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Abstract. In this paper, we present fast and fully distributed algorithms for match-
ing in weighted trees and general weighted graphs. The time complexity as well
as the approximation ratio of the tree algorithm is constant. In particular, the ap-
proximation ratio is 4. For the general graph algorithm we prove a constant ratio
bound of 5 and a polylogarithmic time complexity ofO(log2 n).

1 Introduction and Related Work

In a weighted graphG = (V, E), a maximum weighted matching is a subsetE′ ⊆ E
of edges such that no two edges inE′ share a common vertex, every edge inE − E′

shares a common vertex with some edge inE′ and the weight of the matching is maxi-
mized. Matching is one of the most fundamental problems studied in graph theory and
computer science. A plethora of algorithms and heuristics for different matching vari-
ants have been proposed, culminating in the breakthrough work of Edmonds [Edm65]
who has shown that the maximum weighted matching problem can be computed in
polynomial time for general graphs.

The increasing importance of large-scale networks (e.g. Internet, ad-hoc and sensor
networks) has shifted the focus of distributed computing research away from tightly-
coupled multiprocessors towards loosely-coupled message passing systems. Solving
a basic network problem such as matching by first collecting the graph topology of
the network and then computing an optimal solution using Edmonds’ algorithm is not
economical because this approach leads to an immense data flow which is expensive
in time and resources. Moreover, by the time the solution is computed, the network
topology may already have changed.

In this paper we adopt the model of so-calledlocal graph (or network) algorithms.
Instead of sending the input (the network topology as a weighted graph) to a central
processor, we let all the vertices of the network participate in the computation them-
selves. By only allowing the vertices to communicate with their direct neighbors in the
graph, we keep the locality of the original problem.1

Related WorkThe general distributed graph network model and the objective to have
algorithms that are as “local” as possible has long been an important area of research.
Among the first results on this topic we would like to mention the ingeniousO(log∗ n)
coloring algorithm of Cole and Vishkin [CV86]. The matching lower bound was proven
by Linial [Lin92]. Thanks to the applications for ad-hoc and sensor networks local
graph algorithms recently experienced a second wind and are a field of intensive study
([JRS01], [KW03]). The model will be presented in detail in Sect. 2; for a proficient
introduction to local distributed computing, we refer to [Pel00].

1 In contrast, the widely studied parallel random access machine (PRAM) model does not pre-
serve locality. In essence, a local graph algorithm is also a PRAM algorithm, but not vice
versa.



Up to now, only a small number of distributed algorithms for matching have been
proposed. Indeed, we are not aware of any distributed algorithm that solves the max-
imum weighted matching problem optimally. Distributed computing researchers often
cherish time more than quality, and consequently prefer approximation algorithms that
only need polylogarithmic time over optimal linear time algorithms. To our knowl-
edge, there exists just one maximum weighted matching approximation: Uehara and
Chen [UC00] present a constant-time algorithm that achieves aO(∆) approximation,
∆ being the maximum degree in the graph. In this paper we significantly improve the
approximation ratio while staying polylogarithmic in time.

In contrast, there is a whole selection of algorithms studying the special case ofnon-
weighted graphs. For non-weighted graphs Karaata and Saleh [KS00] give aO(n4)
algorithm that solves the maximum matching problem for trees. In bipartite graphs
where the vertices know their partition Chattopadhyay et al. [CHS02] give an algorithm
for the same problem with time complexityO(n2). In the same paper Chattopadhyay et
al. study the maximal matching problem for general non-weighted graphs, presenting
a linear-time algorithm. In [II86] Israeli and Itai give a randomized2 O(log n) time
algorithm for the maximal matching problem.3 The methods Israeli and Itai use are
similar to those used by Luby [Lub86] for the related maximal independent set problem.
In Sect. 4 we will use methods inspired by [Lub86] and [II86] to achieve our results.

