
Distributed Computing in Fault-Prone Dynamic Networks ∗

Philipp Brandes
Computer Engineering and Networks Lab (TIK)

ETH Zurich
pbrandes@ethz.ch

Friedhelm Meyer auf der Heide
Heinz Nixdorf Institute & Department of

Computer Science
University of Paderborn

fmadh@upb.de

ABSTRACT
Dynamics in networks is caused by a variety of reasons, like
nodes moving in 2D (or 3D) in multihop cellphone networks,
joins and leaves in peer-to-peer networks, evolution in so-
cial networks, and many others In order to understand such
kinds of dynamics, and to design distributed algorithms that
behave well under dynamics, many ways to model dynamics
are introduced and analyzed w.r.t. correctness and efficiency
of distributed algorithms. In [16], Kuhn, Lynch, and Osh-
man have introduced a very general, worst case type model
of dynamics: The edge set of the network may change arbi-
trarily from step to step, the only restriction is that it is con-
nected at all times and the set of nodes does not change. An
extended model demands that a fixed connected subnetwork
is maintained over each time interval of length T (T -interval
dynamics). They have presented, among others, algorithms
for counting the number of nodes under such general models
of dynamics.

In this paper, we generalize their models and algorithms
by adding random edge faults, i.e., we consider fault-prone
dynamic networks: We assume that an edge currently ex-
isting may fail to transmit data with some probability p.
We first observe that strong counting, i.e., each node knows
the correct count and stops, is not possible in a model with
random edge faults. Our main two positive results are feasi-
bility and runtime bounds for weak counting, i.e., stopping
is no longer required (but still a correct count in each node),
and for strong counting with an upper bound, i.e., an upper
bound N on n is known to all nodes.

1. INTRODUCTION
Dynamic networks have received a lot of attention in the

recent past. They appear in different scenarios like nodes
moving in 2D (or 3D) in multihop cellphone networks, joins
and leaves in peer-to-peer networks, evolution in social net-

∗This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Cen-
tre On-The-Fly Computing (SFB 901).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TADDS December 17 2012, Roma, Italy
Copyright 2012 ACM 978-1-4503-1849-5/12/12 ...$15.00.

works, and many others. In order to understand such kinds
of dynamics, and to design distributed algorithms, many
ways to model dynamics are introduced and analyses w.r.t.
correctness and efficiency of distributed algorithms. In [16],
Kuhn, Lynch, and Oshman have introduced very general,
worst case type models of dynamics. In their basic model,
the set of edges of the network may change arbitrarily from
step to step, but a connected graph must be maintained.
The node set does not change, will always have n elements.
An extension of this model demands that a fixed connected
subnetwork is maintained over each time interval of length T
(T -interval dynamics). They presented, among others, algo-
rithms for counting the number of nodes under such general

models of dynamics, and prove an O(n
2

T
+ n) bound for the

number of steps needed.
Counting is a very basic task and a requirement for many,

more complex tasks like, e.g., the all-to-all token dissemi-
nation in which every node starts with exactly one token
which has to be spread to every other node in the network.
Without a correct count, the nodes cannot know whether
they have received every other token.

The aim of this paper is to extend the above-mentioned
models of dynamics from [16] by introducing random edge
faults, i.e., by assuming (besides the topology changes as in
their models) that, in each step, each edge may fail with
some probability p. Our main contributions are impossi-
bility results and algorithms for distributed counting under
T -interval dynamics and random edge faults.

1.1 Further Related Work
Dynamic networks have been in the focus for some time

now. Usually these networks are not allowed to be fully
dynamic in the sense as described above. One common con-
straint is that every edge that existed reappears infinitely
often which is used e.g., in [4]. A more specific variant is
requiring some sort of periodicity as in [8] or in [9] for net-
work exploration. The notion closest to ours is used in [17,
20] requiring connectivity in every round but has no further
constraints in which some basic results for this type of net-
work are shown. A network property similar to T -interval
dynamics is introduced in [14]. A unifying framework for
time-varying graphs is presented in [5]. Broadcasting in dy-
namic networks has also been considered in radio networks
where interference comes into play [6].

