprehensive evaluation scheme for ex-
trapolation.

To this end, we provide for each puzzle a dedicated train-
ing size and a set of larger test sizes. Unfortunately, due to
the individual puzzle constraints, not all sizes can be exactly
the same across the puzzles. We determine the training size

Figure 5: Illustration of testing the ability to generalize be-
yond the training distribution for the puzzle Net. While mod-
els only see small puzzle instances during training, the rules
and logic that govern the puzzle remain the same. Therefore,
during evaluation, the model is tested on puzzles that are up
to 16x larger.

of each puzzle to be the smallest size that contains a suffi-
cient amount of unique training samples, specifically 40’000
instances. Moreover, in order to compare the extrapolation
performance we aim to provide a set of sizes for each puz-
zle so that the overall relative increase in the sizes is similar
across puzzle sizes. Each puzzle contains six test sets. One
that matches the training size, the next two bigger puzzles
sizes +1 and +2 as well as puzzles that are factors x4, x9,
x16 larger. For each test set we test on a set of 50 different
puzzles and we report the number of fully solved instances.
For more details we refer to Appendix.

Architectures
We distinguish between two different approaches to solve
the puzzle, a recurrent and a state-less mode. In the recur-
rent mode, at each step t of the puzzle solving, the model
gets as input the current state of the puzzle xt as well as the
previous hidden state of the model ht. Then, these embed-
dings are given to a processor module which can be either
a GNN module or a transformer based architecture. Finally,
the output of the model is ot, the action for each decision-
node of the puzzle and the next hidden state which is derived
using a GRU unit helping to stabilize the computation over
longer sequences. Whereas in the state-less mode, no hidden
states ht are computed and only xt, the current state of the
puzzle, is provided as the sole input:

zt = ϕ1(x
t||ht)

pt = zt + Processor(zt)
ot = ϕ2(p

t)

ht+1 = GRU(ht, pt).

We use two different processors, a graph and a transformer
baseline. The graph baseline uses a GCN (Kipf and Welling
2017b) which executes three rounds of message passing on
the provided graph structure. The transformer baseline uses
an encoder transformer (Vaswani et al. 2017) which consists
of three layers of full self attention including positional en-
coding to indicate the position of the node in the puzzle. The
positional encoding consists of a fixed-size sine/cosine em-



bedding of different frequencies, similar to Vaswani et al.
(2017), but extended to 2D.

Reward
Initial experiments were done using only a sparse reward: 0
reward to the agent if the game has not been solved andR re-
ward if the game is solved. As this reward provides very little
feedback during training, agents struggle to learn effective
strategies leading to slow learning and poor performance,
especially in complex puzzles. Instead, we work with two
types of reward systems: iterative and partial.

Given a graph G with n decision cells (not consider-
ing meta-nodes) can be encoded with a unique sequence
Φ(G) = (gi)

n
i=1, with each gi ∈ {1, 2, . . . ,m} denoting

the i-th value on the grid and m representing the number
of states a cell can take (e.g., m = 4 for Tents: empty,
grass, tent, tree). The sequence corresponding to the puzzle’s
unique solution is denoted as ĝ = Φ(Ĝ), where Ĝ represents
the solution graph. We measure the quality Q(G) of a graph
as its similarity to the solution:

Q(G) =

n∑
i=1

δ(gi, ĝi)

where δ(·, ·) is the indicator function. To encourage policies
to make iterative progress we follow the technique used by
Tönshoff et al. (2022) which defines the reward rt based on
the improvement in the graph’s quality compared to the best
quality qt = maxt′≤tQ(Gt′) observed so far. The reward is
then defined as the incremental improvement of the current
state relative to the highest quality achieved in prior itera-
tions:

rtiterative = max
(
0, Q(Gt+1)− qt

)
This way, the agent earns a positive reward if the actions
result in a state that is closer to the solution than any previous
state. To avoid penalizing the policy for departing from a
local maximum in search of superior solutions, we assign a
reward of zero to states that are not an improvement.

