
Brief Announcement: Efficient Graph Algorithms without
Synchronization

Johannes Schneider
Computer Engineering and Networks Laboratory

ETH Zurich
8092 Zurich, Switzerland

jschneid@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich
8092 Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract
We give a graph decomposition technique that creates en-
tirely independent subproblems for graph problems such as
coloring and dominating sets that can be solved without syn-
chronization on a distributed memory system. For coloring,
evaluation shows a performance gain of a factor 3 to 5 at
the price of using more colors.
Categories and Subject Descriptors: E.1 Data struc-
tures, F.2.3 Tradeoffs among Complexity Measures
General terms: graphs, algorithms, performance
Key Words: parallel algorithms, concurrent data struc-
tures, coloring, dominating sets

1. INTRODUCTION
Synchronization operations needed for shared data access
cause a large performance penalty for parallel algorithms.
When solving graph problems the task of parallelization
boils down to split a graph into subgraphs keeping several
goals in mind: First, the decomposition process itself should
be efficient and simple. Second, if different threads work on
different subgraphs, synchronization among these threads
should be simple and cause only little overhead. Third,
the solution quality, e.g. approximation ratio, should be
as good as possible. For example, for coloring the number
of employed colors should be minimized. But even coarsely
approximating an optimal solution is NP-hard. Thus, in ba-
sically any application one is willing to settle for much more
than the minimum number of colors and save on comput-
ing time. In particular, in fast changing environments, e.g.
all kinds of highly dynamic graphs/networks, it is necessary
to compute an approximate solution as quickly as possible,
since it might be valid only for a short time span. In such
situations one is well willing to trade solution quality for
computation time. Even checking the correctness of a color-
ing requires looking at (the colors of) all neighbors of a node,
i.e. run time Ω(|E|). We match this lower bound without
relying on synchronization.

2. RELATED WORK
One way to parallelize operations on graphs is to decom-
pose a graph into subgraphs and let each processor compute
a solution on a subgraph. Unfortunately, these subgraphs
are usually not independent and thus boundary constraints

Copyright is held by the author/owner(s).
PODC’10, July 25–28, 2010, Zurich, Switzerland.
ACM 978-1-60558-888-9/10/07.

stay in place, which require slow synchronization primitives
such as locks. For instance, [2] proposes to iteratively com-
pute maximal matchings. Any pair u, v of matched nodes in
a graph G is merged together to form a new node v′ in G′.
Then a matching is computed in G′. This process is repeated
until only p nodes are left. Each node corresponds to a (col-
lapsed) subgraph and is assigned to a processor/core. Thus,
for a simple ring with n nodes log(n/p) matchings must be
computed. Every matched node requires an access to a syn-
chronization primitive, since several processors might try to
access the same node. For other techniques such as spectral
partitioning see [2] for related work.

Coloring has been studied extensively in a local setting,
where each node in the graph corresponds to a processor[4].
The fastest algorithm requires no communication to com-
pute an O(∆2 log2 n) coloring if a node knows its neighbors.
Computing an O(∆) coloring needs O(log log n) rounds,. i.e.
synchronization steps of all processors. In comparison, our
algorithm requires no synchronized rounds at all in its sim-
plest version. In the worst-case it might use up to O(∆ · p)
colors, where p is the number of processors. From a theo-
retical point of view, using that many colors is not too bad
given that coloring is hard problem to approximate and the
number of processors is often negligible (i.e. constant) com-
pared to the size of the maximum degree. Still, in many
cases heuristics allow to compute colorings that allow for
less colors than ∆. Unfortunately, the previously mentioned
(constant) time algorithm in general requires colors from the
entire set of available colors, e.g. to color a tree might re-
quire Ω(∆2 log2 n) colors, though two colors suffice. A more
effective sequential heuristic is the following greedy strategy:
Color node after node, such that any node gets the smallest
color not taken by its neighbor. [1] uses this approach. The
graph is partitioned into disjoint clusters (obtained by some
algorithm, e.g. [2]). Each node is either a boundary node,
i.e. it has a neighbor in another cluster, or a non-boundary
node. The algorithm iterates two phases. In the first phase
each processor speculatively colors the (uncolored) vertices
assigned to it in parallel using the greedy sequential heuris-
tic. The second phase consists of a color conflict-detection
(for the boundary nodes).

For minimum dominating sets [3] gives a algorithm in a lo-

cal setting for an O(k∆2/k log ∆) approximation using O(k2)
synchronization steps. Alternatively, one might employ [2]
to compute a decomposition using synchronization and then
greedily compute a log ∆ approximation. We achieve a
p log ∆ approximation without synchronization.

Figure 1: Used colors and time in milliseconds for Algorithm FastColorLowMax compared to [1], where
random matchings [2] were used for graph decomposition. The number of nodes are fixed to 5000, and the
number of edges are varied from 104 to 106.

