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1. Introduction 

The global economy has changed forever with the rise of computers. 
Through smaller, cheaper, and faster components, a new wave of advances 
in artificial intelligence (AI) and machine learning are bringing about 
fundamental changes in the workplace. IBM’s Watson and DeepMind’s 
software now regularly solve problems previously thought to be impossible 
to automate, often more successfully than humans (Ferrucci D., et al. 
2010; Silver D., et al. 2017). Mechanical robots have also become 
increasingly advanced, with many high-end cars now featuring some level 
of autonomous driving or robots being used to transport items in 
warehouses (D’Andrea R., et al. 2012). Due to these recent innovations, 
concerns have arisen across the world that automation would destroy 
many jobs – even non-routine ones – leading to widespread joblessness. 
This fear bears some similarities with that voiced during the Industrial 
Revolution. To prevent computers from putting thousands of people out of 
work, many initiatives have been laid down to retrain workers. Adopting 
the same approach as that used in the Industrial Revolution period, when 
the workforce learnt to operate machines, it seems that now we should 
move to operating and designing AI and its code. Amazon has decided to 
teach software engineering and IT support to many of its warehouse 
workers through Associate2Tech programmes (Matsakis L. 2019). As coal 
plants are to be phased out, many coal miners will lose employment. To 
help them get a new job, the Mined Minds program has started to train 
them to become programmers (Jiang W. 2017). 

However, many job retraining programs have not been particularly 
successful, with some of them being heavily criticised (Robertson C. 
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2019; D’Souza S. 2019). While new software engineers are in high 
demand in today’s world of work, it seems a bit naive to believe that every 
truck driver or miner can easily turn into a programmer twenty years after 
leaving high school. It seems far more realistic to look at which jobs will 
still be needed in the future, and then look for those which are closer to the 
occupations facing a high-risk of automation. One would expect such a 
transition to be far less difficult. 

It is in this context that we analysed the potential for computerisation, 
by modelling the probability of automation for most occupations in the 
United States, pointing out correlations between automation and job 
characteristics. We then found potential replacement occupations for 
threatened workers and looked at whether these occupations would see an 
increase in demand over the next decade, hoping that they would be able 
to cope with the influx of new workers. 

2. Related Work 

Much research has been published on automation in the last decade, 
due to growing concerns about unemployment and massive changes in the 
labour market (Arntz M., Gregory T., Zierahn U. 2016; Arntz M., Gregory 
T., Zierahn U. 2017; Nedelkoska L., G. Quintini G. 2018; Wike R., Stokes 
B. 2018).  

One of the most famous papers is that by Frey and Osborne (2013). 
Using a database compiled by the U.S. government and some machine 
learning methods, they obtained the probability of automation for over 700 
occupations, classifying them as having a low, medium, or high risk of 
being automatized. The authors found that 47% of workers were employed 
in high-risk occupations, drawing global attention to the possible threat 
caused by what they called “computerisation”.  

Following that study, Brandes and Wattenhofer studied the issue in 
more detail (2016). They took a more granular approach and determined 
the likelihood of automation for each task within a single occupation, 
using Frey and Osborne’s results. They classify each occupation according 
to their respective tasks, defined a quantifiable frequency at which these 
tasks are carried out, and computed the probability of automation for all 
tasks.  

The McKinsey Institute also published a report about job automation 
and its impacts (Manyika J., et al. 2017). Although this report is a thorough 
study in this area and considers multiple countries, it does not explain how 
to tackle this problem. Another major study related, albeit tangent, to our 
questions was carried out by Bakhshi et al. (2016). Their study provides 
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predictions for the future opportunities in each occupation. It was their 
results that allowed us to find appropriate jobs workers can switch to. 

3. The Future of Jobs 

After noticing biases and some shortcomings in Frey and Osborne 
(2013), we decided to compute the probability of automation once again 
instead of drawing on previous research results. Using a more detailed and 
objective methodology, we obtained a more consistent and general result 
which is not based on subjective analysis of the data and the problem at 
hand. 