The puzzles often encode violations of the puzzle rules
explicitly, i.e. if two neighboring cells or all cells in a row
violate a constraint. In the partial reward scheme, this infor-
mation is given to the actors encoded in both the decision-
nodes and the meta-nodes of the puzzle state. In the par-
tial reward system, we adjust the calculation to only include
nodes that are not part of a violation. For each node we have
a indicator C : Φ(G) → {0, 1} if it is part of such a vi-
olation. Then the quality of a graph and the corresponding
reward is defined as:

Q̃(G) =

n∑
i=1

δ(gi, ĝi) · C(gi)

rtpartial = max
(
0, Q̃(Gt+1)− q̃t

)
The violation conditions are specific to the different puzzle
environments. Thus, by incorporating puzzle-specific condi-
tions into the reward calculation, the partial reward scheme
aims to provide more meaningful and consistent feedback to
the agent, promoting a more balanced and effective learning
trajectory.

Empirical Evaluation
Comparison to Non-Graph Baselines

Puzzle Size GNN Solved-% Baseline Solved-%

Tents 5x5 99.67± 0.47% -
4x4 - 45.0%

Lightup 5x5 99.33± 0.24% -
3x3 - 99.1%

Mosaic 4x4 100.0± 0.0% -
3x3 - 29.4%

Loopy 4x4 68.83± 7.17% -
3x3 - 0%

Net 4x4 99.83± 0.24% -
2x2 - 100.0%

Unruly 6x6 83.67± 19.01% 0%

Table 1: Percentage of puzzles solved, average and standard
deviation over all seeds, for the baseline GNN architecture
compared to the best non-GNN architecture from (Ester-
mann et al. 2024). Note that (Estermann et al. 2024) mostly
trained agents on smaller and therefore much easier versions
of the puzzles, using architectures unable to generalize to
larger sizes.

First, We compare our results to the baselines provided
in the PUZZLES benchmark. Since the action space is dif-
ferent, we can only compare success rate but not episode
length. The results are presented in Table 1. For the puzzles
Tents, Mosaic, Loopy and Unruly, the GNN architecture was
clearly able to surpass the performance of the baseline, even
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Figure 6: Percentage of puzzles solved during size extrap-
olation for models trained with different reward systems.
During modest extrapolation, there seems to be no signif-
icant difference between the iterative and partial reward
schemes. However, the partial reward scheme seems to al-
low for slightly better performance in the x4 and x9 extrapo-
lation settings. Unfortunately, sparse rewards do not provide
enough signal for the agents to learn any reasonable policy.



on much larger sizes. For Lightup and Net, the GNN archi-
tecture achieves similar performance to the baseline but on a
substantially larger puzzle size. Note that all of these evalu-
ations are done on the same size as the training distribution.

For the following evaluations, we report the interquartile
mean performance of all puzzles, including 95% confidence
intervals based on stratified bootstrapping, following (Agar-
wal et al. 2021).

GNN and Transformer Baselines
Next, we compare the GNN architecture against a trans-
former baseline. The transformer baseline uses exactly the
same nodes as the GNN. Because it misses the graph struc-
ture, the nodes are given a positional encoding. Our results
in Figure 7 show that the GNN model performs much better
than the Transformer baseline. We hypothesize that the GNN
can utilize the information about the explicitly encoded rela-
tional structure of the puzzle more effectively and as a result
has a more suitable inductive bias compared to the trans-
former, helping it to better learn and then extrapolate on the
puzzles.
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Figure 7: Compared to the transformer model, the graph ar-
chitecture performs much better across the different puzzles,
leading to a more consistent and successful extrapolation be-
havior. Both use the same modeling of the puzzles, but the
GNN explicitly encodes the edge relationships, whereas the
transformer is given a positional encoding.

