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Magic Leap

“You are now very close! There is
o a dark object on the couch with

what looks like a red marking.”

Figure 1. Step-by-step visual and textual guidance from our system to help the user locate a camera.

Abstract

We present a pipeline for real-time guided object local-
ization on head-mounted devices (HMD), with a particu-
lar focus on object-finding tasks. Our approach leverages
Vision-Language Models (VLMs), Large Language Models
(LLMs), and open-vocabulary object detectors to interpret
user queries, identify target objects in mixed reality envi-
ronments, and provide intuitive guidance to the wearer. We
integrate these components into the Magic Leap 2 (ML2)
headset. In doing so, we demonstrate how combining real-
time object detection with VLM-based guidance can expe-
dite the process of locating, tracking, and retrieving items,
addressing a variety of real-world scenarios such as finding
misplaced tools or navigating dynamic workspaces. The ex-
tensibility of our system opens new avenues for future mixed
reality applications.

1. Introduction

Recent breakthroughs in deep learning have brought LLMs
and VLMs to the forefront of research, enabling new
capabilities in multimodal understanding and generation.
When integrated with Mixed Reality (MR) devices, they
unlock innovative, context-aware experiences that seam-
lessly blend the digital and physical worlds. Recent work
[3, 4,7, 9, 10] has highlighted the potential of combining
MR with LLMs and VLMs, creating systems capable of

providing immersive guidance and contextually relevant in-
formation.

In everyday life, finding small or misplaced objects is
often challenging, leading to inefficiencies and frustration.
By harnessing the perceptual precision of VLMs and the
reasoning capabilities of LLMs, it becomes feasible to de-
velop systems that not only detect objects in real-time, but
also provide intuitive and user-friendly visual hints to guide
users to their targets.

Motivated by the practical need to simplify the object-
finding process, this paper introduces a simple pipeline that
integrates vision-language guidance with MR for real-time,
guided object localization. Our approach interprets user
queries using advanced deep learning models and overlays
clear, dynamic visual cues within the user’s environment,
thereby easing the task of locating lost or misplaced items.

Prior work on the ML2 headset [11] has shown that
exhaustive environment scanning and unified model train-
ing can yield rich spatial representations, which bene-
fit tasks like navigation and scene understanding. How-
ever, these approaches depend on an offline preprocess-
ing stage and coarse, large-scale scene fusion to achieve
spatial awareness. TAGGAR [8], a general-purpose task-
guidance pipeline driven by a GroundingDINO [5] detector,
offers broad applicability but suffers from inference laten-
cies without a high-end GPU. In contrast, our pipeline op-
erates entirely in real time, processing incoming visual and
language inputs on the fly without requiring a global 3D re-
construction. This allows for greater flexibility in dynamic
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Figure 2. Detailed end-to-end pipeline. (a) The server—hosted agent processes incoming video frames and user prompt, generates both
textual and visual guidance, then streams annotated frames and guidance data to the client. (b) The client on Magic Leap 2 applies
backprojection and leverages built-in subsystems to place 3D pins and render mixed-reality cues.

or previously unseen settings and enables accurate recogni-
tion of smaller or obscured objects that may be overlooked
by coarse scene-level fusion methods.

2. Method

We propose an agent-based system that interprets user com-
mands, locates objects in real time, and provides intuitive
visual guidance. The overall architecture of the agent is
illustrated in Figure 2 (a). The agent is responsible for in-
teracting with and guiding the user in locating objects. It is
designed with (i) VLM for chat-based interaction and rea-
soning, (ii) an object detection model for visual localiza-
tion, and (iii) an LLM to process minor textual information.
Through this combined setup, the agent can effectively per-
form both reasoning and object detection while offering tex-
tual and visual guidance.

The agent’s input consists of a user prompt ¢ for the task,
and a list of frames F. Visual guidance g, ;sior s provided
in the form of visual cues, which are generated frame-by-
frame via a two-step process:

1. Detecting the object the user is searching for and placing

a visual cue in 3D space.