There is already some work on counting and information
dissemination. An overview is in [10] and more recently in
[2]. General works in the area of distributed algorithms are
[18, 22]. Information spreading has been considered as part

of gossiping algorithm, e.g., in [12] where only one message
has to be spread throughout the network.

Somewhat related is gossip-based information aggregation
in [13], but they assume a random process to model dynam-
ics. Information aggregation in a static network has been
studied as well, e.g., in [15, 19, 21]. This allows to com-
pute any function, depending on some initial values, at one
node. Edge failures and leaves/joins of nodes are considered
in [18] and [2]. The concept of eventual stabilization and
self-stabilizing algorithms is used in [1, 3, 11]. An overview
can be found in [7]. In these scenarios the network stops
changing at some point. Thus, the algorithms are only re-
quired to compute their result from an arbitrary starting
point but in a static environment.

1.2 Our Contributions
In this paper we extend the T -interval dynamics by in-

troducing random edge faults, i.e., each edge of the current
graph may fail temporarily (i.e., in the current step) with
some probability p < 1, where p is known to all nodes. We
differentiate between two notions of distributed counting:

Strong Counting An algorithm for strong counting has a
runtime bound t(n) such that each node stops with the
correct count n within t(n) steps.

Weak Counting An algorithm for weak counting has a
runtime bound t(n) such that each node has the cor-
rect count n after t(n) steps, but the execution of the
algorithm does not necessarily stop.

We assume that, in case of random edge faults, the run-
time bounds is always guaranteed, but the correctness (”all
nodes know the correct count n”) only holds with some high
probability.

Due to space limitations, we will only consider T -interval
dynamics. The simpler algorithms (both with and without
random edge faults) for the basic model (1-interval dynam-
ics) are not mentioned here. The specializations of the re-
sults mentioned below for T = 1 yield similar results.

In [16] it is shown that strong counting in fault-free net-
works under T -interval dynamics can be done in time t(n) =

O
(
n2

T
+ n

)
.

In this paper we show the following results. Let us first
assume that p is known to the nodes.

• Strong counting is not possible, if there are random
edge faults, even in static networks.

• Weak counting is possible under T -interval dynam-
ics and random edge faults with failure probability

p ∈ (0, 1) in O

(
n2

T
·
(

log T

log(1
p
)

)2
1

1−p

)
if p > 1

T
, and

O
(
n2

T

)
else.

• Strong counting is possible under T -interval dynam-
ics and random edge faults with failure probability
p ∈ (0, 1) if the nodes know an upper bound N on
the number n of nodes. The runtime t(n,N) is by an
additive term O(log(1

p
)·n·log(N)) larger than for weak

counting.

1.3 Organization of the Paper
In Section 2, the models and the algorithms for counting

by Kuhn, Lynch, and Oshman are introduced. In Section
3, we observe that strong counting is no longer possible if
random edge faults are allowed. In Section 4, we present
and analyze a modified version of the disseminate procedure
from [16] which can cope both with T -interval dynamics and
random edge faults. Section 5 presents our two counting
algorithms, Section 5.1 considers the case ”p is unknown”.

2. THE DYNAMIC NETWORK MODELS BY
KUHN, LYNCH, AND OSHMAN

In this section we formally describe the models for dy-
namic networks introduced in [16] and sketch their algo-
rithms used to solve the counting problem.

We consider a network with a set of n nodes each with a
unique identifier (UID). The topology of this network can be
changed by an adversary in every step, the only restriction
is that it has to be connected at all times. In a step, each
node broadcasts some message to its neighbors. A message
is short, may consist of at most a constant number of UIDs.
The nodes broadcast without any information about their
neighbors; no neighborhood discovery is used. A more re-
stricted model for dynamics is T -interval dynamics: in every
time interval of length T , a stable connected subgraph per-
sists. A major contribution of [16] is to demonstrate how to
use this restriction on dynamics for speeding up distributed
counting.