Recurrent vs State-less
Note that the puzzles are stateless, meaning that at every
given moment during the solving, there is sufficient infor-
mation to determine the solution with just the current puzzle
state, i.e. what is visible on the board. However, it might
still be beneficial to have a recurrent model for solving such
a puzzle. Different steps towards computing the solution
might require more computation or reasoning steps. As a
consequence, for a GNN model it might be that the next cor-
rect action cannot always be determined with the informa-
tion present in its 3 hop neighborhood. Therefore, it could
be beneficial to allow these models access to a recurrent

state, passing and storing information in between the dif-
ferent actions without affecting the game state. We compare
a recurrent version of the graph architecture against a state-
less variant in Figure 8. It seems that for modest extrapo-
lation the recurrent version is more successful, whereas for
larger sizes, the state-less architecture can solve more puz-
zles, even solving some instances that are 16 times larger.
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Figure 8: A recurrent agent design brings advantages for the
success rate during training and modest extrapolation. For
stronger extrapolation, however, a state-less algorithm per-
forms better. The state-less algorithm is even able to solve a
few puzzles at x16 extrapolation.

Reward Systems
Finally, we want to evaluate the choice of reward system and
its impact on size generalization. For this experiment, we
use the GNN architecture with recurrent states. As depicted
in Figure 6 by solely relying on sparse reward signals, it is
very hard to learn to solve the puzzles, even during training.
Both the iterative and partial variant show very comparable
performance during training and modest extrapolation sizes.
However, it seems that for the larger extrapolation setting
the models trained using the partial reward generalize better.

Limitations
Our study focuses on how to learn generalizable reasoning,
which naturally imposes certain limitations. We deliberately
concentrate on model-free reinforcement learning methods,
excluding model-based approaches and pre-trained mod-
els including large language models. While these methods
have their own advantages, our study wants to put the focus
on generalization from the given training distribution with-
out relying on explicit given constructions or extending the
training distribution itself.

Our research uses logic puzzles as a testbed for reason-
ing. While these provide an artificial environment with clear
rules and scalability, they represent only a subset of reason-
ing tasks. Consequently, our findings may not directly gen-
eralize to all types of real-world reasoning problems or do-



mains. Nevertheless, given the current challenges in devel-
oping truly generalizable reasoning systems, we believe that
studying these techniques in controlled, synthetic environ-
ments is a crucial step towards advancing the field.

Conclusion
The challenge of developing neural architectures capable of
generalizable reasoning remains at the forefront of artificial
intelligence research. Our study focuses on providing a con-
trollable testbed of logic puzzles that can easily be scaled to
test out-of-distribution generalization. Furthermore, through
the unified graph representation, we demonstrate the poten-
tial of our graph-based multi-agent reinforcement learning
approache in extrapolating their reasoning to larger, unseen
instances.

In our empirical evaluation, we find that the graph-based
modeling approach of the puzzles seems to be more fitting,
resulting in both overall improved in-distribution and out-
of-distribution performance compared to previous methods.
Furthermore, we evaluate the inductive bias of a GNN ar-
chitecture against a transformer baseline and find that the
explicit graph structure aids generalization. Finally, we com-
pare recurrent and state-less modeling for sequential deci-
sion making as well as different reward systems in the con-
text of extrapolation. Our results underscore the challenges
of achieving correct generalization without explicit guidance
during training. This further highlights the importance of
studying generalization in controlled environments. We aim
to provide an stepping stone towards machine learning sys-
tems that can truly grasp the underlying reasoning and apply
logical principles across diverse and increasingly complex
domains.
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A.; Rubanova, Y.; Deac, A.; Bevilacqua, B.; Ganin, Y.; Blun-
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Puzzles

Simon Tatham’s Portable Puzzle Collection features over 40
logic-based puzzles designed mainly to be little challeng-
ing and fun puzzles to pass time. The collection includes
various types, from number placement and grid challenges
to graph theory tasks. Each puzzle requires unique strate-
gies involving deduction, pattern recognition, and planning.
Their simple design and complex logic make them ideal for
cognitive development and computational analysis. We fo-
cused on subset of these puzzles that are more suitable to be
modeled as graph. Now we briefly recall the rules of the six
puzzles implemented and tested.

