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ABSTRACT
This paper considers the computational power of anonymous
message passing algorithms (henceforth, anonymous algo-
rithms), i.e., distributed algorithms operating in a network
of unidentified nodes. We prove that every problem that
can be solved (and verified) by a randomized anonymous al-
gorithm can also be solved by a deterministic anonymous
algorithm provided that the latter is equipped with a 2-hop
coloring of the input graph. Since the problem of 2-hop col-
oring a given graph (i.e., ensuring that two nodes with dis-
tance at most 2 have different colors) can by itself be solved
by a randomized anonymous algorithm, it follows that with
the exception of a few mock cases, the execution of every
randomized anonymous algorithm can be decoupled into a
generic preprocessing randomized stage that computes a 2-
hop coloring, followed by a problem-specific deterministic
stage. The main ingredient of our proof is a novel simula-
tion method that relies on some surprising connections be-
tween 2-hop colorings and an extensively used graph lifting
technique.

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: Modes of Computa-
tion—Relations among modes

General Terms
Theory
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1. INTRODUCTION
Computability in networks (a.k.a. distributed computabil-

ity), where the processors are represented as nodes in a
graph and the task is to produce an output at every node,
is Turing machine-equivalent if the nodes are equipped with
unique IDs. This fact remains intact even when the atten-
tion is restricted to deterministic distributed algorithms. In
contrast, the distributed problems that can be solved deter-
ministically in anonymous networks (where the nodes are
not uniquely identified) are of a rather limited nature [38].
The question of distributed computability becomes interest-
ing however once the nodes in an anonymous network gain
access to random bits. For example, the extensively studied
maximal independent set (MIS) problem [34, 3] is solvable
in an anonymous network only if random bits are available.

Our goal in this paper is to investigate the role that (Las-
Vegas type) randomness plays in the computational power
of anonymous message passing algorithms (referred to here-
after as anonymous algorithms), regardless of round and
message complexity considerations. However, before we can
do so, care must be taken to rule out distributed problems
in which unique IDs are (perhaps implicitly) encoded in the
input instances as those mock cases obviously do not faith-
fully represent the properties of distributed computability in
anonymous networks. To that end, we restrict our focus to
the class GRAN (standing for Genuinely solvable by Ran-
domized algorithms in Anonymous Networks) of distributed
problems Π that satisfy (1) there exists a randomized anony-
mous algorithm that solves Π; and (2) there exists a ran-
domized anonymous algorithm that decides whether a given
graph is a legal input instance of Π; we refer to Section 1.1
for a formal definition. Notice that with the exception of
some artificial cases generated for the purpose of investi-
gating the leader election problem, essentially all interesting
distributed problems studied in the existing literature in the
context of anonymous networks belong, in fact, to GRAN.

What exactly characterizes the computational power of
a randomized anonymous algorithm as opposed to a deter-
ministic one? Surprisingly, randomization is only required
to establish a 2-hop coloring of the network: Once a 2-hop
coloring is known, every problem in GRAN can be solved by
a deterministic anonymous algorithm.



1.1 Model

Labeled Graphs.
We denote the node- and edge-set of a graph G by V and

E, respectively. For a node v ∈ V , we denote the set con-
taining all neighbors of v by Γ(v). To make it explicit, we
only consider finite connected simple1 graphs G. A labeling
function for V is a function ` : V → L that assigns a la-
bel to every node in V . For the sake of simplicity, unless
stated otherwise, we assume hereafter that all labels are fi-
nite bitstrings. Tuples G = (V,E, `), where (V,E) is a graph
and ` is a labeling function for V , are called labeled graphs.
We often label vertices by more than one labeling function
`1, . . . , `k; in that case, we treat G = (V,E, `1, . . . , `k) as
being labeled by a single labeling function ` that assigns
`(v) = 〈`1(v), . . . , `k(v)〉 to each node v ∈ V .

Distributed Problems.
A distributed problem Π is specified by a set of input

instances and for every input instance I of Π, a set Π(I)
of valid outputs for I. The input instances of Π are labeled
graphs I = (V,E, i) and the labeling function i, called the
input labeling of I, assigns an input label to every node in V .
For the input instance I = (V,E, i), the set of valid outputs
Π(I) for I consists of labeling functions o for V called valid
output labelings for I. At the risk of abusing the notation,
we use Π to denote the set of input instances as well as
the problem itself. For the sake of simplicity we assume
that in every input instance I = (V,E, i), the input label
i(v) of every node v includes v’s degree. A typical example
for a distributed problem is graph coloring, where the input
is an arbitrary graph and the output must obey the rule
o(u) 6= o(v) if (u, v) is an edge in the input instance.

2-Hop Colorings.
For a graph G = (V,E), the labeling ` is said to be a

k-hop coloring if `(u) 6= `(v) for every u, v ∈ V , u 6= v, that
are at most k hops away, i.e., G admits a path between u
and v that consists of at most k edges. A labeling function
that plays a central role in the present paper is the 2-hop
coloring, i.e., a coloring that assigns a different label to each
node in {u} ∪ Γ(u) for every u ∈ V . We say that a labeled
graph G = (V,E, `) is 2-hop colored if ` is a 2-hop coloring.
Note that in the context of the present paper, we do not pay
attention to the number of distinct colors used by the nodes
under `.

Consider some distributed problem Π. The 2-hop colored
variant Πc of Π is the problem defined as follows: the input
instance set Πc is

Πc = {(V,E, i, c) :(V,E, i) ∈ Π, and

c is a 2-hop coloring of (V,E)}

and given an input instance I = (V,E, i) ∈ Π, the valid
output labeling set for every corresponding input instance
Ic = (V,E, i, c) ∈ Πc is Πc(Ic) = Π(I).

Randomized Anonymous Algorithms.
Our model for randomized anonymous algorithms corre-

sponds to the anonymous variant of the message passing

1A graph is simple if it is undirected and does not contain
any loops or parallel edges.

model as defined in [40] (c.f. the port numbering model of [5])
with irrevocable outputs. In a labeled graph I = (V,E, i),
all nodes v execute the same message passing algorithm A
with input i(v). The input to a node v is fully specified by
i(v) — in particular, nodes are not equipped with a (unique)
identifier nor do they possess an apriori knowledge of any
global network parameter (unless specified as part of i(·)).
The execution of A on I is performed in synchronous rounds.
In every round, each node v sends/receives messages of fi-
nite size to/from each of its neighbors, where v distinguishes
between the ports corresponding to its incident edges. We
consider randomized algorithms, where in every round, node
v has access to one random bit. (Note that this is equivalent
to accessing finitely many random bits per round as multiple
rounds can be grouped together.)

Algorithm A is said to solve the distributed problem Π if
the following two requirements hold for every I ∈ Π: (1) if
A is executed on I, thenA produces an irrevocable local out-
put A(v) for every node v within finite time with probabil-
ity 1; and (2) each output labeling o obtained with positive
probability by setting o(v) = A(v) for every v ∈ V satisfies
o ∈ Π(I) (i.e., we only consider Las-Vegas algorithms). Al-
gorithm A is deterministic if it does not access any random
bits. Note that the round and message complexities of A
are not taken into consideration (as long as they are finite).