2.1 Distributed Algorithms for Counting
In this subsection we briefly describe the distributed algo-

rithm for counting the number n of nodes under T -interval
dynamics described in [16]. This algorithm, which is exe-
cuted by every node, consists of two building blocks, namely
the procedures k-Committee Election and k-Verification.
k-Committee Election partitions the node set in commit-

tees, i.e., nodes which have chosen the same committee UID
(C-UID), each committee of size at most k. Further, if
k ≥ n, then there is only one committee and each node
knows all n UIDs.
k-Verification starts with a partition of the node set pro-

duced by k-Committee Election. Every node v knows k and
has a binary variable xv initially set to 1. If there is only one
committee, all xv remain unchanged. If there is more than
one committee, all xv will be 0 at the end of the procedure.

The counting algorithm now starts with k = 2 and doubles
k in each iteration. For each such k, it executes k-Committee
Election followed by k-Verification. The next iteration only
starts if xv = 0 holds for all nodes v. By the above, the
algorithm stops as soon as k ≥ n. In this situation, each
node outputs the number of UIDs it knows. By the descrip-
tion above, this means that each node outputs the correct
number n of nodes.
k-Verification executes k steps. In each step, each node

v with xv = 1 broadcasts its C-UID. If it hears from some
neighbor a different C-UID or the special symbol ⊥, it sets
xv to 0 and broadcasts ⊥ from now on. The correctness is
shown in [16].
k-Committee Election is based on the procedure Dis-

seminate (A, k) [16]. Here A is a set of at least T UIDs,
arbitrarily distributed among the nodes; k is a positive inte-
ger known to all nodes. Disseminate(A, k) then makes sure

that each of the T smallest of the UIDs from A is known
to at least k nodes. In particular, if k ≥ n then all nodes
know at least the T smallest UIDs from A. The original pro-
cedure Disseminate(A, k) is equivalent to Algorithm 1 with
l = T

k
and x = 1 and thus contains two loops. The set A

contains all the UIDs the node knows whereas S denotes all
the UIDs, which it has already broadcast in this inner loop.
Thus, after each step the set A gets updated with the newly
received UIDs. To the set S the most recently broadcast
value is added. Thus, in each step the smallest value, which
has not already been sent in this execution of the loop, is
selected and broadcast.

In [16] it is shown that this algorithm correctly executes
Disseminate(A, k) and needs dk/T e · 2T (parallel communi-
cation-) steps, in each of which only single UIDs are broad-
cast by the nodes.
k-Committee Election can be done by repeatedly execut-

ing Disseminate(A, k) two times. First, the T smallest UIDs
of nodes not yet in a committee are broadcast to k nodes.
Afterwards, each node whose UID is the smallest it knows,
invites T nodes to join its committee. For this, it forms T
tokens of the kind (a, b), where a is its own UID and b a
UID it knows. A node with UID b that receives at least one
token of the form (a, b) joins the committee of the node a –
if there are several candidates for a, choose the smallest. We
repeat the two executions of Disseminate(A, k) dk/T e times
to allow the leader to issue up to k invites. A node that
does not receive any token, forms its own committee. This
procedure creates committees of size at most k. Further,
if k ≥ n, then there is only one committee and each node
knows all n UIDs.

3. STRONG COUNTING IS NOT POSSIBLE
UNDER RANDOM EDGE FAULTS

In this section we observe that the strong counting result
from [16] is impossible if we allow random edge-faults, even
in static networks.

Theorem 1. Strong counting with (known) edge-failure
probability p ∈ (0, 1) is not possible, even if we only demand
constant success probability.

Proof. Assume there is a strong counting algorithm with
runtime bound t(n) that counts correctly with success prob-
ability at least 1 − e−1 > 0, given edge-failure probability
p ∈ (0, 1). Now we fix some n and consider a ring of size
2T (n). We say that a pair of edges (e1, e2) is in distance n
if its removal results in two paths one of which has n nodes.
If we choose T (n) ≥ (1

p
)2t(n), the following holds:

Claim 1. With probability at least 1 − e−1 > 0, there is
a pair of edges (e1, e2) in distance n which is faulty during
the first t(n) steps.

Proof. The probability that a fixed pair of edges is faulty
during the first t(n) steps is p2t(n). As there are T (n) pair-
wise disjoint pairs of edges in distance n, we may conclude:

Pr(∃ a pair of edges (e1, e2) in distance n which is faulty

during the first t(n) steps) ≥ 1−(1−p2t(n))T (n) ≥ 1−e−1 >
0.