Tents

Tents is a logic puzzle where the objective is to place tents
in a grid such that each tree has exactly one adjacent tent
(horizontally or vertically), no two tents are adjacent to each
other and the remaining cells are filled with grass. The num-
bers outside the grid indicate how many tents must be placed
in each row or column.

(a) New puzzle (b) Solved puzzle (c) Violations high-
lighted

Figure 9: Tents puzzle states: (a) New puzzle, (b) Solved
puzzle, (c) Violations highlighted

Lightup

Light Up is a grid-based logic puzzle where the objective is
to illuminate all empty squares by placing light bulbs. Each
bulb lights up its row and column until blocked by a black
square. Numbered black squares specify the exact number
of adjacent bulbs required. Additionally, bulbs must not il-
luminate each other directly.



(a) New puzzle (b) Solved puzzle (c) Violations high-
lighted

Figure 10: Lightup puzzle states: (a) New puzzle, (b) Solved
puzzle, (c) Violations highlighted

Mosaic
Mosaic is a logic puzzle featuring a grid where each blue
square must be colored black or white. The goal is to satisfy
clue numbers that indicate the total number of black squares
in the surrounding 3×3 region, including the clue square it-
self. The challenge is to strategically color the squares to
meet all numerical constraints.

(a) New puzzle (b) Solved puzzle (c) Violations high-
lighted

Figure 11: Mosaic puzzle states: (a) New puzzle, (b) Solved
puzzle, (c) Violations highlighted

Loopy
Loopy is a logic puzzle where the goal is to draw a single
continuous loop within a grid. The loop must pass bye the
edge of some cells, adhering to numerical clues that indicate
how many sides of the adjacent cells the loop must touch.

(a) New puzzle (b) Solved puzzle (c) Violations high-
lighted

Figure 12: Loopy puzzle states: (a) New puzzle, (b) Solved
puzzle, (c) Violations highlighted

Net
Net is a logic puzzle where the objective is to rotate tiles
to connect all network pieces into a single, unbroken loop,
starting from an energy source tile. In particular in that game
there aren’t invalid moves

(a) New puzzle (b) Solved puzzle (c) Violations high-
lighted

Figure 13: Net puzzle states: (a) New puzzle, (b) Solved puz-
zle, (c) Violation highlighted (not present in Net).

Unruly
Unruly is a logic puzzle where the objective is to color every
square either black or white. The rules are: no three consecu-
tive squares, horizontally or vertically, can be the same color,
and each row and column must contain an equal number of
black and white squares. Players left-click to turn squares
black, right-click to turn them white, and middle-click to re-
set them to empty.

(a) New puzzle (b) Solved puzzle (c) Violations high-
lighted

Figure 14: Unruly puzzle states: (a) New puzzle, (b) Solved
puzzle, (c) Violations highlighted.

Modeling Puzzles as Graphs
The exact topology of the graph and the node attributes for
Net, Loopy, Mosaic and Tents can seen in figures [15, 16,
17, 18].
Unruly has the same topology as tents. The node attributes
include:
• An indicator of whether the cell is white or black.
• A flag indicating whether the block is fixed.
• A flag indicating whether the node is a metanode
• Three flags for violations: horizontal, vertical, and num-

ber violations.
Horizontal and vertical violations occur when a cell is part
of a horizontal or vertical strip (or both) of the same color
with at least three elements. The number constraint controls
whether there is an imbalance between white and black
squares in a row or column.