Genuine Solvability.
Let Y be a set of labeled graphs called yes-instances. The

distributed decision problem ∆Y obtained from Y (see, e.g.,
[21]) is the problem whose input instances I are all labeled
graphs, and whose valid output labelings o ∈ ∆Y (I) are such
that all nodes output “YES” if I ∈ Y and at least one node
outputs “NO” if I 6∈ Y . We say that problem Π is genuinely
solvable by randomized algorithms in anonymous networks
if (1) there exists a randomized anonymous algorithm that
solves Π; and (2) there exists a randomized anonymous al-
gorithm that solves the distributed decision problem ∆Π,
namely, the problem of deciding whether a given labeled
graph is an input instance of Π. Denote the class of such
problems Π by GRAN (standing for Genuinely solvable by
Randomized algorithms in Anonymous Networks).

Local Views.
Given a node v in the labeled graph G = (V,E, `), we

denote by Ld(v,G) a rooted tree called the depth-d local
view of v in G. (When G is clear from the context we may
write Ld(v) instead.) To avoid confusion, we distinguish
between nodes and labels in G and vertices and marks in
Ld(v). The local view of node v is defined inductively as
follows: L1(v) consists of a single vertex x marked with
`(v); Ld+1(v) is the tree obtained by connecting the root of
Ld(u) as a child of L1(v)’s root for every u ∈ Γ(v). Refer
to Figure 1 for an illustration. Notice that the the local
view Ld(v) in G essentially captures all information that a
deterministic algorithm A executed by node v in G could
possibly gather in d rounds of execution. The depth-infinity
local view of a node v is the infinite tree L∞(v) obtained from
the inductive construction of Ld(v) by taking d to infinity.

1.2 Our Contribution
Classic distributed symmetry breaking problems such as

maximal independent set and graph (1-hop) coloring are
known to be in GRAN. Common to these two problems
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Figure 1: Depth-3 local view of node u0 in the la-
beled graph C6.

is the local nature of their symmetry breaking challenges.2

While the 2-hop variant of graph coloring is still solvable
by randomized anonymous algorithms and thus, belongs to
GRAN, it is not difficult to show that this no longer holds
for its k-hop variant for any k > 2. (In fact, the same can
be said for maximal independent set under a natural exten-
sion to k-hop variants that are not discussed in the present
paper, cf. [37].) Is this a coincidence? Does GRAN con-
tain problems that require (systematic) symmetry breaking
between nodes which are more than two hops apart? Our
main result provides a negative answer to these questions.

Theorem 1. If Π ∈ GRAN, then Πc is solvable by a de-
terministic anonymous algorithm.

1.3 Related Work
The seminal work by Angluin [5] established the connec-

tion between computation in networks and factors/products
of graphs (see Section 2 for a definition) and marks the be-
ginning of history for distributed computability theory. Her
work employs a lifting technique from a graph to its products
to establish impossibility of leader election (and equivalent
problems, e.g., assigning IDs), even under the assumption of
Las-Vegas algorithms. As stated in [23] graph products also
characterize recognizable cases for graph rewriting systems,
a localized model for distributed computation. Fibrations,
i.e, a related generalization for directed graphs (see [13] for
an extensive overview), were found to characterize problems
solvable by self stabilization (a possibly incorrect output sta-
bilizes to a correct one) in [14]. The lifting technique also
plays a key role in our proof of Theorem 1.

Product graphs are also studied in their own right (see,
e.g., [8, 31]), also products obtained from a random pro-
cess [4]. For a graph G the universal cover U(G) (cf. [5])
is a (possibly infinite) product of G closely related to the
depth-infinity local view. (The un-rooted tree U(G) can
be obtained from L∞(v) of any node v in G by (1) for ev-
ery vertex x in L∞(v) pruning x’s child corresponding to
x’s parent; and (2) making every edge in the resulting tree
undirected.) In Section 3 we apply the result of Norris [39]
that isomorphism in U(G) up to depth |V | − 1 implies iso-
morphism to all depths to obtain a finite representation of
a specific factor of G.

Another line of research investigates (mock-anonymous)
problems where the input instances permit leader election.
For example, electing a leader in a ring network is possible
if the size n of the ring is known [26, 27]. Later it was found

2 Despite the inherent locality of the notions of maximal in-
dependent set and coloring, the results of [33, 30] show that
the corresponding distributed computational tasks cannot
be solved in constant time.

that a (2 − ε)-approximation of n is enough [1], even in
general networks [42]. The impact of prior knowledge (e.g.,
the network size) on the solvability of various problems was
studied in [43, 11]. We restrict ourselves to problems in
GRAN, which rules out cases that permit leader election.

Electing a leader with a Monte-Carlo algorithm (a ran-
domized algorithm that is allowed to fail) was studied in
rings [26, 27] and in general graphs [2, 41]. Recently, the
problem was found to be solvable with high probability (i.e.,
with probability 1 − n−c for any c ≥ 1, w.h.p. for short) in
[36]. Since electing a leader and assigning IDs are equivalent,
any distributed problem solvable with IDs is w.h.p. solvable
in an anonymous network. On the other hand it is known
that some symmetry-breaking problems, e.g., MIS [34, 3] or
coloring [33], are in GRAN. It is thus a natural question to
ask what exactly distinguishes Las-Vegas algorithms from
deterministic ones. We find that a 2-hop coloring suffices
to completely characterize the capabilities of a Las-Vegas
algorithm solving a GRAN problem.

Anonymous networks and electing a leader therein also
plays a major role in self-stabilization research, e.g. [17].
Self-stabilizing leader election is possible with population
protocols (nodes are controlled by asynchronous finite state
machines, cf. [7]) if the network is a ring [10]. In the pres-
ence of an oracle the problem becomes solvable also in gen-
eral networks, however, the required oracle is impossible to
implement as a population protocol [9]. We hope that our
contribution may also play a role towards a better under-
standing of randomization in self-stabilization (cf. [32, 18]).

Naor and Stockmeyer [38] introduced the notion of locally
checkable labelings (LCL), a labeling that can be checked by
a deterministic constant-time algorithm in a network with
IDs. With IDs a randomized constant-time algorithm can-
not solve more LCLs than a deterministic one. This is in
contrast to the anonymous model, where the run-time is un-
bounded but finite and a deterministic algorithm requires
a 2-hop coloring to replace randomization. The impact of
having/not having identifiers on verifying a proof (solution)
to a decision problem was studied in [28], and the authors
observe that the existence of a uniquely determined leader
cannot be verified without identifiers. A hierarchy of deci-
sion problems in terms of bit complexity required for a proof
is established in [25]. In [21, 20] Monte-Carlo algorithms for
decision problems are studied in networks with unidentified
but distinguishable nodes and a strict hierarchy depending
on the success probability is found. We utilize the notion of
decision problems to characterize the problem class GRAN.