Outline After this excursion to non-weighted graphs let us now return to weighted
graphs. In our paper we present two randomized algorithms for approximating a maxi-
mum weighted matching, first one for trees, then one for general weighted graphs. The
tree algorithm in Sect. 3 finds a 4-approximation inO(1) time. The graph algorithm in
Sect. 4 computes a 5-approximation inO(log2 n)-time. Beforehand—in Sect. 2—we
formally introduce the model. Finally, in Sect. 5, we put our work into perspective.

2 Notation and Preliminaries

In this section we introduce the notation as well as some basic theorems we will use
throughout the paper.

Let G = (V,E) be an undirected simple graph, whereV denotes the set of vertices,
|V | = n, andE the set of edges. With each edgee ∈ E we associate a positive weight
w(e) ∈ R+. For a subsetS of E, w(S) denotes the total weight of the edges inS, that is
w(S) =

∑
e∈S w(e). A setM ⊆ E is amatchingif no two edges inM have a common

vertex. A matching ismaximalif it is not properly contained in any other matching, it
is amaximum (cardinality)matching if itssizeis maximized over all matchings inG. A
matching is amaximum weightedor optimalmatching ofG if its weightis maximized
over all matchings inG. Throughout the paperM∗

G will denote a maximum weighted
matching in a graphG. Following the standard notation we say that our algorithm has a
approximation ratioof ρ if w(MG) is within a factor ofρ of w(M∗

G). LetdG(u) denote
the degree of vertexu in G. We will make use of the maximum weight in the entire
graphG, respectively in the neighborhood of a vertexu. For this purpose we define

2 It is worth noting that Hanckowiak et al. [HKP01] manage to give aO(log4) time deterministic
algorithm for the same model.

3 Note, that [KS00] and [CHS02] focus on self-stabilization, whereas [II86] does not.



wmax(G) andwmax(u)E :

wmax(G) := max
e∈E

w(e),

wmax(u)E := max
e∈E;e={u,x}

w(e).

Whenever a vertex has to choose an edge with weightwmax(u)E and there is more
than one candidate, ties are broken lexicographically by choosing the edge with highest
rank in a given ordering.

Though our tree-algorithm works for non-rooted trees, it simplifies some proofs to
assume that there is a root. In this case, the termsparent, childandsibling have their
familiar meaning. We definenin(T ) for a treeT = (V, E) as the number of interior
(non-leaf) vertices:

nin(T ) := |{u | u ∈ V, dT (u) > 1}| .
We use a purely synchronous model for communication. That is, in every commu-

nication round, each vertex is allowed to send a message to each of its direct neighbors.
In our algorithms all messages need a constant number of bits only. Thetime complexity
is the number of rounds the algorithms needs to solve the problem.

The section is concluded by giving four facts which will be used in subsequent
sections. For a proof, we refer the reader to standard mathematical text books.

Fact 1. For n ≥ x ≥ 1, we have
(

1− x

n

)n

≤ e−x.

Fact 2. In a graphG = (V,E), we have

|E| =
1
2
·
∑

u∈V

dG(u).

Fact 3. For any matchingM on a graphG = (V,E), it holds that|M | ≤ 1
2 · |V |.

Fact 4. If M∗ is a maximum (cardinality) matching andM is a maximal matching then
|M∗| ≤ 2 · |M |.

3 Matching in Trees

3.1 The Algorithm

In this section we present a distributed algorithm for approximating a maximum weighted
matching in (non-rooted) trees. The time complexity as well as the approximation ratio
of this algorithm are shown to be constant. For the sake of clarity and simplicity the
algorithm is divided into two procedures, which are to be executed one by one. Before
we present the algorithm in detail we give a general overview.

Outline of the algorithm:To find a matchingMT in a weighted treeT = (V, E)
we foremost reduce the degree of the vertices without losing too much weight. Towards
this goal, in the first procedure, each vertexu requestsits heaviest incident edgeeu by
sending a message through it. Thereafter,u confirmsthe heaviest edgeev, ev 6= eu, on
which it received a request. Ifu received a request througheu, it additionally confirms
eu. All unconfirmed edges are deleted and the result is a set of vertex disjoint pathsP .
On this set of paths a matching is computed in the second procedure. As input for the



second procedure we have an additional parameterk, which controls how often a vertex
tries to become incident to the matching and consequently how large the matching will
be. The given approximation ratios hold fork = 1. For details see the Tree-Matching
Algorithm in Sect. 3.2.