Lightup has the same topology as net, meaning there are
no metanodes. The node attributes include:
• An indicator of whether the cell is a bulb, is empty, is

lighted (yellow), is a black (fixed) square, or a black
square with a number.
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Figure 15: Illustration of the graph and node attributes used for net. This game (together with lightup) presents the simplest
topology: each node is a cell of the grid of the game and the edges are only between vertically or horizontally adjacent cells.
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Figure 16: Illustration of the graph and node attributes used for loopy. In this case each decision node (black or white circles)
corresponds to an edge of the game grid. For each square of the grid we have a meta-node (red circle) connected to its 4
surrounding decision nodes.
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Figure 17: Illustration of the graph and node attributes used for mosaic. Here, differently from the net the nodes are cells that are
diagonally aligned are also connected together in the graph. This is because, the game itself requires checking for all neighbors
(including diagonal neighbors) for each cell with a clue number.

• A flag for violation.
• The normalized number of the block (non-zero if it has

one).

Action Spaces
In our graph based modeling of the puzzle, at each step, ev-
ery cell can choose an action to modify the current state
of the puzzle. This approach contrasts with a previously
implemented cursor model (Estermann et al. 2024), which

was found to perform significantly worse. The cursor model
operates differently, providing only a single action at each
timestep. The cursor can either change the state of the cell
it is positioned on or move to another adjacent cell through
actions like left, right, up or down.

Each decision node in the graph represents a possible
action in the game. For each puzzle, we have a distinct set
of actions associated with every decision node. Actions
decided for the meta-nodes are discarded, as meta-nodes
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Figure 18: Illustration of the graph and node attributes used for tents. In this case, we have the decision nodes (blue and green
circles) that are structured in the same way as net’s nodes are. Moreover, we add meta-nodes (black circles) that represent
constraints on the number of tents to be placed in each row or column.

Action Net Lightup Loopy Tents Mosaic Unruly
1 Rotate 90° Place lightbulb Mark line Place tent Mark cell Turn cell white
2 Rotate 180° Empty Cell Unmark line Place grass Unmark cell Turn cell black
3 Rotate 270° DO NOTHING Empty line Empty cell Empty cell DO NOTHING
4 DO NOTHING - DO NOTHING DO NOTHING DO NOTHING -

Table 2: Possible actions for each puzzle type.

are used to convey shared information rather than direct
actions. The final action for each node is selected using a
softmax layer in the GNN. Once the actions are chosen for
all nodes, they are executed simultaneously, resulting in
a new state of the game. We illustrate the specific actions
associated to a single cell of each game in Table 2.

Determining Puzzle Dimensions
Initial experiments have shown that if the puzzle size is cho-
sen too small, the models tend towards overfitting on the
smaller-sized games and not generalize at all. This is likely
linked to the fact that on small puzzle sizes the number of
different puzzle configurations is quite limited. Therefore, it
is possible to more easily overfit to the training data. On the
other hand, we want to avoid very large puzzle sizes during
training as they often require more steps in order to be solved
which is both a burden for the models to learn and computa-
tionally more expensive. Therefore, we decide to determine
for each puzzle the smallest size which allows for at least
40’000 unique puzzle configurations. The final training sizes
for each puzzle are highlighted in Table 3.

Empirical Evaluation
As highlighted previously, our objective is to train a rein-
forcement learning (RL) agent capable of solving a subset
of Simon Tatham’s puzzles using a Graph Neural Network
(GNN) for both policy and value estimation. The core of the
training loop involves executing the Proximal Policy Opti-
mization (PPO) algorithm.

Size Tents Lightup Mosaic Loopy Net Unruly

3× 3 - - - 573 176 -
4× 4 240 5’864 872 85’785 42’029 -
5× 5 85’118 412’624 192’533 468’671 500’000+ -
6× 6 494’248 499’883 499’680 500’000+ 500’000+ 41’222
7× 7 500’000+ 500’000+ 500’000+ 500’000+ 500’000+ 500’000+

Table 3: Number of distinct puzzle configurations for each
puzzle depending on the puzzle size. The shown number of
puzzles is a lower bound on the actual number, which was
estimated using 500’000 randomly sampled instances.