The notion of a 2-hop coloring (also referred to as dis-
tance-2 coloring) has been used to assign frequencies in radio
networks [29], to solve optimization problems in parallel on
shared memory computers [22], and to emulate Turing ma-
chines in population protocols [6]. The related k-local elec-
tion problem, where a local leader needs to be unique only
up to distance k, was studied in an asynchronous model in
[37]. A solution to the 2-hop coloring problem can already
be found in the weak model of [19], where nodes are con-
trolled by finite state machines. Minimizing the number of
colors in a k-hop coloring is, however, NP-complete for any
k ≥ 1 due to a result in [35]. We would like to note that port
numbers are not necessary under the assumption of random-
ized algorithms. Since each node v knows its degree a 2-hop
coloring can be found even without port numbers and by
including the sender’s color in every message missing port



numbers can be emulated. We show that a 2-hop coloring
uniquely determines a graph’s prime factor.

2. THE CASE FOR INFINITY
Before presenting the proof of Theorem 1, we state and

prove a slightly easier variant of it that captures some of
its main ideas. To that end, for the moment, assume the
following rather strong infinity model for anonymous com-
putation. Fix some problem Π, let Πc be its 2-hop colored
variant, and let Ic = (V,E, i, c) ∈ Πc be some input in-
stance. An algorithm under the infinity model is fully spec-
ified by a function A∞ from the set of depth-infinity local
views to the possible output labels. The algorithm sets the
output of node v ∈ V to be o(v) = A∞(L∞(v)), namely,
it applies the function A∞ to L∞(v) and uses the returned
image as the output of v. We shall use A∞ to denote the
algorithm under the infinity model as well as the function
that lies at its heart. Disregarding computability issues of
A∞ for the moment, we say that A∞ solves Πc if the la-
beling o satisfies o ∈ Πc(Ic). Note that the infinity model
involves neither communication nor randomization. In other
words, node v’s output is completely determined by L∞(v)
in which the vertices are only marked with input labels and
a 2-hop coloring. The remainder of this section is devoted
to proving the following theorem.

Theorem 2. If Π ∈ GRAN, then Πc is solvable in the
infinity model.

A key ingredient of our proof for Theorem 2 is the notion
of an infinite view graph G∞ of a 2-hop colored graph G.

Definition 1. Let G = (V,E, `) be a 2-hop colored graph.
We define the infinite view graph G∞ = (V∞, E∞, `∞) of G
by identifying L∞(v) with

∞
v and setting

V∞ := {∞v : v ∈ V } (the different local views in G),

E∞ := {(∞u,∞v) : (u, v) ∈ E},
`∞(

∞
v) := `(v)

Note that |V∞| ≤ |V |, where the inequality is strict when
different nodes in G have the same depth-infinity local view
For example in the graph C6 from Figure 1 the local views
of nodes with the same color are equal.

For the remainder of this section, fix some problem Π ∈
GRAN, let AR be a randomized anonymous algorithm solv-
ing Π, and let Ic = (V,E, i, c) be some input instance of Πc.
We would like to construct an algorithm A∞ that solves Πc

under the infinity model. The idea behind A∞ is to perform
the following three steps for each node v ∈ V :

i. construct the infinite view graph Ic∞= (V∞, E∞, i∞, c∞)
from L∞(v);

ii. simulate a specific terminating execution of AR on J =
(V∞, E∞, i∞); and

iii. use the output of node
∞
v in that simulation as output

for node v.
We now turn to explaining these three steps in detail.

2.1 Constructing Ic∞

Consider L∞(v, Ic) for some node v ∈ V . For every
node u ∈ V , the local view L∞(u) appears as a sub-tree in
L∞(v). Conversely, every depth-infinity sub-tree of L∞(v)
is the depth-infinity local view of some node (or nodes) in V .

Therefore, the set of all depth-infinity sub-trees of L∞(v) is
exactly the node set of Ic’s infinite view graph Ic∞. More-
over, (u, u′) is an edge in Ic if and only if L∞(u′) appears
as a sub-tree of L∞(u) rooted at a child of L∞(u)’s root. In
other words, Ic∞ can be uniquely constructed from L∞(v).

Algorithm A∞ and its analysis relies on a canonical rep-
resentation of the depth-infinity trees L∞(u), namely, fixing
the order of the vertices in each depth-level. For that pur-
pose, it suffices to fix a total order among the children of
each vertex. Such a total order follows immediately by notic-
ing that since Ic is 2-hop colored, every two siblings must
have distinct marks. Using these canonical representations,
two depth-infinity local views can now be compared level by
level, thus implying a total order on V∞; let

∞
u1, . . . ,

∞
uk be

the nodes in V∞ indexed according to this total order.

2.2 Simulating AR

The second step in A∞ is to simulate an execution of algo-
rithm AR, the randomized anonymous algorithm solving Π.
More precisely, multiple executions of AR will be simulated
on the input J = (V∞, E∞, i∞). A t-round simulation σ of
AR on J (corresponding to executing AR on J for t rounds)
is fully determined by an assignment b : V∞ → {0, 1}t of t
random bits to every node in V∞. We refer to this simu-
lation σ as the simulation induced by b. The simulation σ
is said to be successful if every node

∞
v ∈ V∞ produces an

output under σ.
It will be essential for A∞’s correctness that all nodes in

Ic choose the same simulation of AR on J — i.e., the same
assignment b — to determine their output. This will be ac-
complished by using the total order on V∞ to fix a total order
among the possible assignments b : V∞ → {0, 1}t. To that
end, given two assignments b1, b2 : V∞ → {0, 1}t, b1 6= b2,
the relation b1 < b2 holds if and only if (b1(

∞
u1), . . . , b1(

∞
uk)) <

(b2(
∞
u1), . . . , b2(

∞
uk)), where the latter comparison is done

lexicographically. For convenience, we extend the total or-
der on the assignments b so that it also covers assignments
b1 : V∞ → {0, 1}t1 and b2 : V∞ → {0, 1}t2 , t1 6= t2, by
defining that b1 < b2 holds if and only if t1 < t2.

Assuming that there exists a successful simulation of AR

on J , algorithmA∞ selects the successful simulation induced
by the smallest assignment b : V∞ → {0, 1}t. We denote this
simulation by σ∞ and summarize in the following lemma.

Lemma 1. If algorithm AR returns an output when exe-
cuted on J , then in A∞, all nodes select the same successful
simulation σ∞.

2.3 The Output of A∞
The output value o(v) = A∞(L∞(v)) of node v ∈ V is set

to the output produced by node
∞
v in simulation σ∞ of AR

on J . For that to be well defined, there must exist an execu-
tion of AR on J in which every node

∞
v produces an output

(leading to a successful simulation). We establish the exis-
tence of such an execution by using the well-known lifting
lemma [5, 12] to assert that J ∈ Π and thus, guarantee that
a terminating execution of AR on J exists. This requires de-
veloping a better understanding of the infinite view graph’s
fundamental properties based on the notion of factor graphs.

2.3.1 Factor Graphs and 2-Hop Colorings
The central concept of our analysis is that of factor and

product graphs.3 For two labeled graphs G = (V,E, `) and
3 Our notion of product graphs should not be confused with
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Figure 2: The labeled graph C6 is a factor of C12

induced by the factorizing map f (and C12 is a prod-
uct of C6). Similarly, the labeled graph C3 is a factor
of C6 induced by the factorizing map g.