Now consider the path P of length n between such two
edges. The nodes in P never have contact to nodes outside
P during the first t(n) steps. Thus, they will stop and output

the wrong count n after t(n) steps, a contradiction to the
correctness of the count.

4. DISSEMINATION UNDER T -INTERVAL
DYNAMICS AND EDGE FAULTS

The contribution of this section is to introduce a modified
version of the procedure Disseminate(A, k) that can cope
with random edge faults for any connectivity parameter T .
Assume such faults appear with some probability p which is
known to the nodes. The task of Disseminate(A, l, x) is to
perform s-dissemination for some number s, i.e., to dissemi-
nate each of the s smallest UIDs from A to at least min{k, n}
nodes. The procedure uses two integer-valued parameters x
and l, with x < T and extends the original one in the fol-
lowing respects:

• The outer loop is executed l times instead of T
k

times.

• In each execution of the inner loop, Line 7-9 is executed
x times instead of just once, each time with the same
UID b to be broadcast. (Reducing the failure property
of a transmission along an edge from p to px.)

• The inner loop only consists of 2T
x

instead of 2T rounds.
(Ensuring that an execution of the inner loop has 2T
steps, i.e., a stable connected subgraph is present in the
(underlying, fault-free) graph during the whole execu-
tion of the inner loop.)

The pseudo-code can be seen in Algorithm 1. Our first task

Algorithm 1 Procedure Disseminate(A, l, x)

1: S ← ∅
2: for i = 1, . . . , l do
3: for r = 1, . . . , 2T

x
do

4: if S 6= A then
5: b← min (A \ S)
6: for k = 1, . . . , x do
7: broadcast b
8: receive b1, . . . , by from neighbors
9: A← A ∪ {b1, . . . , by}

10: end for
11: S ← S ∪ {b}
12: end if
13: end for
14: S ← ∅
15: end for

will be to provide suitable values for l and x, i.e., for the
number of runs of the two loops, so that high success prob-
ability for the Disseminate procedure is guaranteed. For
some ”easy” combinations of p and T , the choices l = T/k
and x = 1, i.e., the original algorithm for the fault-free case,
is good enough. For other combinations of p and T we will
derive suitable choices for l and x. These results are then
applied to counting in Section 5. These results assume p to
be known to the nodes.

Notations: We refer to the i’th execution of the inner loop
as the i’th run. A run consists of 2T

x
rounds, each of which

consists of x steps. Gi denotes the stable connected graph
that exists during the whole i’th run.

In order to prove our results, consider the i’th run of the
procedure and a UID b∗ which is among the s smallest not

Figure 1: Nodes from set Ai are striped and nodes
from the set N(Ai) in white, other nodes in black.
The edges from E(Ai) in black and other edges in
gray.

yet disseminated at the beginning of this run. We want to
define a condition which is sufficient to guarantee that in
this run, at least s new nodes are informed about b∗.

In order to define such a sufficient condition, let Ai denote
the set of nodes informed about b∗ at the beginning of the
i’th run. Let E(Ai) be some fixed set of s edges of Gi so
that each connected component of E(Ai) contains at least
one node from Ai. Consider a set N(Ai) of min{s, n− |Ai|}
nodes that are incident to E(Ai) but not in Ai.Note that
such a set always exists, and that each node of N(Ai) is con-
nected to some node in Ai via some path composed of edges
from E(Ai). Examples are shown in Figure 1. Consider
the binary random variable Xi which is true if each edge
e ∈ E(Ai) is fault-free in at least one of the x steps of each
of the first 2s rounds of the i’th run. With this notation,
the following lemma gives the desired sufficient condition.

Lemma 1. If Xi is true, then all min{s, n − |Ai|} nodes
from N(Ai) are informed about b∗ during the i’th run.

Proof. If Xi is true, then each transmission of b∗ along
an edge e ∈ E(Ai) in one of the first 2s rounds is successful,
because at least one of the x attempts is successful. A proof
analogous to the one for Lemma 6.1 from [16] shows that b∗

is forwarded along all these edges within the first 2s rounds.
Thus, all min{s, n − |Ai|} nodes from N(Ai) are informed
about b∗ after these 2s rounds.

It is easy to calculate the probability that Xi holds.