3.2 Tree-Matching Algorithm

In order to compute a matching on a weighted treeT = (V, E) with parameterk, each
vertexu executes the following algorithms.4

On inputT = (V,E), k each vertexu executes the following algorithm.

(∗ See Footnote 4∗)
procedure Tree-Matching (T, k):M

1: P, MT := ∅
2: P := Paths (T );
3: MT := Matching (P, k);
4: return MT

procedure Paths (T ):P
1: R := ∅
2: choose heaviest incident edgee = {u, v}, e ∈ E, i.e.w(e) = wmax(u)E

3: sendmessage “requested” tov
4: receivemessage from all neighbors and addx to R if received message fromx
5: if (v ∈ R) then
6: sendmessage “confirmed” tov
7: fi
8: w = arg maxx∈R\v w(x)
9: sendmessage “confirmed” tow

10: receivemessage from all neighbors
11: return all confirmed edges
12: (∗ Each node has degree at most 2 and hence the returned edges are a set of paths

∗)

procedure Matching (P, k):M
1: MT := ∅, i := 0;
2: while i < k do
3: choose uniformly at random one incident edgee = {u, v} in P
4: sendmessage “you are my matching partner” tov
5: receivemessage from all neighbors
6: if (received message fromv) then
7: MT := MT ∪ {e}
8: deletee from P
9: return MT

10: fi
11: i := i + 1
12: end while;
13: (∗ An edge is part of the matchingMT if both its incident vertices have chosen it.

Therefore,MT is a valid matching.∗)

4 For the sake of readability, in all our algorithms we omit the subscripts, which should indicate,
that a vertex only knows its direct neighborhood, not the entire graph/matching.



3.3 Analysis

Let us call an confirmed edge which was confirmed by both its endpointsdoubly con-
firmed. Otherwise it issingly confirmed. Then for an edgee = {u, v} the following
three statements are equivalent:

1. e is doubly confirmed
2. e wasu as well asv’s heaviest incident edge
3. e was confirmed by a node that requested it.

Also note, that ife was requested byu and not confirmed byv, thenv must have
confirmed some other heavier edge.

In a first step we will prove that the weight ofP is at least as large as the weight of
an optimal matchingM∗

T onT .

Lemma 5. w(M∗
T ) ≤ w(P ).

Proof. In order to prove the lemma we will show that to each edge e in M∗
T \P we

can assign one-to-one an edge e′ in P\M∗
T with w(e′) ≥ w(e). Towards this goal,

we construct a 1:1 mapping f : M∗
T \P → P\M∗

T , such that w(f(e)) ≥ w(e),
which immediately implies w(M∗

T ) ≤ w(P ).
To set up the mapping we root T at an arbitrary node and orient its edges

away from the root (note, that we need a root just for the analysis of the algo-
rithm, not for the algorithm itself). Thus, every edge has a tail (the parent) and
a head (the child). There can be at most two types of edges in M∗

T \P . Either
edge e = {u, v} was requested solely by its head v (type 1 ), or it was not re-
quested by its head v (type 2 ). (Note, that if e is requested by both its head and
its tail, it is in P .) We will first show how f maps type 1 edges and afterwards
how type 2 edges are processed.

e = {u, v} is of type 1 : Since u did not confirm e, it must have singly con-
firmed a heavier edge e′ ∈ P . Map e to e′. This mapping has the desired proper-
ties, since e′ is adjacent to e and hence not in M∗

T and w(e′) ≥ w(e). Furthermore,
the mapping is one-to-one since e′ is either a parent edge of e, singly confirmed
by its head, or a sibling of e, singly confirmed by its tail. If we would map another
type 1 edge e′′ to e′ then either e′′ would be adjacent to e - contradicting its
being in M∗