G′ = (V ′, E′, `′), we say that G′ is a factor of G and that
G is a product of G′ if there exists a function f : V → V ′,
referred to as a factorizing map, that satisfies:
1. the mapping f is surjective (onto);
2. f respects the labeling functions, that is, `(v) = `′(f(v))

for every node v ∈ V ; and
3. f is a local isomorphism, that is, for every node v ∈ V ,

the restriction f |Γ(v) is a bijection onto Γ(f(v)).
We shall use the notations G′ �f G (and G �f G′) to denote
that G′ is a factor of G (and G is a product of G′). The role
of the factorizing map f is sometimes emphasized by saying
that the factor/product is induced by f . Refer to Figure 2
for an illustration.

It is known that |V | = m · |V ′| for some positive integer
m (see, e.g., [24]). If m = 1, then the factorizing map is
bijective and both G′ �f G and G �f−1 G′ hold. In that
case, we refer to the two labeled graphs G and G′ as being
isomorphic (since f is a graph isomorphism that respects
the node labels) and write G ∼=f G

′ or G ∼= G′ if the specific
bijection is not relevant. Moreover, it is well-established that
if G �f G′, then the graphs G and G′ are indistinguishable
from the perspective of a node v in G or G′ (see, e.g., [39])
as cast in the following fact.

Fact 1. Let G,G′ be two labeled graphs. If G �f G′,
then L∞(v) = L∞(f(v)) for every node v in G.

It follows from Fact 1 that the factor of a 2-hop colored
graph is also 2-hop colored. Let G = (V,E, `) be a 2-hop
colored graph and let G∞ = (V∞, E∞, `∞) be its infinite
view graph. Lemmas 2 to 4 establish some important prop-
erties of G and G∞. These three lemmas can be derived
from the results on graph fibrations presented in [13] using
an intricate construction. (we briefly sketch this connection
in Section 4); for completeness, we also present stand-alone
proofs. Our first Lemma 2 establishes that G∞ is a factor
of G induced by the factorizing map f∞ : V → V∞ that

binary operations on two graphs referred to as graph prod-
ucts. The unlabeled counterpart of the concept of product
graphs is often called graph lifts, or covering graphs in the
existing literature. We extend the definition presented in
[24] to incorporate node labels. Note that changes are re-
quired when considering non-simple or undirected graphs.

maps v to
∞
v; we subsequently refer to f∞ as the infinite

view (factorizing) map of G.

Lemma 2. Let G = (V,E, `) be a 2-hop colored graph,
G∞ = (V∞, E∞, `∞) its infinite view graph, and f∞ : V →
V∞ the infinite view map. Then, G∞ is a factor of G induced
by f∞, i.e., G∞ �f∞ G.

Proof. We show that f∞ is a factorizing map inducing
the factor G∞ by verifying the properties required in the
definition of factor graphs. (1) The function f∞ : V → V∞
is surjective by the definition of V∞. (2) For every v ∈
V , the labeling functions satisfy `(v) = `∞(f∞(v)) by the
definition of `∞. (3) Bijectivity of f∞|Γ(v) for every v ∈
V is established by showing that f∞|Γ(v) is injective and
surjective separately.

To see that f∞|Γ(v) is injective, observe that two nodes
u1, u2 ∈ Γ(v), u1 6= u2, have different labels `(u1) 6= `(u2)
since ` is a 2-hop coloring. Property (2) thus ensures that
f∞(u1) 6= f∞(u2), i.e., f∞|Γ(v) is injective. Denote by

∞
v

the node f∞(v) and let
∞
u be some neighbor of

∞
v in G∞.

It follows from the definitions of E∞ and local views that
the tree

∞
u is a sub-tree rooted at a child of

∞
v’s root vertex.

Thus, G admits some node u ∈ Γ(v) with L∞(u) =
∞
u and

the function f∞ satisfies f∞|Γ(v)(u) =
∞
u. Hence, f∞|Γ(v) is

also surjective.

A labeled graph G is called prime (cf. [13]) if all factors of
G are isomorphic to it. For example, the labeled 3-cycle C3

in Figure 2 is prime, whereas C12 and C6 are not. Both C12

and C6 have C3 as a prime factor. Lemma 3 states that the
only prime factor of a 2-hop colored graph G is its infinite
view graph (indeed, C3 is isomorphic to the infinite view
graph of C12 and C6).

Lemma 3. If G is a 2-hop colored graph, then the infi-
nite view graph G∞ is the unique prime factor of G (up to
isomorphism).

Proof. LetG andG′ be 2-hop colored graphs withG′ �f
G. To establish the statement we show that G′ is either
isomorphic to G∞ or not prime. The key to our proof is to
show that G and G′ have the same infinite view graph; this
establishes the assertion due to Lemma 2.

To that end, let G∞ = (V∞, E∞, `∞) and G′∞ = (V ′∞, E
′
∞,

`′∞) be the infinite view graphs ofG andG′, respectively, i.e.,
G∞ �f∞ G and G′∞ �f ′∞ G′. Fact 1 implies that V ′∞ = V∞.
The construction of E∞ guarantees that an edge (

∞
u,
∞
v) is in

E∞ if and only if
∞
v is a sub-tree rooted at one of the children

of
∞
u’s root. Since V ′∞ = V∞, the same edge is also in E′∞,

and vice versa, every edge in E′∞ is also in E∞. Therefore, it
also holds that E′∞ = E∞. Finally, observe that `∞(

∞
w) and

`′∞(
∞
w′) for any nodes

∞
w ∈ V∞ and

∞
w′ ∈ V ′∞, respectively,

are completely determined by the marks attributed to the
corresponding root vertices of

∞
w and

∞
w′. We conclude that

(V∞, E∞, `∞) = (V ′∞, E
′
∞, `

′
∞), i.e., G∞ = G′∞.

Note that the previous Lemma 3 does not hold for arbi-
trary graphs G, since, e.g., the uncolored 12-cycle has two
distinct prime factors, namely, the 3-cycle and the 4-cycle.
In prime 2-hop colored graphs however, based on the follow-
ing key lemma, we can use L∞(v) of node v in a prime 2-hop
colored graph G as the alias of v in G.

Lemma 4. Let G = (V,E, `) be a prime 2-hop colored
graph and consider some u, v ∈ V . Then, u = v if and only
if L∞(u) = L∞(v).



Proof. Let G = (V,E, `) be a prime 2-hop colored graph
and let u, v ∈ V be two nodes in G. Since the “only-if” di-
rection is true by the assumption u = v, we only need to
show that L∞(u) = L∞(v) implies u = v. To that end, con-
sider the infinite view graph G∞ = (V∞, E∞, `∞) of G and
assume for the sake of contradiction that L∞(u) = L∞(v)
in G but u 6= v. By the definition of G∞, this implies that
|V∞| < |V | and thus, Lemma 2 guarantees that G admits
a non-trivial factor, in contradiction to the assumption that
G is prime.

2.3.2 Establishing the Output’s Validity
Getting back to A∞, we have shown that the graph Ic∞

constructed by A∞ (independently, at every node v) satisfies
Ic∞ �f∞ Ic. (Recall that Ic = (V,E, i, c) is an input instance
of Π’s 2-hop colored variant Πc and that I = (V,E, i) is the
corresponding input instance of Π.) Algorithm A∞ simu-
lates algorithm AR on the input J = (V∞, E∞, i∞). Since
Ic∞ �f∞ Ic, the input instance I satisfies J �f∞ I with the
same factorizing map f∞.