3.1. Data 

Just like the previously mentioned studies, we used the O*NET 
database of the Bureau of Labor Statistics (BLS). We considered the latest 
version at the time of writing, namely that of February 20191. The O*NET 
database is a convenient tool to analyse the properties of jobs, as it uses 
the Standard Occupational Classification (SOC) to define occupations and 
provides many different variables to describe them. Its data is based on the 
results of surveys collected from professionals in every field.  

While the data presented in O*NET is potentially interesting, we 
decided to restrict our research to a few types of variables. The most 
important ones are requirements, work contexts, and work activities. There 
are three types of requirements: skills, abilities, and knowledge. They 
contain 120 variables which describe what a worker needs to know or do 
to be effective at work. The work context of an occupation describes the 
environment in which the worker is active, and the work activities are a 
very general description of what the worker actually does.  

All data in O*NET is classified using a numerical scale. Work 
contexts, which indicate the working environment and conditions, simply 
range from 1 to 5 (or 1 to 3 in two specific cases). Work activities and 
requirements, however, are actually described using two different scales: 
importance and level. ‘Importance’, going from 1 to 5, describes how 
prevalent this activity or this requirement is during the job. ‘Level’, 
ranging from 1 to 7, describes how complex the requirement or activity is 
(simply walking would be 1, whereas piloting a spacecraft to the moon 
would be 7). We used both variables by simply multiplying one by the 

 
1 Other papers used data from 2010, which could lead to differences in the 
characteristics and definitions of occupations. 
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other for every variable and occupation, resulting in a metric showing how 
valuable the requirement or activity is. To compare our results with wage 
and employment statistics, we had to select the occupations which are also 
present in other BLS datasets. One issue is that O*NET sometimes further 
divides occupations into separate, even more specialised jobs. In this case, 
we averaged the values of each variable of these different “sub-
occupations”. 

3.2. Modelling 

In order to determine the automation probability using our data, we 
need a regression model which can extract the results by looking at every 
variable and noticing patterns in the dataset. While neural networks have 
become almost ubiquitous in modern machine learning, they are not 
adapted to small datasets like ours, whereas linear regression would be too 
simple. An excellent method which is both flexible and adapted to our 
needs is the Gaussian process. It is essentially a stochastic process whose 
variables follow a multivariate, normal distribution. Like any regression 
task, we need some training data for the prediction function. We labelled 
70 occupations out of 749 with a probability of either 0 or 1, depending on 
the answer to the following question: “What is the likelihood that these 
occupations will be automated sometime in the future?”. We logically only 
labelled the occupations providing a sure answer. We also made sure that 
the labels were well distributed among every major occupational group, so 
that the results are not skewed by any specific job type. Finally, there is an 
equal amount of 0 and 1 labels, as we did not want to give more weight to 
one end of the scale than to the other. We compared our labels with those 
of Frey and Osborne, and looked at major trends in automation, machine 
learning, and robotics, to answer the question. 

The issue when using every variable in three distinct models is 
twofold. On the one hand, too many variables will muddle the model and 
make it noisier. Most variables do not have a particularly important impact 
on output, and as such can be discarded for a more certain result without 
influencing the result too much. On the other hand, looking at either 
requirements, work activities, or work contexts separately may disregard 
the covariance between the variables of different groups. The best way to 
reconcile both issues would be to produce a single, big model, and only 
afterwards discard the irrelevant variables. With a total of 240 variables 
but only 70 labelled data points, however, the model would be too ill-
conditioned, and computing its output becomes virtually impossible. We 
therefore decided to model the three different outputs, and discard the 
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useless variables in each of them, before putting the relevant ones together 
for a last pass through the regression method. 

There are many different ways to do a so-called feature selection. One 
of the easiest methods is to compute a Pearson correlation coefficient for 
each variable, but its linearity makes it a poor choice in our case. A rather 
common technique found in machine learning is Principal Component 
Analysis (PCA), but it is not without shortcomings either. More modern 
techniques such as explanation vectors, LIME, and Shapley values offer a 
detailed and versatile way to understand how black-box models have 
reached their conclusion. Instead of comparing all of these methods and 
choosing the best one, we employed SHAP values. They combine both 
LIME and Shapley values for a more model-agnostic and interpretable 
result. 

3.3. Results 

Figure 1: Distribution of the probability of automation for U.S. workers. 
 