3. TECHNIQUE AND APPLICATIONS
We assign a distinct solution space to each processor, e.g.
for the coloring problem, processor one can use colors [0,∆]
to color all nodes assigned to it, processor two can use col-
ors [∆ + 1, 2∆ + 1] and so forth. Nodes are assigned in an
arbitrary manner (e.g. randomly) to processors. Therefore,
we do not have any boundary constraints, since nodes as-
signed to different processors get different colors. Addition-
ally, since any graph can be colored with ∆ + 1 colors, every
processor can compute a solution, independently of all oth-
ers. Unfortunately, this algorithm uses up to (∆+1)·p colors
and even if fewer colors are used they will be distributed in
the range [0, (∆+1)·p]. We overcome this issue by first com-
puting a coloring using up to (∆ + 1) · p and then only keep
the color ranges used by the processors, e.g. consider a sys-
tem with two processors. If processor 1 has assigned colors
[0, cp1], where cp1 is the largest assigned color, and processor
2 colors from [∆ + 1,∆ + cp2], then we set a node assigned
by processor 2 having color c to color c− (∆ + 1) + cp1. In
other words, we do not simply use the offset of i · (∆ + 1)
for the colored nodes of processor i but rather compute the
offset based on the number of actually used colors of proces-
sors j with j < i. We refer to this approach by Algorithm
FastColorLowMax. By slightly modifying our algorithm, we
can give a tradeoff between synchronization effort and the
number of used colors. Say in Algorithm FastColorLowMax
a processor p can use only (∆ + 1)/r colors instead of ∆ + 1
for some parameter r. If processor i lacks sufficient colors to
color all its assigned nodes, it passes its uncolored nodes to
the next processor i + 1 mod p, which tries to color them.
If the total number of colors (∆ + 1)/r · p ≥ ∆ + 1, i.e.
p ≥ r, where r is the number of times colors are passed to
the next processor, we can be sure that a correct coloring is
computed using at most p/r(∆ + 1) colors.

Though, Algorithm FastColorLowMax using ∆ + 1 colors
per processor requires little coordination among processors,
as a drawback more colors are likely to be needed. Apart
from the upper bound of (∆ + 1) · p, the number of colors
will be in Ω(p) even for graphs of lower degree than p. This
happens because usually we have many more nodes than
processors and thus, if we assign nodes randomly to pro-
cessors, almost surely, every processor gets assigned at least
one node and must use one color for it. For illustration of
the approximation quality, assume we have a disconnected
graph consisting of cliques of size ∆+1. Thus, using a (non-

parallel) sequential greedy strategy for the whole graph will
result in a coloring with ∆ + 1 colors. For the parallel algo-
rithm FastColorLowMax, we have that the probability that
a processor gets assigned an entire clique is 1/p∆+1. As-
sume we have p � n and p∆+1 cliques all of small degree,
i.e. n = (∆ + 1) · p∆+1 or roughly, ∆ ≈ logn/ log p. Then,
the probability for a processor to be assigned a whole clique

becomes 1 − (1 − 1/p∆+1)p
∆+1

≈ 1 − 1/e ≈ 1/2. Using a
Markov bound, the probability that more than 3/4 of all
p processors are not associated with an entire clique is at
most 2/3, thus we expect indeed an approximation factor
of at least 3/4 · 2/3 · p = Ω(p). However, if the maximum
degree is larger, say ∆ = nc − 1 for some constant c < 1,
then using a Chernoff bound the probability that a proces-
sor gets assigned more than (1 + logn/nc/2) · nc/p or less

than (1−logn/nc/2)·nc/p nodes is smaller than 1−1/nlog n,
i.e. roughly (1 − 1/nlog n)p > 1 − 1/nlog n−1 for all proces-
sors since by assumption p < n. Thus, most likely the total
number of used colors is only (1 + logn/nc/2) · nc/p · p =

(1 + logn/nc/2) · nc compared to nc by an optimal algo-
rithm, yielding an approximation ratio converging to 1 as n
increases, i.e. 1 + logn/nc/2.

Similar thoughts apply for computing a dominating set.
After assigning nodes randomly to processors, each proces-
sor iteratively picks an (assigned) node with the maximum
number of non-dominated neighbors. Since a greedy ap-
proach yields an log ∆ approximation of a minimum domi-
nating set, the overall approximation ratio is at most p log ∆.

For evaluation we used Java on a system with four quad-
core Opteron 8350 processors. Figure 1 shows that for dense
graphs our algorithm uses twice as many colors as [1], since
for every node its neighbors are distributed relatively evenly
among the processor. For sparser graphs it gets worse. But
it is always 3 to 5 times faster.

4. REFERENCES
[1] D. Bozdag, A. H. Gebremedhin, F. Manne, E. G. Boman, and

Ü. V. Çatalyürek. A framework for scalable greedy coloring on
distributed-memory parallel computers. J. Parallel Distrib.
Comp., 2008.

[2] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme
for irregular graphs. J. Parallel Distrib. Comp., 48(1), 1998.

[3] F. Kuhn and R. Wattenhofer. Constant-Time Distributed
Dominating Set Approximation. In J. Distrib. Comp., 2005.

[4] J. Schneider and R. Wattenhofer. A New Technique For
Distributed Symmetry Breaking. In Symp. on Principles of
Distributed Computing, 2010.

