
ar
X

iv
:1

61
2.

07
40

5v
1

 [
cs

.C
G

]
 2

2
D

ec
 2

01
6

Practical linear-space Approximate Near Neighbors in high

dimension

Georgia Avarikioti1,2, Ioannis Z. Emiris2, Ioannis Psarros2, and Georgios Samaras2

1School of Electrical and Computer Engineering, National Technical University of Athens,,

Athens, Greece, zetavar@hotmail.com
2Department of Informatics & Telecommunications, National Kapodistrian University of

Athens,, Athens, Greece, {emiris,ipsarros,gsamaras}@di.uoa.gr

December 23, 2016

Abstract

The c-approximate Near Neighbor problem in high dimensional spaces has been mainly
addressed by Locality Sensitive Hashing (LSH), which offers polynomial dependence on the
dimension, query time sublinear in the size of the dataset, and subquadratic space requirement.
For practical applications, linear space is typically imperative. Most previous work in the linear
space regime focuses on the case that c exceeds 1 by a constant term. In a recently accepted
paper, optimal bounds have been achieved for any c > 1 [ALRW17].

Towards practicality, we present a new and simple data structure using linear space and
sublinear query time for any c > 1 including c → 1+. Given an LSH family of functions for
some metric space, we randomly project points to the Hamming cube of dimension logn, where
n is the number of input points. The projected space contains strings which serve as keys for
buckets containing the input points. The query algorithm simply projects the query point, then
examines points which are assigned to the same or nearby vertices on the Hamming cube. We
analyze in detail the query time for some standard LSH families.

To illustrate our claim of practicality, we offer an open-source implementation in C++, and
report on several experiments in dimension up to 1000 and n up to 106. Our algorithm is one
to two orders of magnitude faster than brute force search. Experiments confirm the sublinear
dependence on n and the linear dependence on the dimension. We have compared against state-
of-the-art LSH-based library FALCONN: our search is somewhat slower, but memory usage and
preprocessing time are significantly smaller.

Keywords. Near Neighbor, high dimension, linear storage, sublinear query, random projection,
implementation

1 Introduction

We are interested in the problem of Approximate Nearest Neighbor search in Euclidean spaces,
when the dimension is high; typically one assumes for dimension d ≫ log n, where n denotes the
number of input data points. Due to known reductions, e.g. [HIM12], it is apparent that one may
focus on designing an efficient data structure for the Approximate Near Neighbor (ANN) problem

1

http://arxiv.org/abs/1612.07405v1

instead of directly solving the Approximate Nearest Neighbor problem. The former is a decision
problem, whose output may contain a witness point (as in Definition 1 below), whereas the latter
is an optimization question. Here we trade exactness for efficiency in order to tackle the case of
general dimension, where dimension is an input parameter. The (1 + ǫ, r)-ANN problem, where
c = 1 + ǫ, is defined as follows.

Definition 1 (Approximate Near Neighbor problem). Let (M,dM) be a metric space. Given
P ⊆ M, and reals r > 0 and ǫ > 0, build a data structure s.t. for any query q ∈ M, there is an
algorithm performing as follows:

• if ∃p∗ ∈ P s.t. dM(p∗, q) ≤ r, then return any point p′ ∈ P s.t. dM(p′, q) ≤ (1 + ǫ) · r,

• if ∀p ∈ P , dM(p, q) > (1 + ǫ) · r, then report “no”.

An important approach for such problems today is Locality Sensitive Hashing (LSH). It has
been designed precisely for problems in general dimension. The LSH method is based on the idea
of using hash functions enhanced with the property that it is more probable to map nearby points
to the same buckets.

Definition 2. Let reals r1 < r2 and p1 > p2 > 0. We call a family F of hash functions
(p1, p2, r1, r2)-sensitive for a metric space M if, for any x, y ∈ M, and h distributed randomly
in F , it holds:

• dM(x, y) ≤ r1 =⇒ Pr[h(x) = h(y)] ≥ p1,

• dM(x, y) ≥ r2 =⇒ Pr[h(x) = h(y)] ≤ p2.

Let us survey previous work, focusing on methods whose complexity has polynomial, often even
linear, dependence on the dimension. LSH was introduced by Indyk and Motwani [IM98, HIM12]
and yields data structures with query time O(dnρ) and space O(n1+ρ+dn). Since then, the optimal
value of the LSH exponent, ρ, has been extensively studied for several interesting metrics, such as
ℓ1 and ℓ2. In a series of papers [IM98, DIIM04, MNP07, AI08, OWZ14], it has been established that
the optimal value for the Euclidean metric is ρ = 1/c2 ± o(1), whereas in [IM98, MNP07, OWZ14]
that the optimal value for the Hamming distance is ρ = 1/c± o(1).