 
 
After computing our predictions for the three separate classes of 

variables, we used the SHAP library (Lundberg S.M., Lee S.-I. 2017) to 
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select the most relevant features. We chose 6 requirements, 7 work 
activities, and 7 work contexts. Using these 20 variables, we predicted the 
likelihood of computerisation one last time. We then added the respective 
employment statistics to every job to evaluate the amount of workers at 
risk of automation. 

 
Figure 2: Annual median wage of U.S. workers against probability of automation. 
 

 
 
We found that 32% of workers are employed in so-called high-risk 

occupations, which are defined as having a probability of automation of 
over 70% (Figure 1). About 30% are at medium risk of computerisation 
(the probability is between 30% and 70%), and the remaining 38% are at 
low risk of being automatized. These are slightly more optimistic numbers 
than Frey and Osborne’s. The reader can also notice that many more jobs 
have uncertain prospects. This is due to our less categorical modelling, as 
more variables increase uncertainty. For example, railroad conductors 
have a probability of automation of 75.3%, while ship engineers stand at 
8%. 

We also noticed that occupations with a higher annual median wage 
are on average far less likely to be automated than low-paying occupations, 



Philippe Panhaleux, Aryaz Eghbali, Roger Wattenhofer 29

with one exception being trade occupations (Figure 2). Surgeons have a 
probability of automation of 26% while the likelihood that fast food cooks 
will be replaced by robots stands at 83%. 

Finally, we can see on Figures 3 and 4 that most low-risk occupations 
require a far higher level of education than high-risk occupations, and also 
require more work experience. Again, trades are a noteworthy exception to 
the main trend. For example, chief executives have a probability of 
automation of 23.3%, while Heavy and Tractor-Trailer Truck drivers 
report a probability of 82.0%. Plumbers have a 15% of being ousted by 
robots. 

 
Figure 3: Required education level against probability of automation. 
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Figure 4: Required work experience against probability of automation. 
 

 
 
Now that we have the data about which occupations are at risk, and 

which are not, we can compare them to one another and see which low-
risk jobs offer a transition opportunity to high-risk workers. 

4.1. Methodology 

First, we must define similar occupations. O*NET provides several 
levels of variables to accurately describe the activities done within an 
occupation. Tasks are the lowest level and have a unique identifier and 
description. Therefore, there are no two jobs having the same task. The 
next level is the Detailed Work Activity (DWA). Every task is linked to 
one or more DWAs. We can therefore define which of these are assigned 
to which occupations. As DWAs have a standardised identifier, we can 
compare occupations using those. 

We now need to define the notion of a ‘closely related occupation’ 
using DWAs. It is clear that a specific percentage of common activities is 
required. We decided to consider the percentage of work activities of the 
low-risk occupation which can be also found in the high-risk occupation. 
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It is more interesting to know how familiar a worker would be with a 
potential new occupation than with their old, high-risk one. We are faced 
with two issues. First, the cut-off has to be quite arbitrary, and second, this 
system does not take into account task frequency (as opposed to Brandes 
and Wattenhofer’s). For the first problem, we decided to take a 25%-
similarity threshold. The transition outlook will obviously look better with 
a lower value and worse with a higher one. The reasoning for having 
chosen 25% is that the value is high enough to allow a worker to be at 
least partly productive right out of the gate, and low enough to allow for 
some inter-occupation variation, since not every job is the same. One also 
has to consider that DWAs are very detailed, so different DWAs may not 
be fundamentally different. We decided not to take into account frequency, 
believing that most tasks take up a similar portion of the job. 

4.2. Demand Prospects 

Knowing whether someone can move from a high-risk job to a low-
risk one is a very important step in understanding the occupational outlook 
of vulnerable workers. However, our first analysis will only show whether 
a transition is theoretically possible. After all, the economy may not need 
more workers in a low-risk occupation closely related to a high-risk one. 
We therefore also need to factor in the demand-increase probability for 
every low-risk occupation. 