T - or e′ would be singly confirmed by both endpoints - an oxymoron.
e = {u, v} is of type 2 : Vertex v is adjacent to an edge in M∗

T (namely, e)
that it has not requested. Since v did not request its parent edge e, it must have
requested a heavier child edge. Descend the tree, starting with x := v, in the
following manner. While x is adjacent to an edge in M∗

T that it did not request,
and the edge x did request is a child edge, set x := y, where y is the head of the
edge requested by x. Let the path thus traversed in the tree be v = v0, v1, . . . , vk.
Clearly, k ≥ 1. It is easy to see that the path contains no edges of M∗

T , and that
every vi, except possibly vk, is adjacent to an edge in M∗

T . Furthermore, the
edges in the path are oriented from vi to vi+1 and each was requested by its
tail. Additionally, the weights along the path are monotone nondecreasing and
at least as heavy as e.

Let e′ be the last edge on this path. Then e′ 6∈ M∗
T . If vk requested e′, then e′

is doubly confirmed and therefore cannot have been mapped to by a type 1 edge.
Map e to e′. Otherwise, vk must have *singly* confirmed an edge e′′ (possibly,
e′′ = e′) such that w(e′′) ≥ w(e′). Map e to e′′. In this case we must show that
e′′ is not in M∗

T and has not been mapped to by a type 1 edge. Any edge in



M∗
T incident to vk must be a child edge of vk (because vk’s parent edge is on

the path) and it must have been requested by its tail, namely, vk (otherwise vk

would not be last on the path). Thus e′′ cannot be such an edge, for then it
would be doubly confirmed. Also, such an edge cannot by of type 1, so it cannot
be mapped to e′′. It follows that if some type 1 edge is mapped to e′′, then either
e′′ is a child edge of vk and the type 1 edge mapped to it is a child edge of e′′, or
e′′ = e′ and the type 1 edge mapped to it is a child edge of vk−1. In both cases
e′′ is doubly confirmed - a contradiction.

Finally, no two type 2 edges may be mapped to the same edge, because every
type 2 edge is mapped to a descendent edge such that the path connecting them
contains no edges in M∗

T (and in particular, no type 2 edges).
ut

Lemma 6. If every vertex inT executes the Matching Procedure with input parameter
k andP and the output is denotedMP , thenE[w(MP )] ≥ (1− (3/4)k)w(P ).

Proof. A vertex chooses an incident edge in P with probability at least 1/2.
Since the vertices choose independently of each other, an edge in P is chosen
with probability at least 1/4. Hence, if we denote by MP the the chosen edges
after k trials we have

E[X] ≥ w(P )
k∑

i=1

(3/4)i · 1/4 = (1− (3/4)k)w(P ).

ut

Theorem 7. In a treeT and fork = 1 we have thatE[w(MT )] ≥ 1
4w(M∗

T ). That is,
the Tree-Matching Algorithm finds a matching which is on average a four approxima-
tion of a maximum weighted matching inT .

Proof.

E[w(MT )] ≥ 1
4
w(P ) (Lemma 6)

≥ 1
4
w(M∗

T ) (Lemma 5)

ut

We conclude this section with the analysis of the time and message complexity.

Theorem 8. The Tree-Matching Algorithm of Sect. 3.2 (Tree-Matching) needs a con-
stant number of time steps and a constant number of messages per edge with constant
bit size.

Proof. The theorem follows immediately from the description of the algorithm.
ut

Corollary 9. For any treeT we have that if the vertices synchronously execute the
Tree-Matching Algorithm of Sect. 3.2 they find a matching inT with on average an
approximation ratio of 4 and linear message complexity in constant time.