Lemma 2. Assume T ≥ 2.

(i) For p > 1
T

, Pr(Xi) ≥ (e−1(1−p)) holds, if s = T
2 log(T)

·
log(1

p
) and x = 2 · log(T)

log(1
p
)
.

(ii) For p ≤ 1
T

, Pr(Xi) ≥ 1
2
e−1 holds for x = 2 and s = T

2
.

Proof. Clearly, Pr(Xi) = (1− px)2s
2

.

Thus, Pr(Xi) = (1−px)2s
2

≥ (1−px)
(1
p
)x(2s2px) ≥ (e−1(1−

px))2s
2px ≥ (e−1(1 − p))2s

2px . Using that for all y ∈ (0, 1),

(1−y)1/y ≥ e−1(1−y) holds. If p > 1
T

, the choices of x and

s from (i) therefore imply that Pr(Xi) ≥ (e−1(1− p)). The
result for p ≤ 1

T
follows similarly.

The following observation allows us to apply Chernoff
bounds.

Lemma 3. The random variables X1, · · · , Xl are inde-
pendent.

Proof. Fix an arbitrary family S of subsets A′1, · · ·A′l of
the node set V . Define the random variables XS

1 , · · · , XS
l

for this sequence in the same way as we defined X1, · · · , Xl
for the (random) family A1, · · · , Al before. Clearly, Pr(XS

1 ∧
· · · ∧ XS

l) =
∏l
i=1 Pr(XS

i) = (1 − px)2s
2·l. As this identity

holds for every such family, it also holds for the family pro-
duced by a run of the dissemination procedure.

Theorem 2. If p > 1
T

, then the procedure Disseminate

(A, l, x) executes s-dissemination for s = T
2 log(T)

log(1
p
) with

probability at least 1 − e−
k
2T . It obeys the runtime bound

O
(
k · (log T)

(log(1
p
))
· 1
1−p

)
. If p ≤ 1

T
, then it executes s-dissemi-

nation for s = T
2

with probability at least 1− e−
k
2T obeying

the runtime bound O(k).

Proof. Choose l = lk := 2 · 1
1−p · e ·

k
s

and define X :=∑
Xi.
Then Lemma 2 yields that E(X) ≥ 2 · k

s
. As shown in

Lemma 3, we may apply the Chernoff bound. Choosing

ε = 1
2
, we obtain: Pr(X ≤ k

s
) ≤ Pr(X ≤ 1

2
E(X)) ≤ e−

k
4s ≤

e−
k
2T .
Plugging in the values for s from Lemma 2 yields the theo-

rem. Let us remark that the spreading of different messages
can, as in [16], be considered independent of each other.

5. COUNTING UNDER T -INTERVAL DYNAM-
ICS AND EDGE FAULTS

In this section, we present our two counting algorithms.
Weak counting is easy: Running the modified procedure

Disseminate(A, l, x) for k
s

times results in a k-dissemination.
Now running this k-dissemination for k = 2, 4, 8, . . . guaran-
tees that, as soon as k ≥ n, all nodes know all UIDs and can
output the correct count n. Using Theorem 2 yields:

Theorem 3. The above procedure executes weak count-
ing. If p > 1

T
, then all node output the correct count n after

O

(
n2

T
·
(

log T

log(1
p
)

)2

· 1
1−p

)
steps. If p ≤ 1

T
, they do so af-

ter O
(
n2

T

)
steps. The bounds hold with probability at least

1− e−
n
2T .

Now we show that strong counting is possible if the nodes
know an upper bound N on the number n of nodes. We
follow the algorithm from [16]. As sketched in Section 2,
the k-dissemination used for weak counting can also be used
for creating k-committees. Thus, in order to follow the al-
gorithmic idea from [16], we need a k-Verification that can
cope with edge faults.

Lemma 4. Assume that some number N ≥ n is known
to all nodes. Let α > 1. Then, running k-Verification for
(logN

log(1
p
)(α+2))

+ 1)(k − 1)= O(k · logN

log(1
p
)
) steps yields:

• If k < n then, with probability ≥ 1 − n−α, all nodes
v finally know that there is more than one committee.
(xv = 0).

• If k ≥ n, then all nodes v know finally that there is
only one committee (xv = 1).