Using O*NET data and all 120 requirements, Bakhshi et al. modelled 
the probability of automation using a heteroskedastic ordinal Gaussian 
regression. Two workshops were held, each one of which was attended by 
some twelve experts in various fields. The labels were defined by these 
experts, which had to determine if the absolute number of workers in a 
given occupation would increase, decrease, or remain stable, and if the 
number of workers relative to the total employed population would 
increase, decrease, or remain stable. They answered those questions for 10 
different occupations, after which an active learning algorithm selected 10 
new occupations to be labelled. In total, 30 occupations were assigned 
labels. The experts were also asked to rate how certain they were, which 
also influenced model output. The authors computed a probability of 
increase in demand between 0.0 and 1.0 for 747 different occupations. 

4.3. Results 

Now that we know how to obtain our high-risk/low-risk related 
occupations pairs and the probability of a demand increase for each of the 
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low-risk occupations, we can finally determine whether workers at high-
risk of automation can transition to a low-risk occupation, and whether the 
demand for these low-risk jobs is likely to increase. 

 
Figure 5: Number of workers at high-risk of automation and their potential to 
transition to low-risk jobs. 
 

 
 
We note that there are 182 occupations at high risk of automation 

(Figure 5). 117 of those have at least one closely related occupation with 
low potential for computerisation, whereas 65 of them do not have a 
closely related occupation with a low probability of automation. 
Surprisingly, occupations that do have closely related low-risk occupations 
actually tend to have a higher probability of automation. While occupations 
with no close relations represent a third of all high-risk occupations, they 
actually employ a far lower share of workers at high-risk of automation. 
This indicates that many of these workers could potentially move over to 
similar jobs with a low automation probability. For example, railroad 
conductors, which, as mentioned previously, are at high-risk of automation, 
have a job which is related to that of ship engineers, who are at low risk. 
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Figure 6: Probability of increase in demand for low-risk occupations related to 
high-risk ones. 
 

 
 
We now only select the 117 occupations which have a closely related 

low-risk occupation. While we previously saw that many workers could 
move to low-risk occupations, Figure 6 provides a bleaker picture. Most 
low-risk closely related occupations do not have particularly good demand 
prospects, with the vast majority having a rather uncertain outlook and 
more than half being more likely to decrease than increase in demand: 
only 39 of the occupations have a closely related occupation with a 
probability of increase in demand higher than 0.5. To continue with our 
example, ship engineers may be a possible occupation for railroad 
conductors to transition to, but the probability that demand for ship 
engineers will increase in the future only stands at 33%. 

5. Conclusion 

Our results show that most workers at high risk of automation can 
indeed transition to safer jobs which are at least partially similar to their 
current one. We observed which values were most important instead of 
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selecting them ourselves, providing a more data-oriented approach. Most 
jobs to transition to do have a higher required level of education, which 
implies that some training will be needed. Finally, it is not clear whether 
retraining will actually be worth it. Many safer jobs have uncertain 
demand prospects and may therefore not be able to accommodate so many 
new workers. We hope that our results can show which steps are needed to 
enable workers to smoothly transition to new occupations and adapt to the 
automation of their current occupation. We obtained valuable results with 
a simple model. However, a more complex model might be able to capture 
some job-specific aspects better. For example, we used the same fraction 
for all jobs to detect similarities between them. An in-depth investigation 
can label parts of each job to their similarity degree, which would result in 
a more expressive model. Nonetheless, predicting the future, especially 
about the evolution of technology and its impact, is, and continues to be, a 
difficult exercise. 

5.1. Limitations 

The labelling process remains the weakest link of any quantitative 
effort to analyse the impact of automation. The estimation of which 
occupations are surely automatable, and which are not, will always feature 
a degree of uncertainty and subjectivity. We do not see a way to remedy 
that problem, except analysing every occupation in detail, which would 
require a large and sustained effort of many experts to accurately predict 
the future of each occupation. 

5.2. Future work 

While we are confident that our results lead to a better understanding 
of the situation, we see much potential for more research on the subject. 
One big aspect is location. By looking at geographical variations in the 
automation risk and the education potential in high-risk areas, one could 
estimate how complex and socially disturbing retraining could be. The 
costs and benefits of such programs should also be analysed, and their 
potential compared to existing job retraining initiatives. Finally, many jobs 
existing today did not exist twenty years ago. It may be wise to study more 
closely why and how these occupations appear, their characteristics, and 
how current workers can be trained to find a job in those emerging sectors. 
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