4 Matching in General Graphs

4.1 The Algorithm

In this section we present a distributed algorithm which finds a matching on a weighed
graphG with a constant approximation ratio of 5 in polylogarithmic time. Conceptually,
the algorithm consists of several rounds in each of which it tries to thin out the input
graph according to the edge-weights. On this thinned out graph a maximal matching
is computed. After logarithmic many of such rounds, we can guarantee that the union
of the maximal matchings on the thinned out graphs is a constant approximation of
an optimal matching on the original graph. In the following we give a more detailed
overview of the algorithm before we provide in Sect. 4.2 the algorithm itself.

Outline of the algorithm:The algorithm consist oflog n phasesΦi. Let us denote the
input graph of phaseΦi by G(i), whereG(1) = G. Then, in each phase, the algorithm
first computes a subgraphH(1)

i of G(i), where for each nodeu the weight of its incident

edges inH(1)
i is at least1/2 · wmax(u)

E
(i)
G

(“validation of edges phase”). Secondly,

it computes inO(log n) roundsRj a maximal matching onH(1)
i (“maximal matching

phase”). The two phases are described in the following.
“validation of edges phase”: A vertexu ∈ V calls an edgee = {u, v} a candidate

if w(e) ≥ 1
2 · wmax(u)E . Edgee is a valid candidateif it is a candidate foru andv.

Each vertexu computes in phaseΦi all its incident valid candidates (Procedure Valid).
The set of all valid candidates induce the graphH

(1)
i onG(i).

“maximal matching phase”: A maximal matching onH(1)
i is computed in sev-

eral rounds, where in each roundRj a sparse subgraph of a subgraphH
(j)
i of H

(1)
i is

computed by the Select and Eliminate Procedure. In the Select Procedure, each vertex
chooses randomly one incident edge and thus induces a graphH

(j)
Si on H

(j)
i . A vertex

u ∈ V calls the edge it has chosen in the Select Procedurechosen. The other incident
edges inH(j)

Si it calls imposed. In the Eliminate Procedure the vertices bound their de-

gree inH(j)
Si by randomly choosing one imposed edge and deleting all the others, except

the chosen one. The subgraph induced by this step is a collection of cycles and paths on
which we find a matching in the Matching Procedure. After having removed all edges
of the matching with all their adjacent edges fromH(j)

i in the Cleanup Procedure the
Uniform-Matching Procedure is repeated.

4.2 Graph-Matching

On inputG = (V, E) each vertexu executes the following algorithm.

(∗ See Footnote 4∗)
Procedure Graph-Matching (G) : M

1: G(1) := G, MG := ∅;
2: for (i from 1 tolog n by 1) do
3: (∗ start of phaseΦi ∗)
4: H

(1)
i := Valid(G(i);

5: G(i+1) := G(i)\H(1)
i ;

6: j := 1;
7: while (dH(j)(u) > 0) do
8: (∗ start of roundRj ∗)
9: (H(j+1)

i ,M
(j)
H ) := Uniform-Matching(H(j)

i );



10: MG := MG ∪M
(j)
H ;

11: j := j + 1;
12: end while;
13: remove all edges adjacent toMG from G(i+1)

14: od;
15: return MG

Procedure Valid (G(i)) : H

1: VH := V
(i)
G ; EH = ∅;

2: S := {v | e = {u, v} ∈ G(i), w(e) ≥ 1
2 · wmax(u)

E
(i)
G

};
3: for all v ∈ S do
4: sendmessage “you are a candidate” tov;
5: od;
6: receivemessage from all neighborsv in G(i);
7: (∗ u waits until it receivedall messages∗)
8: if (received message “you are a candidate” fromv ∈ S) then
9: EH := EH ∪ {u, v}

10: fi;
11: return H
12: (∗ H is the subgraph ofG(i) which contains allvalid candidates. The weight of

the incident edges ofu in H is at least12 · wmax(u)
E

(i)
G

. The degree ofu in H

may vary between zero anddG(i)(u). ∗)

The Uniform-Matching subroutine computes a maximal matching on an input graph
H(j). Each vertexu executes the following algorithm.