In contrast with the definition above, which concerns data-independent LSH, quite recently the
focus has been shifted to data-dependent LSH. In the latter case, the algorithms exploit the fact
that every dataset has some structure and consequently this approach yields better bounds for the
LSH exponent. Specifically, in [AIÊR14, AR15] they showed that ρ = 1/(2c − 1) for the ℓ1 distance
and ρ = 1/(2c2 − 1) for the ℓ2 distance. Moreover, in [AR16] they proved that these bounds are
tight in the data-dependent case. In a recent paper [ALRW17], the authors have established lower
bounds and have also designed LSH-based algorithms to arrive at matching upper bounds in the
data-dependent case. These results also yield data independent algorithms.

The data-dependent algorithms, though better in theory, are quite challenging in practice. In
[AIL+15], they present an efficient implementation of one part of [AR15]. Another attempt towards
practicality for a data-dependent algorithm was recently made in [ARN17], where they presented
a new approach based on LSH forests. Typically though, data-independent algorithms, such as the
one proposed in this work, yield better results in practice than data-dependent algorithms.

For practical applications, an equally important parameter is memory usage. Most of the
previous work in the (near) linear space regime focuses on the case that c is greater than 1 by

2

a constant term. When c approaches 1, these methods become trivial in the sense that query
time becomes linear in n. One such LSH-based approach [Pan06] offers query time proportional
to dnO(1/c). The query time was later improved in [AI08] to dnO(1/c2); both complexities are
sublinear in n only for large enough c > 1. One remarkable exception is the recently accepted
paper [ALRW17], where they achieve near-linear space and sublinear query time, even for c →
1+. Their data-dependent data structure is optimal for a reasonable model of hashing-based data
structures.

Another line of work that achieves linear space and sublinear query time for the Approximate
Nearest Neighbor problem is based on random projections to drastically lower-dimensional spaces,
where one can simply search using tree-based methods, such as BBD-trees [AEP15, AEP16]. This
method relies on a projection extending the type of projections typically based on the Johnson-
Lindenstrauss lemma. The new projection only ensures that an approximate nearest neighbor in
the original space can be found among the preimages of k approximate nearest neighbors in the
projection. In the final version of this work [AEP16], a sublinear-time algorithm is achieved with
optimal space usage.

In this paper, a new random projection is again the key step, although here the projection’s
range are the vertices of the Hamming hypercube of dimension log n. The projected space contains
strings which serve as keys for buckets containing the input points. The query algorithm simply
projects the query point, then examines points which are assigned to the same or nearby vertices
on the Hamming cube.

The random projection relies on the existence of an LSH family for the input metric. We study
standard LSH families for ℓ2 and ℓ1, for which we achieve query time O(dn1−δ) where δ = Θ(ǫ2),
ǫ ∈ (0, 1]. The constants appearing in δ vary with the LSH family, but it holds that δ > 0 for any
ǫ > 0. The space and preprocessing time are both linear for constant probability of success, which
is important in practical applications.

We illustrate our approach with an open-source implementation, and report on a series of
experiments with n up to 106 and d up to 1000, where results are very encouraging. It is evident
that our algorithm is 8.5–80 times faster than brute force search, depending on the difficulty of the
dataset. Moreover, we handle a real dataset of 106 images represented in 960 dimensions with a
query time of less than 128 msec on average. We test our implementation with synthetic and image
datasets, and we compare against the LSH-based FALCONN library [AIL+15]. For SIFT, MNIST
and GIST image datasets, we typically achieve 2.2 times less memory consumption and 14 times
faster construction time, while FALCONN is 1.15 times faster in query time.

The rest of the paper is structured as follows. The next section states our main complexity
results for the (c, r)-ANN problem in the Euclidean and Manhattan metrics. In Section 3, we discuss
our implementation, whereas in Section 4, we present our experimental results. We conclude with
open questions.

2 Data structures

This section introduces our main data structure, and the corresponding algorithmic tools.
The algorithmic idea is to apply a random projection from any LSH-able metric to the Hamming

hypercube. Given an LSH family of functions for some metric space, we randomly project points
to the Hamming cube of dimension <= log n, where n is the number of input points. Hence, we
obtain binary strings serving as keys for buckets containing the input points. The query algorithm

3

projects a given point, and tests points assigned to the same or nearby vertices on the hypercube.
We start our presentation with an algorithmic idea applicable to any metric admitting an LSH-

based construction, aka LSH-able metric. Then, we study some classical LSH families which are
also simple to implement.

It is observed in [Cha02] that, for any similarity function that admits an LSH function family,
the corresponding distance function is isometrically embeddable in the Hamming hypercube, i.e. the
hypercube whose vertices have 0/1 coordinates. The dimension cannot be controlled, and depends
on the similarity function. Our approach is to specify a random projection from any space endowed
with an LSH-able metric, to the Hamming hypercube. Random projections which map points
from a high dimensional Hamming space to lower dimensional Hamming space have been already
used in the ANN context [KOR00]. We start with an ANN data structure whose complexity and
performance depends on the LSH family that we assume is available.