We argue that J is an input instance of Π. Indeed, as Π
is genuinely solvable, there exists a randomized anonymous
algorithm B that decides whether a given labeled graph is
an input instance of Π. By the lifting lemma, B cannot
distinguish J from I (cf. [5, 12]), hence the fact that I ∈ Π
implies that J ∈ Π, as required.

It follows that AR returns a correct output when executed
on J , thus Lemma 1 ensures that the same successful simu-
lation σ∞ is selected by every node. Employing the lifting
lemma once more, we conclude that the simulation obtained
by lifting σ∞ from nodes in V∞ to nodes in V corresponds
to a possible execution η of AR on I (cf. [5, 12]). The out-
put labeling that A∞ produces for the input instance Ic is
exactly the output labeling produced by η in I and since the
latter is valid, the former must also be valid by the definition
of problem Πc, thus establishing Theorem 2.

Since the description of A∞ involves trees of infinite
depth, one may wonder whether it can be replaced by a
“real” algorithm. This issue is addressed in the next section,
where we also establish Theorem 1.

3. DEALING WITH (IN)FINITY
Recall that under the infinity model introduced in Sec-

tion 2, each node v in the graph essentially receives L∞(v).
This luxury, of course, cannot be realized in a standard
anonymous algorithm, where node v can only obtain Ld(v)
for finite values of d. Nevertheless, in this section we show
how the algorithm presented in Section 2 can be adapted to
finite depth local views. A key ingredient in this adaptation
is the following theorem established by Norris [39].4

Theorem 3 ([39]). Let G be a labeled graph with n
nodes. The local view Ln(v) fully determines L∞(v) for ev-
ery node v ∈ V .

Employing Lemma 4, we obtain the following corollary
that facilitates the usage of depth n local views as aliases for
the nodes in an n-node prime 2-hop colored graph (instead
of the depth-infinity local views that were used in Section 2).

4 The result in [39] is described in terms of the depth n− 1
sub-trees of a graph’s universal cover. To prove the corre-
sponding statement for depth-n local views the same refine-
ment argument can be made.

Corollary 1. Let G = (V,E, `) be an n-node prime 2-
hop colored graph and consider some u, v ∈ V . Then, u = v
if and only if Ln(u) = Ln(v).

Consider a 2-hop colored graph G = (V,E, `) and de-
note by n = |V∞| the number of different depth-infinity
local views in G. For a node v ∈ V , denote by

∗
v = Ln(v)

the depth-n local view in G. The graph G∗ = (V∗, E∗, `∗),
where V∗ = {∗v : v ∈ V }, E∗ = {( ∗u, ∗v) : (u, v) ∈ E}, and
`∗(

∗
v) = `(v) is called the finite view graph of G. The follow-

ing corollary is established due to Theorem 3, where fn is
the depth-n truncating function that truncates every depth-
k local view, k ≥ n, to depth n, i.e., fn(

∞
u) =

∗
v.

Corollary 2. For a 2-hop colored graph G, it holds that
G∗ ∼=fn G∞.

The graph G∗ can thus serve as a canonical representative
for its equivalence class under the equivalence relation ∼=.
This is crucial because in contrast to G∞, the graph G∗ has
a finite bitstring representation. Furthermore, each node v
in a 2-hop colored graph G can identify its corresponding
node in G∗, within n = |V∗| rounds of the execution.

3.1 Algorithm A∗
Fix some problem Π ∈ GRAN and randomized anony-

mous algorithm AR that solves Π. Let Πc be the 2-hop
colored variant of Π and let Ic = (V,E, i, c) ∈ Πc be an
arbitrary input instance of Πc. To establish Theorem 1, we
present a deterministic algorithm A∗ that solves Πc. Algo-
rithm A∗ resembles algorithm A∞ presented in Section 2,
however, the graph Ic∞ is replaced by its finite representation
Ic∗ utilizing Corollary 2.

Algorithm A∗, described from the perspective of an arbi-
trary node v ∈ V , proceeds in phases indexed by the posi-
tive integers. Throughout the execution of A∗, node v keeps
track of an initially empty bitstring b(v), where the value of
b(v) for phase p + 1 is determined during phase p. It will
be convenient to denote by bp the labeling function derived
from the values b(v) in phase p by setting bp(v) = b(v) for
phase p. Correspondingly, we denote by Ip = (V,E, i, c, bp)
the graph obtained by augmenting Ic with the labeling bp.
In each phase p, every node v invokes the three sub-proce-
dures Update-Graph, Update-Output, and Update-Bits in
this order. We now describe each sub-procedure individu-
ally. For convenience, we also include a pseudo-code style
description of A∗ in Figure 3.

Update-Graph.
We say that a labeled graph Ĝ = (V̂, Ê, î, ĉ, b̂) is a candi-

date for phase p if it satisfies the following three conditions:
C1. |V̂ | ≤ p;
C2. there exists a node v̂ ∈ V̂ such that Lp(v̂, Ĝ) =

Lp(v, I
p); and

C3. (V̂, Ê, î, ĉ) is an input instance of Πc.
Denote by F the set containing the finite view graphs of
all candidates for phase p. In phase p, node v computes
Lp(v, I

p) (requires p rounds) and based on that, constructs
the set F .

Note that the set F can be totally ordered in a prede-
termined way. To see this, observe that for any finite view
graph G∗ = (V∗, E∗, `∗), the set V∗ can be totally ordered
in a predetermined way similarly to the order used in Sec-



Algorithm: A∗, a deterministic algorithm solving Πc at node v
. Initialization of variables for node v:

(V̂∗, Ê∗, î∗, ĉ∗, b̂∗)← the empty labeled graph.
∗
v ← NULL
b(v)← the empty bitstring
for phase p← 1, . . . do

Update-Graph(p)
Update-Output(p)
Update-Bits(p)

Procedure Update-Graph(p):
L← Lp(v, I

p) . b(v) is treated as a labeling function
construct the set F of candidates for phase p
if F = ∅ then

skip phase p

else

Ĝ∗ = (V̂∗, Ê∗, î∗, ĉ∗, b̂∗)← the smallest graph in F
Ĝ = (V̂, Ê, î, ĉ, b̂)← a candidate that corresponds to Ĝ∗

v̂ ← the node v̂ ∈ V̂ such that Lp(v̂, Ĝ) = Lp(v, I
p) as assured by C2

q ← |V̂∗|
∗
v ← the node

∗
v = Lq(v̂, Ĝ) ∈ V̂∗ with Lp(v̂, Ĝ) = L

Procedure Update-Output (p):

σ ← the simulation of AR on (V̂∗, Ê∗, î∗) induced by b̂∗
if σ is successful then set o(v) to be the output of

∗
v in σ

Procedure Update-Bits (p):

B ← {b : b is a p-extension of b̂∗, and the simulation of AR on (V̂∗, Ê∗, î∗) induced by b is successful}
if B 6= ∅ then

bmin ← the smallest b ∈ B
b(v)← bmin(

∗
v)

Figure 3: The deterministic algorithm A∗ that solves Πc.

tion 2.1. This total order on V∗ fully determines a represen-
tation of G∗ as a finite bitstring s = s(G∗) (encoding the
ordinal number and label of every node as well as every edge
in G∗). Given two finite view graphs G∗ = (V∗, E∗, `∗) and
G′∗ = (V ′∗ , E

′
∗, `
′
∗), we write G∗ < G′∗ if either |V∗| < |V ′∗ | or

|V∗| = |V ′∗ | and s(G∗) < s(G′∗) lexicographically.
If the set F is empty in phase p, then node v skips the

remainder of this phase. Otherwise, Update-Graph selects

the smallest finite view graph Ĝ∗ = (V̂∗, Ê∗, î∗, ĉ∗, b̂∗) ∈ F .