Procedure Uniform-Matching (H(j)) : (H(j+1),MH)

1: H
(j)
S := Procedure Select(H(j))

2: P (j) := Eliminate(H(j)
S );

3: M
(j)
H := Matching(P (j));

4: MH := MH ∪M
(j)
H ;

5: H(j+1) := Cleanup((H(j),M
(j)
H ));

6: return (H(j+1),MH)

Procedure Select(H(j)) : H
(j)
S

1: V
(j)
HS

:= V
(j)
H ; E

(j)
HS

:= ∅;
2: choose uniform at random one edgee = {u, v}, e ∈ E

(j)
H , call e chosen;

3: E
(j)
HS

:= E
(j)
HS

∪ {e};
4: sendmessage “you are chosen” tov;
5: receivemessage from all neighborsw in H(j);
6: if (received message from w)then
7: E

(j)
HS

:= E
(j)
HS

∪ {u,w}; call {u, w} imposed;
8: fi;
9: return H

(j)
S

10: (∗ If u has positive degree inH(j), it has positive degree inH(j)
S . ∗)



Procedure Eliminate (H(j)
S ) : P (j)

1: V
(j)
P := V

(j)
HS

, E
(j)
P := ∅

2: choose uniform at random oneimposededgee = {u, v};
3: sendmessage “this edge is inP (j)” to v;
4: E

(j)
P := E

(j)
P ∪ {e};

5: receivemessage from all neighborsw in H
(j)
S ;

6: if (received message from w)then
7: E

(j)
P := E

(j)
P ∪ {u,w};

8: fi;
9: return P (j)

10: (∗ If u has at least oneimposededge,dP (j)(u) ≥ 1. In general,dP (j)(u) ≤ 2.
∗)

Procedure Matching (P (j)) : M
(j)
G

1: M
(j)
G := ∅;

2: choose uniformly at random one incident edgee = {u, v} in P (j);
3: sendmessage “you are my matching partner” tov;
4: receivemessage from all neighborsw in P (j);
5: if (received message fromv) then
6: M

(j)
G := M

(j)
G ∪ {e};

7: fi;
8: return M

(j)
G

9: (∗ An edge is part of the matchingM (j)
G if both its endpoints have chosen it,

thereforeM (j)
G is a valid matching.∗)

Procedure Cleanup (H(j)) : H(j+1)

1: H(j+1) := H(j)

2: remove all edgese ∈ M
(j)
H from H(j+1), EH(j+1) := E

(j)
H \E

M
(j)
H

;

3: remove all edges adjacent to an edge inM
(j)
H from H(j+1),

EH(j+1) := EH(j+1)\{e | e adjacent to M
(j)
H };

4: return H(j+1)

4.3 Analysis

In this subsection we analyze the behavior of the Graph-Matching Algorithm given
above. As in Sect. 3 we first study the quality of the computed matching, then the time
and message complexity. If not stated otherwise,G = (V,E) denotes the graph on
which the matching is to be computed, with|V | = n. G(i) ∈ G is the graph in phase
Φi containing all edges not yet adjacent to or in the matchingMG. H

(1)
i is the graph of

all valid candidates ofG(i). Let wmax(G) be abbreviatedwmax.
We first present several lemmas which simplify the proof of the constant approxi-

mation ratio.

Lemma 10. For each vertexu and each phaseΦi it holds that afterO(log n) rounds
the condition in line 7 of Procedure Graph-Matching is false with high probability.
That is, afterO(log n) rounds all vertices inH(1)

i are incident to or in the matching

and hence a maximal matching inH(1)
i was found with high probability.