Lemma 3. Given a (p1, p2, r, cr)-sensitive hash family F for some metric (M,dM) and input
dataset P ⊆ M, there exists a data structure for the (c, r)-ANN problem with space O(dn), time
preprocessing O(dn), and query time O(dn1−δ + nH((1−p1)/2)), where

δ = δ(p1, p2) =
(p1 − p2)

2

(1− p2)
· log e

4
,

where e denotes the basis of natural logarithms, and H(·) is the binary entropy function. The bounds
hold assuming that computing dM(.) and computing the hash function cost O(d). Given some query
q ∈ M, the building process succeeds with constant probability.

Proof. The first step is a random projection to the Hamming space of dimension d′ for d′ to be
specified later. We first sample h1 ∈ F . We denote by h1(P) the image of h1 under P . Now for
each element x ∈ h1(P), with probability 1/2, set f1(x) = 0, otherwise set f1(x) = 1. This is
repeated d′ times, and eventually for p ∈ M we compute f(p) = (f1(h1(p)), . . . , fd′(hd′(p))). Now,
observe that

dM(p, q) ≤ r =⇒ E[‖fi(hi(p))−fi(hi(q))‖1] ≤ 0.5(1−p1) =⇒ E[‖f(p)−f(q)‖1] ≤ 0.5·d′ ·(1−p1),

dM(p, q) ≥ cr =⇒ E[‖fi(hi(p)−fi(hi(q))‖1] ≥ 0.5(1−p2) =⇒ E[‖f(p)−f(q)‖1] ≥ 0.5·d′ ·(1−p2).

We distinguish two cases.
First, consider the case dM(p, q) ≤ r. Let µ = E[‖f(p)− f(q)‖1]. Then,

Pr[‖f(p)− f(q)‖1 ≥ µ] ≤ 1

2
,

since ‖f(p)− f(q)‖1 follows the binomial distribution.
Second, consider the case dM(p, q) ≥ cr. By typical Chernoff bounds,

Pr[‖f(p)−f(q)‖1 ≤
1− p1
1− p2

·µ] ≤ exp(−0.5 ·µ ·(p1−p2)
2/(1−p2)

2) ≤ exp(−d′ ·(p1−p2)
2/4(1−p2)).

After mapping the query q ∈ M to f(q) in the d′-dimensional hamming space we search for all
“near” hamming vectors f(p) s.t. ‖f(p)− f(q)‖1 ≤ 0.5 · d′ · (1− p1). This search costs

(

d′

1

)

+

(

d′

2

)

+ · · · +
(

d′

⌊d′ · (1− p1)/2⌋

)

≤ O(d′ · 2d′·H((1−p1)/2)),

4

where H(·) is the binary entropy function. The inequality is obtained from standard bounds on
binomial coefficients (see e.g. [MU05]). Now, the expected number of points p ∈ P for which
dM(p, q) ≥ cr but are mapped ”near” q is ≤ n · exp(−d′ · (p1−p2)

2/4(1−p2))). If we set d
′ = log n,

we obtain expected query time
O(nH((1−p1)/2)) + dn1−δ),

where

δ =
(p1 − p2)

2

(1− p2)
· log e

4
.

If we stop searching after having seen, say 10n1−δ points for which dM(p, q) ≥ cr , then we obtain
the same time with constant probability of success. Notice that ”success” translates to successful
preprocessing for a fixed query q ∈ M. The space required is O(dn).

The lower bound on δ is not tight. Above, we have used simplified Chernoff bounds to keep our
exposition simple.

Discussion on parameters. We set the dimension d′ = log n, since it minimizes the expected
number of candidates under the linear space restriction. We note that it is possible to set d′ < log n
and still have sublinear query time. This choice of d′ is interesting in practical applications since
it improves space requirement.

2.1 The ℓ2 case

In this subsection, we consider the (c, r)-ANN problem when the dataset consists of n points
P ⊂ R

d, the query is q ∈ R
d, and the distance is the Euclidean metric.

We may assume, without loss of generality, that r = 1, since we can uniformly scale (Rd, ‖ · ‖2).
We shall consider two LSH families, for which we obtain slightly different results. The first is based
on projecting points to random lines, and it is the algorithm used in our implementation, which is
discussed in Section 3. The second LSH family relies on reducing the Euclidean problem to points
on the sphere, and then partitioning the sphere with random hyperplanes.

2.1.1 Project on random lines

Let p, q two points in R
d and η the distance between them. Let w > 0 be a real parameter, and let

t be a random number distributed uniformly in the interval [0, w]. In [DIIM04], they present the
following LSH family. For p ∈ R

d, consider the random function

h(p) =

⌊〈p, v〉+ t

w

⌋

, p, v ∈ R
d,

where v is a vector randomly distributed with the d-dimensional normal distribution. For this LSH
family, the probability of collusion is

α(η,w) =

∫ w

t=0

2√
2πη

exp
(

− t2

2η2

)(

1− t

w

)

dt.

5

Lemma 4. Given a set of n points P ⊆ R
d, there exists a data structure for the (c, r)-ANN

problem under the Euclidean metric, requiring space O(dn), time preprocessing O(dn), and query
time O(dn1−δ + n0.9), where

δ ≥ 0.03 (c − 1)2.