2. Generating guidance (in textual form') to help the user
find the visual cue.

In the first step, we initially generate 2D bounding boxes r

for a frame f € JF with respect to the user task given in

natural language by using an open-vocabulary object detec-

I'We plan to extend the setup to support additional modalities, such as
voice.

tion model D. The list of target objects C = {c1,¢a, ..., ¢}
is extracted from the prompt using an additional LLM (see
Figure 3). This yields a list of detection results r, each of
which includes bounding boxes and confidence scores.

r=D(LLM(t), f) 6]

In the second step, for textual guidance g, we employ
a VLM that takes as input the user task ¢ and the list of im-
age frames F. We optionally provide detection results r as
an additional textual input to the VLM and obtain the tex-
tual guidance g¢e,+. For visual guidance g,;sion, We back-
project the detected objects into 3D space to determine the
location to place the cue. More precisely, let 7; center be the
center of the ¢-th bounding box, then we can perform back-
projection via raycasting. Assuming a spatial mesh M of
the environment, we cast a sphere along the ray originating
from the device camera and passing through the center of
the bounding box on a virtual projection plane in the user’s
depth direction, and then calculate the intersection point be-
tween this sphere and the mesh. We then anchor these cues
to the computed 3D coordinates using a cue placement func-
tion ¢.

Gtext = V LM (concat(t, R), F) 2
Quision = gf)(BaCka‘OjeCtiOn(Ti,cente'r7 M)) (3)

The resulting textual and visual guidance form two asyn-
chronous data streams, enabling real-time feedback within
a HMD setup through a client-server framework. By in-
tegrating these streams, users benefit from immersive and
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Figure 3. The LLM processes the user’s prompt and outputs a list
of target objects for the detection pipeline.
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interactive feedback that combines contextual language in-
structions with dynamic on-screen cues.

3. Implementation

We adopt a client-server approach and deploy the agent on
the server, which allows for dynamic updating of detection
class names through client-server communication, and also
simplifies execution and coordination. The server compo-
nent runs on an Apple M3 Pro with 18GB of RAM, while
the client application is developed in Unity and deployed on
the ML2 headset. As shown in Figure 4, during an applica-
tion session, the user, wearing the HMD, prompts the agent
with a specific object-finding task while actively moving
through the environment. The captured visual information
and processed results are constantly exchanged between the
client and the server. Specifically, the client is configured to
fetch guidance results from the server every 2 seconds and
to upload a frame every second. The VLM jointly processes
the frames stored in a frame buffer of size 3, either every 2
seconds or upon reaching capacity. Moreover, textual guid-
ance 2 is generated and buffered on the server, while visual
guidance 3 is directly rendered on the client side.

¢

Figure 4. Implementation of client (Magic Leap Device) and
server setup for our application.
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3.1. Agent

Our agent integrates state-of-the-art deep learning mod-
els, specifically employing GPT40-mini [6] as the VLM,
Gemini as the LLM [2], and YOLOWorld [1] as the open-
vocabulary object detector.

3.2. Server

The server receives continuous visual inputs from the
client’s camera stream, processes these frames using the in-
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Figure 5. The visual cue (object pin) can be instantiated in space
via backprojection and spherecast.

tegrated agent, and generates corresponding textual guid-
ance along with annotated frames. To handle effective
scene and object memorization both within individual ses-
sions and across multiple sessions, we implemented an ob-
ject storage database to persistently save detection results.
This allows for the retrieval of previously detected objects
through semantic text embeddings and similarity searches.
Additionally, we employ data structures to store frames and
detected objects during each session, supporting dynamic
and context-aware guidance.

3.3. Client

The client periodically transmits captured frames to the
server and receives processed frames along with guidance
information in return. The client application, running di-
rectly on the ML2 device, leverages its integrated OpenXR
subsystems within Unity to efficiently handle sensor inputs
and spatial tracking. Using the ML2 meshing subsystem,
we implement backprojection. The cue placement function
is implemented to place a visual pin at the detected object’s
estimated world position. This position is determined by the
intersection point between the spatial mesh and the sphere-
cast ray originating from the user’s camera. Our pin visual-
ization approach is illustrated in Figure 5.

4. Use Case

We demonstrate the performance of our application by con-
ducting experiments in an indoor environment, specifically
in an apartment setting”. This allows us to assess the ro-
bustness of the system under typical household conditions,
before extending the experiments to more complex or dy-
namic environments.

Object Detection shows how our pipeline can accu-
rately perform object detection in 2D and back-project their
bounding-box centers to recover reasonably accurate 3D
position. The system is able to track moving objects in real
time, ensuring robust guidance even when the targets are
shifting or the wearer moves through the environment.