Proof. In the Select Procedure a vertex u chooses uniformly at random one
incident edge. If u itself has at least one imposed edge after the Select Procedure,
it has positive degree after the Eliminate Procedure and is further incident to
the matching computed in the Matching Procedure with probability at least 1

2 .
(This is apparent, since with probability 1/4 an edge is in the matching itself
and if it is not, with probability at least 1/4 one of its incident edges is in the
matching.) According to the terminology given in [II86] we call a vertex good if
more than 1/3 of its neighbors do not have a larger degree than itself. An edge
e is good if at least one incident vertex is good. Then at least half of the edges
are good.5 Suppose, u is a good vertex and let v1, . . . , vd be u’s neighbors. A
neighbor vj has degree dj . The probability that u has at least one imposed edge
after the Select Procedure can be computed using the following standard trick:

Pr(u has no imposed edge) =
d∏

i=1

(
1− 1

di

)

≤
(

1− 1
d

)d/3

≤ e−1/3 (Fact 1).

where the second equation follows since at least d/3 neighbors have smaller or
equal degree. All together we may conclude that the probability that a good edge
is removed in the Cleanup Procedure is constant. Since at least half of the edges
of any graph are good, after logarithmic many rounds all edges are removed and
a maximal matching is found with high probability.6 ut
Observation 11. All edgese ∈ E with weightw(e) ≥ 1

2 · wmax are valid candidates

in phaseΦ1, that ise is an edge inH(1)
1 .

Proof. For contradiction assume that w(e) ≥ 1
2 · wmax and e = {u, v} is not an

edge in H
(1)
i of phase Φ1. Then e was not a candidate for at least one incident

vertex. W.l.o.g. let this vertex be u. Then wmax(u)E > 2 · w(e) ≥ wmax, which
is a contradiction. ut
Corollary 12. In phaseΦ1 and afterO(log n) rounds all edgese with weightw(e) ≥
1
2 · wmax are either adjacent to or in the matchingMG with high probability.

Proof. The corollary follows immediately from Lemma 10 and Observation 11.
ut

Definition 13. We say that an edgee ∈ E is heavyif w(e) ≥ wmax/n, else it islight.

Lemma 14. After log n phases all heavy edges are either adjacent to or in the matching
MG with high probability.

Proof. By Observation 11 all edges e with weight w(e) ≥ 1
2 · wmax are valid

candidates in phase Φ1 and therefore in H
(1)
1 . After a maximal matching on H

(1)
1

was computed the vertices enter the next phase Φ2. In G(2) the heaviest edge has

5 For a proof see e.g. [KVY94].
6 A standard probabilistic argument can be applied to derive constant fraction and high proba-

bility from constant fraction and constant probability.



weight less than 1/2 ·wmax and following the argument of Corollary 12 all edges
e with weight w(e) ≥ 1/4 ·wmax are adjacent to or in the matching MG with high
probability after another O(log n) rounds. We repeat this argument log n times.
In the graph G(log n+1) the heaviest edge has weight less than wmax/2log n =
wmax/n with high probability and all heavier edges are either adjacent to or in
the matching MG. ut

Observation 15. We can partition the edge-set of a graphG in the following way:

E =
.⋃

i

Ei, where

Ei = {e | e ∈ E,
wmax

2i+1
< w(e) ≤ wmax

2i
}.

Observation 16. LetE′ be the union of all heavy edges,E′ =
log n⋃
i=0

Ei. The weight of a

matchingM∗
G can be decomposed by

w(M∗
G) = w(M∗

G ∩ E′) +
∑

i>log n

w(M∗
G ∩ Ei).

Lemma 17. The sum of weights of all light edges inM∗
G is less than half of the weight

of the heaviest edge:

∑

i>log n

w(M∗
G ∩ Ei) < 1/2 · wmax.

Proof. Edges in Ei, i > log n, have weight less than wmax/n. Together with Fact
3 we have

∑

i>log n

w(M∗
G ∩ Ei) < |M∗

G| · wmax/n

≤ 1/2 · |V | · wmax/n = 1/2 · wmax.

ut

Lemma 18. The sum of weights of all heavy edges inM∗
G is at most four times the

weight of the matching computed by the Graph-Matching Algorithm, formally:

w(M∗
G ∩ E′) ≤ 4 · w(MG).

Proof. We will define a mapping f : (M∗
G ∩E′) → MG with the property that if

f : e 7→ e′ then w(e) ≤ 2 ·w(e′). Furthermore, at most two elements of (M∗
G∩E′)

are mapped to the same element of MG. Obviously, if f is well-defined, the lemma
follows.