Given some query point q ∈ R
d, the building process succeeds with constant probability.

Proof. In the sequel we use the standard Gauss error function, denoted by erf(·). For probabilities
p1, p2, it holds that

p1 = α(1, w) =

∫ w

t=0

2√
2π

exp
(

− t2

2

)(

1− t

w

)

dt = erf
(w√

2

)

−
√

2

π

1

w

(

1− exp
(

− w2

2

)

)

,

and also that

p2 = α(c, w) =

∫ w

t=0

2√
2πc

exp
(

− t2

2c2

)(

1− t

w

)

dt =

= erf
(w√

2c

)

−
√

2

π

c

w

(

1− exp
(

− w2

2c2
)

)

.

The LSH scheme is parameterized by w. One possible value is w = 3, as we have checked on a
computer algebra system. On the other hand, w = c gives similar results, and they are simpler to
obtain. In particular, we have

p1 − p2 = erf
(c√

2

)

−
√

2

π

1

c

(

1− exp
(

− c2

2

)

)

− erf
(1√

2

)

+

√

2

π

(

1− exp
(

− 1

2

)

)

.

We shall prove that, given w = c, for c ∈ (1, 2], it holds that p1 − p2 >
5(c−1)

21 . Let us define

g(c) = p1 − p2 −
5(c− 1)

21
= erf

(c√
2

)

−
√

2

π

1

c

(

1− exp
(

− c2

2

)

)

−

−erf
(1√

2

)

+

√

2

π

(

1− exp
(

− 1

2

)

)

− 5(c − 1)

21
, c ∈ (1, 2].

Using elementary calculus, it is easy to show that g(c) is concave over c ∈ (1, 2]. Also, g(1) = 0

and g(2) > 0, thus ∀c ∈ (1, 2], g(c) > 0 and consequently p1 − p2 > 5(c−1)
21 . In addition, w = c

implies 1 − p2 = 1 − erf
(

1√
2

)

+
√

2
π

(

1 − exp(−1
2)
)

< 0.64, and H
(1−p1

2

)

< 0.9. Hence, for w = c

and c ∈ (1, 2], δ > 0.03(c − 1)2.

2.1.2 Hyperplane LSH

This section reduces the Euclidean ANN to an instance of ANN for which the points lie on a unit
sphere. The latter admits an LSH scheme based on partitioning the space by randomly selected
halfspaces.

In Euclidean space R
d, let us assume that the dimension is d = O(log n · log log n), since

one can project points à la Johnson Lindenstrauss [DG03], and preserve pairwise distances up to
multiplicative factors of 1 ± o(1). Then, we partition R

d using a randomly shifted grid, with cell
edge of length O(

√
d) = O((log n · log log n)1/2). Any two points p, q ∈ R

d for which ‖p − q‖2 ≤ 1

6

lie in the same cell with constant probability. Let us focus on the set of points lying inside one cell.
This set of points has diameter bounded by O((log n · log log n)1/2). Now, a reduction of [Val15],
reduces the problem to an instance of ANN for which all points lie on a unit sphere S

d−1, and
the search radius is roughly r′ = Θ((log n · log log n)−1/2). These steps have been also used in
[ALRW17], as a data-independent reduction to the spherical instance.

We now consider the LSH family introduced in [Cha02]. Given n unit vectors P ⊂ S
d−1,

we define, for each q ∈ S
d−1, hash function h(q) = sign〈q, v〉, where v is a random unit vector.

Obviously, Pr[h(p) = h(q)] = 1 − θ(p,q)
π , where θ(p, q) denotes the angle formed by the vectors

p 6= q ∈ S
d−1. Instead of directly using the family of [Cha02], we employ its amplified version,

obtained by concatenating k ≈ 1/r′ functions h(·), each chosen independently and uniformly at
random from the underlying family. The amplified function g(·) shall be fully defined in the proof
below. This procedure leads to the following.

Lemma 5. Given a set of n points P ⊂ R
d, there exists a data structure for the (c, r)-ANN

problem under the Euclidean metric, requiring space O(dn), time preprocessing O(dn), and query
time O(dn1−δ + n0.91), where

δ ≥ 0.05 ·
(c− 1

c

)2
.

Given some query q ∈ R
d, the building process succeeds with constant probability.

Proof. We exploit the reduction described above that translates the Euclidean ANN to a spherical
instance of ANN with search radius r′ = Θ((log n · log log n)−1/2). The latter is handled by a
hyperplane LSH scheme based on [Cha02] as detailed immediately below.

Let us denote by F the aforementioned LSH family of [Cha02]. We build a new (amplified)
family of functions Gk = {g(x) = (h1(x), . . . , hk(x)) : i = 1 . . . k, hi ∈ F)}. Now, obviously, for any
two unit vectors p 6= q, we have

Prg∈G[g(p) = g(q)] =
(

1− θ(p, q)

π

)k
.