Proof. The second claim is clear.

Let k < n. Consider a fixed committee C of size k′ ≤ k.
During the execution of the algorithm, we always refer to C
as the subset of the original set C which consists of those
nodes that have not yet heard about another committee. In
the fault-free case, C shrinks in every step, as long as C is not
empty. This holds because, in each step, the current graph
contains an edge that connects some node of the current
C to some node outside the current C. Thus, in case of
random edge-faults, in each step t in which C 6= ∅ holds,
Pr(C does not shrink in step t) ≤ p. Thus,

Pr(C 6= ∅ after c(k′ − 1)steps)

≤ Pr(There are at least c(k′ − 1)− (k′ − 1)

steps, in which C 6= ∅ and does not shrink)

≤

(
c(k′ − 1)

c(k′ − 1)− (k′ − 1)

)
· pc(k

′−1)−(k′−1)

≤ (c · e · pc−1).

Now we choose c = (logN

log(1
p
)
)(α + 2) + 1. Then, for suffi-

ciently large N , Pr(C 6= ∅ after c(k − 1) steps) ≤ n−(α+1).
(For the calculation consider the cases p ≤ 1

2
and p > 1

2
,

and assume that N � log(1
p
).) As we only have at most n

committees, the union bound yields the desired result.

Now we can repeat k-Committee Election and k-Verifica-
tion for k := 2, 4, 8, . . . until k ≥ n. The argumentation
from Section 2 ensures that now all nodes v have the correct
count n and finish the last verification with xv = 1. Thus
the algorithm stops. Combining the runtime bounds from
Theorem 3 and the above lemma yields our result about
counting with an upper bound.

Theorem 4. If an upper bound N on the number n of
nodes is known to all nodes, then strong counting can be

done. If p > 1
T

, then it needs runtime O(n
2

T
· (log T

log(1
p
)
)2 1

1−p +

log(1
p
) · n · log(N)). If p ≤ 1

T
, then runtime O(n

2

T
+ log(1

p
) ·

n · log(N)) suffices. The bounds hold with probability at least
1− n−α.

5.1 p Unknown
If the nodes do not know the error probability p, strong

counting is not possible, even if an upper bound N on n is
known. But we have the following positive result.

Theorem 5. With an additional log(n) factor, weak count-
ing can still be performed with a modified version of our al-
gorithm above if p is unknown.

6. REFERENCES
[1] Y. Afek, B. Awerbuch, and E. Gafni. Applying static

network protocols to dynamic networks, pages 358–370.
IEEE, 1987.

[2] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Topics, 2nd
edition. Wiley, 2004.

[3] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Saks.
Adapting to Asynchronous Dynamic Networks, pages
557–570. 1992.

[4] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro.
Deterministic Computations in Time-Varying Graphs:
Broadcasting under Unstructured Mobility. In IFIP
TCS, pages 111–124, 2010.

[5] A. Casteigts, P. Flocchini, W. Quattrociocchi, and
N. Santoro. Time-Varying Graphs and Dynamic
Networks. Networks, page 20, 2010.

[6] A. E. F. Clementi, F. Pasquale, A. Monti, and
R. Silvestri. Communication in dynamic radio
networks. In Proceedings of the twenty-sixth annual
ACM symposium on Principles of distributed
computing, PODC ’07, pages 205–214, New York, NY,
USA, 2007. ACM.

[7] S. Dolev. Self-Stabilization. Techniques, (May), 2003.

[8] P. Flocchini, M. Kellett, P. C. Mason, and N. Santoro.
Mapping an unfriendly subway system. In Proceedings
of the 5th international conference on Fun with
algorithms, FUN’10, pages 190–201, Berlin,
Heidelberg, 2010. Springer-Verlag.

[9] P. Flocchini, B. Mans, and N. Santoro. Exploration of
Periodically Varying Graphs. CoRR, abs/0909.4369,
2009.

[10] S. M. Hedetniemi, S. T. Hedetniemi, and A. L.
Liestman. A survey of gossiping and broadcasting in
communication networks. Networks, 18(4):319–349,
1988.

[11] R. Ingram, P. Shields, J. E. Walter, and J. L. Welch.
An asynchronous leader election algorithm for dynamic
networks, pages 1–12. IEEE Computer Society, 2009.