2A video demo can be found here


https://youtu.be/XmQUBR-jZgQ

Figure 6. Detecting objects with our system. Top row: 3D
pins marking object locations after backprojection onto the spatial
mesh; bottom row: corresponding 2D bounding boxes detected in
each camera frame.

Figure 7. Two examples of joint reasoning and localization. In
the top row, the user locates a glass by following step-by-step text
prompts; in the bottom row, the system directs the user straight to
their keys.

Localization and Reasoning demonstrates how our sys-
tem combines VLM with the object detector to provide syn-
chronized text and visual guidance in real time. Upon a
user’s natural language query (for example 'Where can I
find a glass?’), the VLM interprets intent and generates
stepwise instructions, while the detector scans each video
frame for candidate objects. The pipeline can infer plausi-
ble object locations — even in previously unseen areas —
and guide the wearer with common sense cues.

5. Conclusion

In this work, we presented a pipeline for agent-based object
detection in mixed reality. Our pipeline is simple and effec-
tive, offering a working solution that can be easily extended
for various applications.

The current system opens multiple directions for further
development and integration into broader applications. Po-
tential extensions include integrating voice interaction for
hands-free object retrieval, enhancing MR-based guidance
for navigation in complex environments, and enabling di-
rect manipulation of virtual objects within mixed reality

spaces. Moreover, the framework could be adapted for use
in, for example, autonomous driving systems or as a daily
assistant to improve task efficiency in various settings. Re-
fine the search process by allowing the agent to adapt dy-
namically to the user’s task — by continuously listening
to the user’s input and incorporating additional object at-
tributes into the search criteria — is another promising di-
rection that could further enhance the precision and usabil-
ity of the system.

Overall, we believe that our contributions provide a
step towards more intelligent and interactive mixed real-
ity systems for real-time object localization, while also
highlighting key challenges and opportunities for future
work.

References

[1] Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xing-
gang Wang, and Ying Shan. Yolo-world: Real-time open-
vocabulary object detection, 2024. 3

[2] Google. Gemini: A family of highly capable multimodal
models, 2024. 3

[3] Mikhail Konenkov, Artem Lykov, Daria Trinitatova, and
Dzmitry Tsetserukou. Vr-gpt: Visual language model for
intelligent virtual reality applications, 2024. 1

[4] Zhipeng Li, Christoph Gebhardt, Yves Inglin, Nicolas Steck,
Paul Streli, and Christian Holz. Situationadapt: Contextual
ui optimization in mixed reality with situation awareness via
IIm reasoning, 2024. 1

[5] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang,
Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marry-
ing dino with grounded pre-training for open-set object de-
tection, 2024. 1

[6] OpenAl. Gpt-4o system card, 2024. 3

[7] Vineet Parikh, Saif Mahmud, Devansh Agarwal, Ke Li,
Francgois Guimbretiere, and Cheng Zhang. Echoguide: Ac-
tive acoustic guidance for llm-based eating event analysis
from egocentric videos, 2024. 1

[8] Daniel Stover and Doug Bowman. Taggar: General-purpose
task guidance from natural language in augmented reality
using vision-language models. In Proceedings of the 2024
ACM Symposium on Spatial User Interaction, New York,
NY, USA, 2024. Association for Computing Machinery. 1

[9] Fernanda De La Torre, Cathy Mengying Fang, Han Huang,
Andrzej Banburski-Fahey, Judith Amores Fernandez, and
Jaron Lanier. Llmr: Real-time prompting of interactive
worlds using large language models, 2024. 1

[10] Cindy Xu, Mengyu Chen, Pranav Deshpande, Elvir Azanli,
Runging Yang, and Joseph Ligman. Enabling data-driven
and empathetic interactions: A context-aware 3d virtual
agent in mixed reality for enhanced financial customer ex-
perience, 2024. 1

[11] Chengyuan Xu, Radha Kumaran, Noah Stier, Kangyou Yu,
and Tobias Hoéllerer. Multimodal 3d fusion and in-situ learn-
ing for spatially aware ai, 2024. 1



	Introduction
	Method
	Implementation
	Agent
	Server
	Client

	Use Case
	Conclusion