Hence,

‖p− q‖2 ≤ r′ =⇒ 2 sin
(θ(p, q)

2

)

≤ r′ =⇒ θ(p, q) ≤ 2 arcsin
(r′

2

)

= θr,

which defines θr. Moreover,

‖p− q‖2 ≥ cr′ =⇒ 2 sin
(θ(p, q)

2

)

≥ cr′ =⇒ θ(p, q) ≥ 2 arcsin
(cr′

2

)

.

By using elementary calculus, it is easy to prove that

2 arcsin
(cr′

2

)

≥ 2c · arcsin
(r′

2

)

=⇒ θ(p, q) ≥ c · θr.

Hence, for k = ⌊π/θr⌋ and since r′ = Θ((log n · log log n)−1/2) =⇒ θr = o(1),

p1 = Pr[g(p) = g(q) | ‖p− q‖2 ≤ r] ≥
(

1− θr
π

)k
≥ exp(− π

(π − θr)
) ≥ 1

e1+o(1)
,

p2 = Pr[g(p) = g(q) | ‖p− q‖2 ≥ c · r] ≤
(

1− c · θr
π

)k
≤ exp(−cθr

π
· (π
θr

− 1)) ≤ 1

c · e1−o(1)
.

7

Now applying Lemma 3 yields

δ ≥ 1

e2+o(1)
·
(

1− eo(1)

c

)2
· 1

1− (c · e)−1
· log(e)

4
≥ 0.059 ·

(

1− 1

c

)2
,

for c ∈ (1, 2]. The space required is O(dn+n(d′+k)) where d′ is defined in Lemma 3. Since k ≪ d,
and d′ ≪ d the total space is O(dn). Notice also that H(1−p1

2) ≤ 0.91.

The data structure of Lemma 5 provides slightly better query time than that of Lemma 4, when
c is small enough.

2.2 The ℓ1 case

In this section, we study the (c, r)-ANN problem under the ℓ1 metric. The dataset consists again
of n points P ⊂ R

d and the query point is q ∈ R
d.

For this case, let us consider the following LSH family, introduced in [AI06]. In particular, a
point p is hashed as follows:

h(p) =
(

⌊

p1 + t1
w

⌋

,

⌊

p2 + t2
w

⌋

, . . . ,

⌊

pd + td
w

⌋

)

,

where p = (p1, p2, . . . , pd) is a point in P , w = αr, and the ti are drawn uniformly at random from
[0, . . . , w). Buckets correspond to cells of a randomly shifted grid.

Now, in order to obtain a better lower bound, we employ an amplified hash function, defined
by concatenation of k = α functions h(·) chosen uniformly at random from the above family.

Lemma 6. Given a set of n points P ⊆ R
d, there exists a data structure for the (c, r)-ANN

problem under the ℓ1 metric, requiring space O(dn), time preprocessing O(dn), and query time
O(dn1−δ + n0.91), where

δ ≥ 0.05 ·
(c− 1

c

)2
.

Given some query point q ∈ R
d, the building process succeeds with constant probability.

Proof. We denote by F the previously introduced LSH family of [AI06], which is (1− 1
α , 1− c

c+α , 1, c)-
sensitive. We build the amplified family of functions Gk = {g(x) = (h1(x), . . . , hk(x)) : i =
1, . . . , k, hi ∈ F)}. Setting α = k = log n, we have:

p1 =
(

1− 1

α

)k

=
(

1− 1

log n

)logn

≥
(

exp
(

− 1

log n− 1

))logn

≥ 1

e1+o(1)
,

p2 =
(

1− c

α+ c

)k
=

(

1− c

log n+ c

)logn
.

Hence,

p2 ≥ exp(−c) ≥ 1

e · (2c− 1)
,

and

p2 ≤ exp
(

− c

1 + c
logn

)

= exp
(

− c

1 + o(1)

)

≤ exp
(

− c+ o(1)
)

≤ eo(1)

ec
.

8

Therefore, for n large enough, it holds that

δ =

(

p1 − p2
)2

(

1− p2
) · log e

4
≥ 1

e2+o(1)
· (1− 1

c)
2

1− 1
e(2c−1)

· log e
4

≥ 0.055 · (1− 1

c
)2,

for c ∈ (1, 2]. Notice that H((1 − p1)/2) ≤ 0.91.

3 Implementation

This section discusses our C++ library, named Dolphinn, which is available online1.
The project is open source, under the BSD 2-clause license. The code has been compiled

with g++ 4.9 compiler, with the O3 optimization flag enabled. It contains only 716 lines of code.
Important implementation issues are discussed here, focusing on efficiency.

Our implementation is based on the algorithm from Subsection 2.1.1 and supports similar-
ity search under the Euclidean metric. We denote by F the LSH family introduced above (see
also [DIIM04]) and discussed in Subsection 2.1.1. The data structure to which the points are
mapped is called Hypercube.

Parameters.