Let Ĝ be a candidate that corresponds to Ĝ∗ and recall that
condition C2 guarantees the existence of a node v̂ ∈ V̂ such
that Lp(v̂, Ĝ) = Lp(v, I

p). Let
∗
v = Lq(v̂, Ĝ), where q = |V̂∗|,

be the node in V̂∗ that corresponds to v.

Update-Output.
Node v simulates AR on the instance J = (V̂∗, Ê∗, î∗)

using the bitstrings provided by b̂∗ as a replacement for AR’s
random bits. Recall that b̂∗ corresponds to the bitstring
assignment b̂ in some candidate Ĝ and as such, reflects the
bitstring assignment bp of Ip. Since bp may assign bitstrings
of varying lengths to the nodes in V , b̂∗ may also assign
bitstrings of varying lengths to the nodes in V̂∗. Therefore,
the simulation of AR on J , denoted by σ, lasts for l rounds,
where l = min{length(b̂∗(

∗
u)) :

∗
u ∈ V̂∗} is the length of

the shortest bitstring assigned under b̂∗ to the nodes in V̂∗.

If the simulation σ is successful (recall the definition of a
successful simulation in Section 2.2), then Update-Output

sets v’s output to the value returned by node
∗
v in σ.

Update-Bits.
The task of Update-Bits is to update the value of b(v),

extending it to a bitstring of length p. An assignment b̂′∗ :
V̂∗ → {0, 1}p is said to be a p-extension of b̂∗ if the bitstring

b̂∗(
∗
u) is a prefix of b̂′∗(

∗
u) for every node

∗
u ∈ V̂∗. Let B be the

set of p-extensions of b̂∗ that induce successful simulations
of AR on J = (V̂∗, Ê∗, î∗).

If B is empty, then b(v) remains unchanged. Otherwise,

the predetermined total order on V̂∗ implies a predetermined
total order on B — let bmin be the smallest bitstring as-
signment in B according to this total order and update the
bitsring b(v) so that b(v)← bmin(

∗
v).

3.2 Analysis
In our effort to prove Theorem 1, we need to show two

things: (1) algorithm A∗ terminates; and (2) the output of
A∗ is valid. We use the same notation as in Section 3.1
to denote the various graphs involved with A∗. Recall that
the description of A∗ in Section 3.1 is provided from the
perspective of node v in phase p and when necessary, we ex-
plicitly mention p and/or v by adding them as a superscript.



Specifically, let
• Ip∗ = (V p∗ , E

p
∗ , i

p
∗, c

p
∗, b

p
∗) be the finite view graph of Ip;

• Fp,v be the set of finite view graphs from Update-Graph;

• Ĝp,v∗ = (V̂ p,v∗ , Êp,v∗ , îp,v∗ , ĉp,v∗ , b̂p,v∗ ) ∈ Fp,v be the finite
view graph selected by Update-Graph;

• ∗vp be the node in V̂ p,v∗ corresponding to v;
• Jp,v = (V̂ p,v∗ , Êp,v∗ , îp,v∗ ) be the graph used to simulate
AR in Update-Output; and
• σp,v be the corresponding simulation of AR on Jp,v in-

duced by b̂p,v∗ .
We further denote by Ic∗ = (V∗, E∗, i∗, c∗) the finite view
graph of Ic and set n = |V∗|.

Termination.
Recall the node v̂ in a candidate Ĝ promised by condi-

tion C2; we henceforth also refer to the node
∗
v in the finite

view graph of Ĝ that corresponds to v̂ as being promised by
condition C2. Our analysis of A∗ begins with the follow-
ing insight regarding the graphs in Fp,v, which follows from
Corollary 1 as |V̂ p,v∗ | ≤ p.

Corollary 3. Consider some Ĝ′∗ = (V̂ ′∗ , Ê
′
∗, î
′
∗, ĉ
′
∗, b̂
′
∗) ∈

Fp,v and let
∗
v ∈ V̂ ′∗ be the node promised by condition C2.

Then, Lp(
∗
v, Ĝ∗) = Lp(v, I

p).

Denote by Ĥp,v
∗ = (V̂ p,v∗ , Êp,v∗ , îp,v∗ , ĉp,v∗ ) the graph ob-

tained from Ĝp,v∗ by ignoring the labeling b̂p,v∗ . To estab-
lish that A∗ terminates, we show that the graph Ĥp,v

∗ “con-
verges” towards Ic∗ as cast in the following lemma.

Lemma 5. There exists some q such that for every phase
p ≥ q, the graph Ĥp,v

∗ satisfies Ĥp,v
∗ ∼= Ic∗ for all nodes v ∈ V .

The difficulty in proving Lemma 5 is that the finite view
graphs Ĝp,v∗ are constructed based on the local views in
(V,E, i, c, bp) rather than (V,E, i, c) — in particular, the
labels bp(v) are constantly changing. Observe however that
in A∗, the value bp+1(v) depends solely on Lp(v, I

p). This
means that for every two nodes u, v ∈ V and phase p, if
Lp(u, I

p) = Lp(v, I
p), then bp+1(u) = bp+1(v). By induction

on p, we conclude that L∞(u, Ip) = L∞(v, Ip) if and only if
L∞(u, Ic) = L∞(v, Ic). In other words, nodes indistinguish-
able without the labeling bp are also indistinguishable when
the labeling bp is included. This immediately implies that in
every phase p, the graph obtained from Ip∞ by ignoring the
labeling bp is isomorphic to Ic∞, which derives the following
observation due to Corollary 2.

Observation 1. For every phase p under algorithm A∗,
it holds that (V p∗ , E

p
∗ , i

p
∗, c

p
∗) ∼= Ic∗.

Utilizing Observation 1, Lemma 5 can be established by
showing that Ĝp,v∗ = Ip∗ . The following Lemma 6 assures
that Ip∗ is among the candidates in all phases p ≥ n.

Lemma 6. If p ≥ n, then the set Fp,v contains Ip∗ for
every node v ∈ V .

Proof. We establish the assertion by showing that Ip∗ (or
a graph isomorphic to it) is a candidate for phase p, noticing
that (Ip∗ )∗ = Ip∗ . By Observation 1, we conclude that |V p∗ | =
|V c∗ | = n ≤ p, thus condition C1 holds. Since Ip∗ is a factor of
Ip, Fact 1 guarantees that node

∗
v = Ln(v, Ip) ∈ V p∗ satisfies

Lp(
∗
v, Ip∗ ) = Lp(v, I

p), thus condition C2 holds as well. As

already argued in Section 2.3.2, the lifting lemma guarantees
that Ic∞ is an instance of Πc, therefore by Corollary 2, so is
Ip∗ , implying that condition C3 holds which completes the
proof.