Let e ∈ E be a heavy edge in M∗
G, that is e ∈ (M∗

G ∩ E′). If e ∈ MG then
f : e 7→ e. Else, by Lemma 14 there must be an edge e′ ∈ MG, e′ /∈ M∗

G. This
edge has weight at least w(e′) ≥ 1/2 · w(e), otherwise it would not have been a
valid candidate and hence not in the matching. We let f : e 7→ e′. Since each
edge in MG is adjacent to at most two edges in M∗

G, at most two elements of
(M∗

G ∩ E′) are mapped to the same element of MG and f is well-defined. ut



Lemma 19. The weight of the matchingMG is at least half of the weight of the heaviest
edge inG:

w(MG) ≥ 1/2 · wmax.

Proof. Let e = {u, v} ∈ E be an edge with maximal weight, w(e) = wmax.
According to Observation 11, edge e is a valid candidate in phase Φ1. All other
valid candidates of phase Φ1 incident to u and v must have weight at least
1/2 · wmax. By Lemma 10 we have found a maximal matching on the valid
candidates of phase Φ1 after O(log n) rounds. Therefore, either e or an adjacent
edge to e must be in the matching MG after phase Φ1. ut
Theorem 20. After O(log2 n) time we have,w(MG) > 1/5 · w(M∗

G) with high prob-
ability.

Proof.

w(M∗
G) = w(M∗

G ∩ E′) +
∑

i>log n

w(M∗
G ∩ Ei) (Observation 16)

< w(M∗
G ∩ E′) +

1
2
· wmax (Lemma 17)

≤ 4 · w(MG) +
1
2
· wmax (Lemma 18)

≤ 5 · w(MG) (Lemma 19).

ut
We conclude this section with the analysis of the time and message complexity.

Theorem 21. The Graph-Matching Algorithm of Sect. 4.2 has time complexityO(log2 n)
and message complexityO(n2 log2 n).

Proof. It follows immediately from the description of the algorithm that each
of the Procedures Valid, Uniform-Matching, Select, Eliminate, Matching and
Cleanup needs a constant number of time steps and a constant number of mes-
sages per edge with constant bit size. By Lemma 10 the while-loop of the Graph-
Matching Algorithm is executed O(log n) times and therefore the claimed time
and message complexity can be derived. ut
Corollary 22. For any graphG we have that if the vertices synchronously execute the
Graph-Matching Algorithm of Sect. 4.2 they find with high probability a matching in
G with approximation ratio 5 and polylogarithmic message complexity per edge in
polylogarithmic time.

5 Conclusions

In this paper we presented two distributed constant-approximation algorithms for weighted
matching, one for trees which runs in constant time, and one for general graphs which
runs in timeO(log2 n), wheren denotes the number of nodes in the graph. Recently,
Kuhn et al. [KMW04] showed that in general (non-weighted) graphs matching cannot
be approximated constantly without spending at leastΩ(log ∆/ log log ∆+

√
log n/ log log n)

communication rounds, where∆ denotes the maximum degree in the graph. This result



bounds the running time of our algorithm from below. Furthermore, in light of our result
for trees, an interesting area of future research is to investigate which classes of graphs
allow constant distributed approximations in constant time, and for which classes of
graphs constant-time algorithms experience the lower bound of [KMW04].

We believe that a deeper general knowledge of local algorithms leads to a better un-
derstanding of a variety of problems in distributed computing and/or networking. Many
en vogueresearch areas, such as ad-hoc and sensor networks, or peer-to-peer comput-
ing, essentially boil down to local algorithms, since local algorithms produce solutions
with a low communication overhead, or work well in a highly dynamic environment.
We believe that classic graph problems will be beneficial when building such systems.
For matching in particular, we envision applications in the distributed match-making
process of massive multiplayer online games. How our algorithms can be turned into
practical match-making solutions, where the problems of self-stabilization and fault-
tolerance also need to be addressed, is one of the goals of our future research.
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