Our implementation provides several parameters to allow the user to fully customize the data
structure and search algorithm, such as:

d′ The dimension of the Hypercube to which the points are going to be mapped. The larger this
parameter, the faster the query time, since it leads to a finer mapping of the points. However,
this speedup comes with increased memory consumption and build time.

Threshold Maximum number of points to be checked during search phase. The greater this parameter,
the more accurate results will be produced, at the cost of an increasing query time.

r It is provided by the user as input. The algorithm checks whether a point lies within a radius
r from the query point.

w Indexes a hash function h from LSH family F . It specifies the distribution used by our data
structure to map points to the 0/1 vertices of the Hypercube.

µ, σ Index a hash function h from LSH family F , and specify the random vector under the Normal
Distribution N (µ, σ2), which is multiplied by the point vector. It determines the distribution
used by our data structure to map points to the 0/1 vertices of the Hypercube.

Configuration.

Despite the simple parameter set, we employ default values for all parameters (except r), which are
shown to make Dolphinn run efficiently and accurately for several datasets. Moreover, the whole
configuration is desgined for an one-threaded application. However, it would be interesting to
modify it and take advantage of the huge parallel potential of Dolphinn, both in the preprocessing
and search stage.

1https://github.com/gsamaras/Dolphinn

9

https://github.com/gsamaras/Dolphinn

Hypercube.

The Hypercube data structure contains its statistical information, so that it can efficiently hash a
query on arrival, by using two hash tables, that indicate the statistical choices made upon build
and the index of every associated original point. Moreover, another hashtable is constructed, which
maps the vertices of the Hypercube to their assigned original points. This hierarchy provides space
and time efficiency, and is very natural to code, because of the simplicity of the algorithm.

4 Experimental results

This section presents our experimental results and comparisons on a number of synthetic and real
datasets.

All experiments are conducted on a processor at 3 GHz×4 with 8 GB. We compare with the
state-of-the-art LSH-based FALCONN2 library, and to the brute force approach, focusing on build
and search times, as well as memory consumption and accuracy.

Datasets.

We use five datasets of varying dimensionality and cardinality. To test special topologies, the first
two sets, namely Klein bottle and Sphere, are synthetic. We generate points on a Klein bottle and
on a sphere embedded in R

d, then add to each coordinate zero-mean Gaussian noise of standard
deviation 0.05 and 0.1 respectively. In both cases, queries are nearly equidistant to all points, which
implies high miss rates.

The other three datasets, MNIST 3, SIFT and GIST 4 are presented in [JDS11], and are very
common in computer vision, image processing, and machine learning. SIFT is a 128-dimensional
vector that describes a local image patch by histograms of local gradient orientations. MNIST
contains vectors of 784 dimensions, that are 28× 28 image patches of handwritten digits. There is
a set of 60k vectors, plus an additional set of 10k vectors that we use as queries. GIST is a 960-
dimensional vector that describes globally an entire image. SIFT and GIST datasets each contain
one million vectors and an additional set for queries, of cardinality 104 for SIFT and 1000 for GIST.
Small SIFT is also examined, with 104 vectors and 100 queries.

For the synthetic datasets, we solve the one near neighbor problem with a fixed radius of 1
and we compare to brute force, since FALCONN does not provide such a method yet. Queries are
constructed like this: Uniformly randomly pick a point from the point set and, following a Normal
Distribution N(0, 1), add a small quantity to every coordinate. A query is chosen to lie within
the fixed radius 1 with a probability of 50%. For the image datasets, we find all near neighbors
within a fixed radius of 1, by modifying our algorithm in order not to stop when it founds a point,
if any, that lies within the given radius, but to continue until the threshold of points to be checked
is reached. Moreover, we tune the number of probes for multiprobe LSH used by FALCONN. For fair
comparison, both implementations are configured in a way that yields the same accuracy.

2https://falconn-lib.org/
3http://yann.lecun.com/exdb/mnist/
4http://corpus-texmex.irisa.fr/

10

https://falconn-lib.org/
http://yann.lecun.com/exdb/mnist/
http://corpus-texmex.irisa.fr/

Preprocessing.

The preproccesing phase of Dolphinn is not a heavy operation and applications that tend to build
several data structures for different point sets can benefit from this. Moreover, the preprocessing
time of Dolphinn has a linear dependence in n and d, as expected, which is shown in Tables 1
and 2.

Dolphinn is expected to be faster than FALCONN when building the data-structure, and Table 6
shows representative experiments where Dolphinn yields an average of 6.5 times faster preprocessing
time. One fact that explains this significant speedup is the major difference on memory consumption
by the different implementations, as discussed below. Note that any normalization and/or centering
of the point set, which is a requirement for FALCONN, is not taken into account when counting
runtimes.

Table 6 also shows the dependence of build time on the number of hashtables for FALCONN and
dimension d′ for Dolphinn. The former is a linear relationship, whereas our method has roughly
exponential complexity in d′. Nonetheless, Dolphinn is significantly faster.

Search and Memory.