Lemma 6 confirms that Ip∗ may be selected by Update-

Graph if p ≥ n. It remains to show that there is a phase p in
which Ip∗ will be selected by Update-Graph. The following
Lemma 7 confirms that the latter occurs if p ≥ 2n, thus
establishing Lemma 5.

Lemma 7. If p ≥ 2n, then Ĝp,v∗ = Ip∗ for all nodes v ∈ V .

Proof. Lemma 6 guarantees that Ip∗ ∈ Fp,v for every
node v ∈ V . The assertion is established by showing that
Ip∗ is the smallest graph in Fp,v according to the total order
used in Update-Graph.

Let Ĝ′∗ = (V̂ ′∗ , Ê
′
∗, î
′
∗, ĉ
′
∗, b̂
′
∗) ∈ Fp,v be the finite view

graph of some candidate Ĝ′ and set n′ = |V̂∗|. Assume

for the sake of contradiction that Ĝ∗ < Ip∗ . This implies
that either (1) n′ < n; or (2) n′ = n and s(Ĝ′∗) < s(Ip∗ ). We
will show that neither (1) nor (2) hold and thus, contradict

Ĝ′∗ < Ip∗ .
To that end, let

∗
v′ ∈ V̂ ′∗ and

∗
v ∈ V p∗ be the nodes in Ĝ′∗ and

Ip∗ , respectively, promised by property C2. Since |V p∗ | = n
and |V ′∗ | = n′ ≤ n, it follows that the diameter of both

Ip∗ and Ĝ′∗ is at most n − 1. Since p ≥ 2n, the local view
Lp(

∗
v′, Ĝ′∗) contains the sub-tree

∗
u′ for every u′ ∈ V̂ ′∗ and

each distinct depth-n′ sub-tree of Lp(
∗
v′, Ĝ′∗) corresponds to

a different node
∗
u′ ∈ V̂ ′∗ . Similarly, the local view Lp(

∗
v, Ip∗ )

contains the sub-tree
∗
u for every u ∈ V p∗ and each distinct

depth-n sub-tree of Lp(
∗
v, Ip∗ ) corresponds to a node

∗
u ∈ V p∗ .

Corollary 3 guarantees that Lp(
∗
v′, Ĝ′∗) = Lp(v, I

p) =
Lp(

∗
v, Ip∗ ). Therefore, the depth-n′ truncating function fn′

maps every node
∗
u ∈ V p∗ to a node in V̂ ′∗ . It follows by the

definition of local view that Ĝ′∗ �fn′ I
p
∗ .

If n′ = n, then fn′ is the identity function, hence Ĝ′∗ = Ip∗ ,
in contradiction to the assumption that Ĝ′∗ < Ip∗ . If on the
other hand n′ < n, then Ĝ′∗ is a non-trivial factor of Ip∗ ,
contradicting the fact that the finite view graph Ip∗ is prime.
The assertion follows.

Consider some node v ∈ V and phase p ≥ 2n. Lemma 7
guarantees that the graph Jp,v on top of which the simula-
tion σp,v is carried out is in fact (V∗, E∗, i∗) — denote this

graph by J̃ . The design of Update-Graph ensures that J̃ ∈ I
and the reasoning from Section 2.2 can be applied to show
that all nodes u ∈ V perform the same simulation σp,u on

J̃ — denote this simulation by σp and let bp : V∗ → {0, 1}∗
be the bitstring assignment that induces σp.

Let z be the smallest integer z ≥ 2n so that there exists
a z-extension of b2n that induces a successful simulation on
J̃ and let b′ be the smallest such z-extension according to
the predetermined total order on the bitstring assignments.
Notice that the integer z is well defined since AR is guar-
anteed to produce a correct output with probability 1. The
design of Update-Bits ensures that in phase z, every node
u ∈ V updates b(u) ← b′(

∗
u), where

∗
u is the node in V∗

that corresponds to u. The design of Update-Output then
ensures that in phase z + 1, all nodes set their outputs ac-
cording to the successful simulation σz+1, thus establishing
the termination of A∗ as cast in the following lemma.



Lemma 8. In phase z + 1, all nodes v ∈ V set their out-
puts A∗(v).

Correctness.
It remains to show that the output produced by A∗ is

correct. Denote by op(v) the output of node v ∈ V in phase p
of A∗, where we use the designated symbol ε to indicate that
v does not return any output in phase p, writing op(v) = ε.
Intuitively, we establish the correctness of A∗ by arguing
that there exists an execution η of AR on I = (V,E, i) such
that for every node v ∈ V and integer 1 ≤ p ≤ z + 1, if
op(v) 6= ε, then the output of node v in round p under η,
denoted by opη(v), is opη(v) = op(v). (In fact, the execution η
is obtained by lifting σz+1 from V∗ to V .) The correctness
of A∗ then follows from the correctness of AR.

Lemma 9. For any phase p, if node v returns an output
op(v) 6= ε in phase p, then op(v) = opη(v).

Proof. Let p be a phase, and suppose that node v ∈ V
sets its output in phase p to op(v) 6= ε. Since v sets op(v) in

phase p, the graph Ĝp,v∗ is defined and the simulation σp,v

of the randomized algorithm AR is successful. With that in
mind, let t be the length of σp,v, and let η be the execution
of AR on I = (V,E, i) obtained by lifting σz+1 from V∗ to
V . The goal now is to show that op(v) = opη(v).

Note that for any k > 0, the first k rounds in η are fully
determined by the first k random bits of each node u ∈ V
and their respective input values. More specifically, the first
k rounds in η for a single node v are fully determined by
Lk(v, I) and the first k − i bits replacing the random bits
of each node u ∈ Hi(v), 0 ≤ i ≤ k, where Hi(v) the set of
all nodes at most i hops away from v, i.e, H0(v) = {v} and
Hi+1(v) = Hi(v) ∪ Γ(Hi(v)) for every i ≥ 0.

By the construction of Jp,v the equality Lp(
∗
vp, Jp,v) =

Lp(v, I) holds. Moreover, for every u ∈ Hp(v), there exists

a node
∗
u ∈ V̂ p,v∗ such that the bitstring assigned to

∗
u satisfies

b̂p,v∗ (
∗
u) = bp(u). Since v sets op(v) in Update-Output, the

simulation σp,v is successful and thus, the length of b̂p,v∗ (
∗
u)

is at least t. The design of Update-Bits ensures that bp(u)
is a prefix of bp+1(u) for every phase p and node u ∈ V .
Therefore, the first t − i bits assigned to node u ∈ Hi(v),
0 ≤ i ≤ t are the same t − i bits that are used in the first
t rounds of η. We conclude that in η node v returns the
output otη(v) = op(v) at node v in round p.