[12] R. M. Karp, C. Schindelhauer, S. Shenker, and
B. Vocking. Randomized rumor spreading. Proceedings
41st Annual Symposium on Foundations of Computer
Science, 0:565–574, 2000.

[13] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. 44th Annual
IEEE Symposium on Foundations of Computer
Science 2003 Proceedings, pages 482–491, 2003.

[14] F. Kuhn, T. Locher, and R. Oshman. Gradient clock
synchronization in dynamic networks, pages 270–279.
ACM, 2009.

[15] F. Kuhn, T. Locher, and R. Wattenhofer. Tight
bounds for distributed selection. SPAA 07, pages
145–153, 2007.

[16] F. Kuhn, N. Lynch, and R. Oshman. Distributed
computation in dynamic networks. Proceedings of the
42nd ACM symposium on Theory of computing STOC
10, page 513, 2010.

[17] F. Kuhn, R. Oshman, and Y. Moses. Coordinated
consensus in dynamic networks. In PODC ’11, pages
1–10, New York, NY, USA, 2011. ACM.

[18] N. A. Lynch. Distributed Algorithms, volume 21.
Morgan Kaufmann, 1996.

[19] A. Negro, N. Santoro, and J. Urrutia. Efficient
distributed selection with bounded messages. Parallel
and Distributed Systems IEEE Transactions on,
8(4):397–401, 1997.

[20] R. O’Dell and R. Wattenhofer. Information
dissemination in highly dynamic graphs. Workshop on
Discrete Algothrithms and Methods for MOBILE
Computing and Communications, page 104, 2005.

[21] B. Patt-Shamir. A note on efficient aggregate queries
in sensor networks. Theoretical Computer Science,
370(1-3):254–264, 2007.

[22] G. Tel. Introduction to Distributed Algorithms.
Cambridge University Press, 2000.

APPENDIX
Counting Under T -Interval Dynamics and Edge
Faults with p Unknown
For completeness’ sake we extend Subsection 5.1. Let us
first elaborate on the impossibility of strong counting.

Theorem 6. If p is unknown, strong counting is not pos-
sible, even if an upper bound N on n is known (and the
runtime bound depends on n and N).

Proof. (sketch) Assume time bound t(n,N) and choose
n = 2. If 1−p� 1

t(2,N)
, the edge connecting the two nodes is

faulty during the whole computation, with high probability
and thus the nodes would output the incorrect value.

We now state a slightly more detailed version of Theorem
5.

Theorem 7. Weak counting with p unknown is possible.
If p > 1

T
, then all node output the correct count n after

O

(
n2

T
·
(

log T

log(1
p
)

)2

· 1
1−p · log(n)

)
steps. If p ≤ 1

T
, they do

so after O
(
n2

T
· log(n)

)
steps. The bounds hold with proba-

bility at least 1− e−
n
2T .

Proof. We will now sketch an algorithm that allows for
weak counting under T -interval dynamics and random edge
faults, even if p is unknown to the nodes. Note that our mod-
ified disseminate procedure from Section 4 uses the knowl-
edge of p for determining the value x that tells how often
an attempt to broadcast an item is repeated in the inner
loop or, equivalently, how s ≈ T

x
is chosen. Our approach

is to test, for every estimate k = 1, 2, 4, . . ., some values k′

also as powers of 2. This means we have log(k) values for

k′. Afterwards, choose p′ such that k = k′2

s2
· 1
1−p′ · T holds.

These pairs are chosen sequentially. We execute dissemina-
tion with k′ = 2, 4, 8, . . . and the corresponding value for p′.
As soon as k′ > n and p′ > p, our algorithm will output
the correct count, w.h.p. This yields: If p is not known to
the nodes, it is possible by enumerating over different pairs,

n′, p′ such that k = n′2

s2
· 1

1−p · T and using powers of 2 for
k, to perform weak counting in weak counting can be per-

formed w.h.p. in time O((n
2

T
· (log T

log(1
p
)
)2 1

1−p · T) · logn) if

p > 1
T

, and in time O
((

n2

T
· 1
1−p

)
· logn

)
if p ≤ 1

T
.