We conduct experiments on our synthetic datasets while keeping n or d fixed, in order to illustrate
how our algorithm’s complexity scales in practice. The Sphere dataset is easier than the Klein
bottle, which explains the reduced accuracy, as well as the dramatic decrease of speedup (w.r.t.
brute force), since more points are likely to lie within a fixed radius of 1, than in the Klein bottle.
In general, our algorithm seems to scale well, sublinearly in n and linearly in d, as shown in Table 1
and Table 2.

For ANN search, we introduce a threshold on the number of points that the algorithm actually
checks, in other words, on the maximum allowed length of the final candidate list. While preserving
a good accuracy rate (i.e. above 90%), we observe how the search time drops proportionally to
the threshold, as shown in Table 3 and Table 4. We observe that the search time grows linearly
(in worst case scenario5), as expected, while the accuracy increases as the threshold increases, as
shown in Table 5. However, one should be aware that the linear dependence depends on whether
the algorithm visits empty buckets or not. In practice, the relation between the accuracy and the
threshold should be determined by the programmer, by experimenting and finding a sweet spot.

Moreover, We report query times between FALCONN and Dolphinn on the image datasets; small
SIFT, SIFT, MNIST and GIST, as well as memory consumption and building times. Dolphinn

is 21.5 times faster than FALCONN in the preprocessing stage. Space consumption of Dolphinn is
much better in the Small SIFT experiment, while FALCONN is a bit faster in search. In all other
cases, Dolphinn consumes 2.1 times less memory, while FALCONN is 1.15x faster in search, as shown
in Table 7.

5 Conclusion

We have designed a conceptually simple method for a fast and compact approach for Near Neighbor
queries, and have tested it experimentally. This offers a competitive approach to Approximate
Nearest Neighbor search.

5negative answer for the near neighbor decision problem

11

n d build search (µsec) brute f. search (sec)

105

128 0.053 62.37 0.006
256 0.092 152.3 0.012
512 0.168 257.1 0.025
800 0.255 374.1 0.039
1024 0.321 499.6 0.050

100

512

0.0002 1.001 7.5e-05
1000 0.0016 4.924 0.0004
10000 0.0169 47.72 0.0049
100000 0.1683 477.0 0.0499
1000000 1.6800 2529 0.2492

Table 1: Sphere build and search for varying n, d, where the other parameter is fixed. This experi-
ment confirms that the build time, as well as the search time, scale gracefully along with n, d, while
accuracy remained maximum and the speedup over brute force was 80 times on average.

n d build search (sec) brute f. search (sec)

105

128 0.053 0.0009 0.0061
256 0.091 0.0029 0.0147
512 0.168 0.0031 0.0254
800 0.259 0.0056 0.0425
1024 0.321 0.0061 0.0513

100

512

0.0003 1e-05 7e-05
1000 0.0016 4e-05 0.0004
10000 0.0169 0.0004 0.0049
100000 0.1679 0.0051 0.0501
1000000 1.6816 0.0252 0.2497

Table 2: Klein bottle build and search for varying n, d, where the other parameter is fixed. This
experiment confirms that the build and search times scale nicely with n, d, while the average
accuracy was 98.8%. The speedup over brute force was 8.5x on average.

Threshold 1 100 300 500 700 1000 5000 10000

search (µs) 0.64 24.5 73.1 110 170 260 1348 3207

Table 3: Sphere (n = 106, d = 512) was the point set; it is shown how the number of points that
must be actually checked increases as a function of Threshold.

Threshold 10 100 1000 5000 10000

search (µs) 6.688 47.78 615.2 2542 7754

Table 4: Klein bottle (n = 105, d = 512) was the point set; it is shown how the number of points
that must be actually checked increases as a function of Threshold.

Threshold 1 10 100 1000 10000 100000 1000000

search 0.0002 0.0013 0.0139 0.1884 2.707 16.73 17.75
accuracy% 0 0 0 0.26 7.19 80.49 100

Table 5: SIFT was used as the point set, while displaying how the number of points to actually
check affects search time (msec) and accuracy.

12

SIFT n = 104, d = 128 SIFT n = 106, d = 128 GIST n = 106, d = 960

#hashtables or d′ 2 4 8 16 2 4 8 16 2 4 8 16

FALCONN 0.11 0.12 0.17 0.32 3.58 3.64 7.27 14.5 18.2 18.9 39.3 75.7
Dolphinn 0.01 0.02 0.02 0.05 0.52 0.52 1.49 3.33 2.03 4.01 7.98 15.9

Table 6: Build time (s) for 3 representative datasets, where it is evident that Dolphinn has 6.5
times faster construction time than FALCONN; d′ is the dimension of Hypercube, while #hashtables
is a critical parameter used by FALCONN for multi-probe LSH.