Lemma 9 is sufficient to establish the correctness of A∗ as
well: Using the same line of arguments as in Section 2.3.2,
once more invoking the lifting lemma, one can show that the
output obtained by lifting the output of simulation σz+1

is valid for I (and Ic). By combining Lemmas 8 and 9,
Theorem 1 now follows.

4. FIBRATIONS AND 2-HOP COLORINGS
Boldi and Vigna [13] extensively study the notion of fibra-

tions, roughly speaking a generalization of factorizing maps
to edge-colored directed graphs (refer to [13] for an exact
definition). A special case the two authors study are deter-
ministic (edge) colorings which require that for every node,
all out-edges must be colored differently. In this section
we wish to highlight a connection between our observations
regarding 2-hop colored graphs in Section 2 and determin-
istically edge colored directed graphs. In the following, we

write undirected as well as directed edges as tuples (u, v). It
will be clear from the context whether we are referring to a
directed or an undirected edge.

LetG = (V,E, c) be a 2-hop colored undirected graph, and
consider the edge colored directed graph H = (V ′, E′, c′) ob-
tained by (1) choosing V ′ = V ; (2) adding two directed edges
(u, v) and (v, u) to E′ for every undirected edge (u, v) ∈ E;
and (3) setting c′(e) = 〈c(u), c(v)〉 for every directed edge
e = (u, v) ∈ E′. In the terminology of [13], the graph H
is symmetric, since for every edge (u, v) a symmetric edge
(v, u) is present. Moreover the edge coloring c′ is determinis-
tic, and c′ respects the edge symmetries since for every edge
e = (u, v), colored 〈c1, c2〉, the symmetric edge ē = (v, u) is
colored 〈c2, c1〉. We call the graph H obtained from G in
this manner as being G’s directed (edge colored) representa-
tion. Note that reversing the construction, in hope to obtain
a 2-hop colored graph, is not possible for general determin-
istically edge-colored symmetric directed graphs.

Observe that a fibration ϕ : H → H ′, where H and H ′ are
directed representations of two graphs G and G′, translates
to a factorizing map f : G → G′ as defined in Section 2,
and vice versa. One can use this connection to derive the
statements from Section 2 from the results presented in [13].

5. ACKNOWLEDGEMENTS
We would like to thank our anonymous reviewers for their

invaluable comments.

6. REFERENCES
[1] K. R. Abrahamson, A. Adler, L. Higham, and D. G.

Kirkpatrick. Probabilistic solitude verification on a
ring. In J. Y. Halpern, editor, PODC, pages 161–173.
ACM, 1986.

[2] Y. Afek and Y. Matias. Elections in anonymous
networks. Inf. Comput., 113(2):312–330, 1994.

[3] N. Alon, L. Babai, and A. Itai. A fast and simple
randomized parallel algorithm for the maximal
independent set problem. J. Algorithms, 7(4):567–583,
1986.

[4] A. Amit, N. Linial, J. Matousek, and E. Rozenman.
Random lifts of graphs. In S. R. Kosaraju, editor,
SODA, pages 883–894. ACM/SIAM, 2001.

[5] D. Angluin. Local and global properties in networks of
processors (extended abstract). In R. E. Miller,
S. Ginsburg, W. A. Burkhard, and R. J. Lipton,
editors, STOC, pages 82–93. ACM, 1980.

[6] D. Angluin, J. Aspnes, M. Chan, M. J. Fischer,
H. Jiang, and R. Peralta. Stably computable
properties of network graphs. In V. K. Prasanna, S. S.
Iyengar, P. G. Spirakis, and M. Welsh, editors,
DCOSS, volume 3560 of Lecture Notes in Computer
Science, pages 63–74. Springer, 2005.

[7] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and
R. Peralta. Computation in networks of passively
mobile finite-state sensors. In Chaudhuri and Kutten
[15], pages 290–299.

[8] D. Angluin and A. Gardiner. Finite common coverings
of pairs of regular graphs. J. Comb. Theory, Ser. B,
30(2):184–187, 1981.

[9] J. Beauquier, P. Blanchard, and J. Burman.
Self-stabilizing leader election in population protocols
over arbitrary communication graphs. In R. Baldoni,



N. Nisse, and M. van Steen, editors, OPODIS, volume
8304 of Lecture Notes in Computer Science, pages
38–52. Springer, 2013.

[10] J. Beauquier, M. Gradinariu, and C. Johnen. Memory
space requirements for self-stabilizing leader election
protocols. In Coan and Welch [16], pages 199–207.

[11] P. Boldi and S. Vigna. Computing anonymously with
arbitrary knowledge. In Coan and Welch [16], pages
181–188.

[12] P. Boldi and S. Vigna. An effective characterization of
computability in anonymous networks. In J. L. Welch,
editor, DISC, volume 2180 of Lecture Notes in
Computer Science, pages 33–47. Springer, 2001.

[13] P. Boldi and S. Vigna. Fibrations of graphs. Discrete
Mathematics, 243(1-3):21–66, 2002. Using the author’s
version from http://vigna.dsi.unimi.it/ftp/

papers/FibrationsOfGraphs.pdf.

[14] P. Boldi and S. Vigna. Universal dynamic synchronous
self-stabilization. Distributed Computing,
15(3):137–153, 2002.

[15] S. Chaudhuri and S. Kutten, editors. Proceedings of
the Twenty-Third Annual ACM Symposium on
Principles of Distributed Computing, PODC 2004, St.
John’s, Newfoundland, Canada, July 25-28, 2004.
ACM, 2004.

[16] B. A. Coan and J. L. Welch, editors. Proceedings of
the Eighteenth Annual ACM Symposium on Principles
of Distributed Computing, PODC, ’99Atlanta,
Georgia, USA, May 3-6, 1999. ACM, 1999.

[17] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic
self-stabilizing leader election. IEEE Trans. Parallel
Distrib. Syst., 8(4):424–440, 1997.

[18] S. Dolev, E. Schiller, and J. L. Welch. Random walk
for self-stabilizing group communication in ad-hoc
networks. In SRDS, pages 70–79. IEEE Computer
Society, 2002.

[19] Y. Emek and R. Wattenhofer. Stone age distributed
computing. In P. Fatourou and G. Taubenfeld, editors,
PODC, pages 137–146. ACM, 2013.

[20] P. Fraigniaud, A. Korman, M. Parter, and D. Peleg.
Randomized distributed decision. In M. K. Aguilera,
editor, DISC, volume 7611 of Lecture Notes in
Computer Science, pages 371–385. Springer, 2012.

[21] P. Fraigniaud, A. Korman, and D. Peleg. Local
distributed decision. In R. Ostrovsky, editor, FOCS,
pages 708–717. IEEE, 2011.

[22] A. H. Gebremedhin, F. Manne, and A. Pothen.
Parallel distance-k coloring algorithms for numerical
optimization. In B. Monien and R. Feldmann, editors,
Euro-Par, volume 2400 of Lecture Notes in Computer
Science, pages 912–921. Springer, 2002.

[23] E. Godard, Y. Métivier, and A. Muscholl.
Characterizations of classes of graphs recognizable by
local computations. Theory Comput. Syst.,
37(2):249–293, 2004.

[24] C. D. Godsil and G. Royle. Algebraic Graph Theory.
Graduate Texts in Mathematics. Springer, 2001.
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