Puzzle Tents Lightup Mosaic Loopy Net Unruly

Training 5x5 6x6 4x4 4x4 4x4 6x6

Validation 6x6 6x6 5x5 5x5 5x5 8x8

+1 6x6 6x6 5x5 5x5 5x5 8x8
+2 7x7 7x7 6x6 6x6 6x6 10x10
x4 10x10 10x10 8x8 8x8 8x8 12x12
x9 15x15 15x15 12x12 12x12 12x12 18x18

x16 20x20 20x20 16x16 16x16 16x16 24x24

Table 4: Puzzles sizes used for training, validation and test-
ing.

In particular each iteration of PPO consists of two key
phases: the rollout phase and the update phase. During
the rollout phase, experience is gathered in the form
of <batch size> tuples containing (State, Action,
NextState) pairs. This experience is stored in a buffer,
which is then used in the subsequent update phase. In the
update phase, the parameters of the networks (critic and
actor) are adjusted. This is done by looping through the
collected experiences in the rollout buffer over a number of
<epochs>.
A puzzle is considered solved in an iteration if the number
of steps required to find a solution is less than or equal to
the predefined <horizon>. Otherwise, the game is reset
to a new state, and the step count restarts, allowing the agent



to attempt solving the puzzle from a fresh configuration.

Training Parameters and Baseline Establishment
In addition to selecting the optimal puzzle dimensions, a cru-
cial aspect of training the reinforcement learning (RL) al-
gorithms involved fine-tuning several key parameters. This
process ensured that the models were robust, generalized
well across different puzzle sizes, and performed efficiently.

Tunable Parameters The parameters that were subject to
tuning played a significant role in the performance and gen-
eralization capabilities of the RL models. These parameters
were carefully selected based on initial experiments, and
their values were adjusted iteratively to identify the best-
performing configurations. Below is a list of the tunable pa-
rameters, along with the values that were considered during
the training phase:

1. reward_mode → [sparse, iterative, partial]. The two
different reward schemes that were explained in the re-
ward section.

2. glbh→ [recurrent, state-less]. The recurrent and state-
less variants of the architecture.

* net_arch → [gcn, transformer]. The gcn flag rep-
resents the GENConv architecture of the GNN while
transformer represents the transformer architecture.

The parameters in bold represent the baseline configura-
tion that was used as a starting point for all experiments. This
baseline provided a reference model against which other
configurations were compared.

Sequential Tuning Process The training procedure fol-
lowed a sequential tuning approach to manage the com-
plexity of simultaneously testing multiple parameters, which
would otherwise lead to an exponential increase in com-
binations. For each game and each GNN architecture, we
started with the baseline configuration and then systemati-
cally tuned one parameter at a time.

Fixed Parameters While certain parameters were ad-
justable, others were kept constant throughout the training
process to ensure consistency and comparability across ex-
periments. Some notable ones are:

◦ timesteps: Number of timesteps to reach for the al-
gorithm to stop learning. For the GNN, set to 2,000,000
for each game, with exceptions for ‘loopy‘ (2,400,000)
and ‘tents‘ (1,000,000). While for Transformer set to
2,000,000 for each game, with exceptions for ‘loopy‘
(2,400,000).

◦ batch_size: Fixed at 320 for GNN while is equal to
3200 for Transformer, with a minibatch size of 32 for
both.

◦ lr: Learning rate used, set to 0.0003 for GNN and
0.00006 for Transformer with the Adam optimizer.

◦ mp_arch: The pooling function used in the message
passing layers. Set to ”mean function”.

◦ layers: Number of message passing layers. Set to 3 for
both architectures.

◦ hidden_dim: Size of the hidden dimension for node
and edge embeddings after the network’s encoder. Set to
32.

◦ ent_coef: Entropy coefficient for PPO, set to 0.004 for
both architectures.

◦ gamma: Gamma parameter for PPO, set to 0.5 for both
architectures.

These fixed parameters were chosen based on preliminary
tests that indicated they provided a good balance between
training stability and computational efficiency.