Small SIFT SIFT MNIST GIST

FALCONN Dolphinn FALCONN Dolphinn FALCONN Dolphinn FALCONN Dolphinn

Build 0.241 0.010 12.71 0.571 3.426 0.158 55.69 3.023
Memory 0.064 0.008 1.167 0.526 0.429 0.219 7.666 3.776
Search 7e-05 9e-05 0.007 0.009 0.0005 0.0005 0.123 0.128

Table 7: Memory usage (gb), and Build and Search times (s) for the image datasets. Dolphinn

is times faster than FALCONN in the preprocessing stage. Space consumption of Dolphinn is much
better in the Small SIFT experiment, while FALCONN is a bit faster in search. In all other cases,
Dolphinn consumes 2.1 times less memory, while FALCONN is 1.15x faster in search.

Our method is optimal in space, with sublinear query time for any constant approximation
factor c > 1. The algorithm randomly projects points to the Hamming hypercube. The query
algorithm simply projects the query point, then examines points which are assigned to the same or
nearby vertices on the hypercube. We have analyze the query time for the Euclidean and Manhattan
metrics.

We have focused only on data-independent methods for ANN. However, data-dependent meth-
ods are known to perform better in theory. Hence, designing a practical data-dependent variant of
our method will be a very interesting next step.

References

[AEP15] E. Anagnostopoulos, I. Z. Emiris, and I. Psarros. Low-quality dimension reduction and
high-dimensional approximate nearest neighbor. In Proc. 31st International Symp. on
Computational Geometry (SoCG), pages 436–450, 2015.

[AEP16] E. Anagnostopoulos, I.Z. Emiris, and I. Psarros. Randomized embeddings with slack,
and high-dimensional approximate nearest neighbor. CoRR, abs/1412.1683, 2014–2016.
Submitted for journal publication.

[AI06] A. Andoni and P. Indyk. Efficient algorithms for substring near neighbor problem. In
Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Miami,
Florida, pages 1203–1212, 2006.

[AI08] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.

13

[AIÊR14] A. Andoni, P. Indyk, H.L. Nguy Ên, and I. Razenshteyn. Beyond localitysensitive
hashing. In Proc. Symp. Discrete Algorithms (SODA), 2014.

[AIL+15] A. Andoni, P. Indyk, T. Laarhoven, I. P. Razenshteyn, and L. Schmidt. Practical
and optimal LSH for angular distance. In Advances in Neural Information Processing
Systems 28: Annual Conf. Neural Information Processing Systems Montreal, Quebec,
Canada, pages 1225–1233, 2015.

[ALRW17] A. Andoni, T. Laarhoven, I. Razenshteyn, and E. Waingarten. Optimal hashing-based
time-space trade-offs for approximate near neighbors. In Proc. Symp. Discrete Algo-
rithms (SODA), 2017. To appear. Also as arxiv.org/abs/1608.03580.

[AR15] A. Andoni and I. Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proc. 47th ACM Symp. Theory of Computing, STOC’15, 2015.

[AR16] A. Andoni and I. Razenshteyn. Tight lower bounds for data-dependent locality-sensitive
hashing. In 32nd Intern. Symp. on Computational Geometry (SoCG), 2016, Boston,
MA, USA, pages 9:1–9:11, 2016.

[ARN17] A. Andoni, I. Razenshteyn, and N. Shekel Nosatzki. Lsh forest: Practical algorithms
made theoretical. In Proc. Symp. Discrete Algorithms (SODA), 2017. To appear.

[Cha02] M. Charikar. Similarity estimation techniques from rounding algorithms. In Proc. 34th
Annual ACM Symposium on Theory of Computing, 2002, Montréal, Québec, Canada,
pages 380–388, 2002.

[DG03] S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and Linden-
strauss. Random Struct. Algorithms, 22(1):60–65, 2003.

[DIIM04] M. Datar, N. Immorlica, P. Indyk, and V.S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Proc. 20th Annual Symp. Computational Geometry,
SCG’04, pages 253–262, 2004.

[HIM12] S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Theory of Computing, 8(1):321–350, 2012.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proc. 30th Annual ACM Symp. Theory of Computing, STOC’98,
pages 604–613, 1998.

[JDS11] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search.
IEEE Trans. Pattern Analysis & Machine Intell., 33(1):117–128, 2011.

[KOR00] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. SIAM J. Comput., 30(2):457–474, 2000.

[MNP07] R. Motwani, A. Naor, and R. Panigrahy. Lower bounds on locality sensitive hashing.
SIAM J. Discrete Math., 21(4):930–935, 2007.

[MU05] M. Mitzenmacher and E. Upfal. Probability and computing - randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

14

[OWZ14] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal lower bounds for locality-sensitive hashing
(except when q is tiny). ACM Trans. Comput. Theory, 6(1):5:1–5:13, March 2014.

[Pan06] R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proc. 17th
Annual ACM-SIAM Symp. Discrete Algorithms, SODA’06, pages 1186–1195, 2006.

[Val15] G. Valiant. Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem. J. ACM, 62(2):13, 2015.

15

	1 Introduction
	2 Data structures
	2.1 The 2 case
	2.1.1 Project on random lines
	2.1.2 Hyperplane LSH

	2.2 The 1 case

	3 Implementation
	4 Experimental results
	5 Conclusion

