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ABSTRACT
In this work we analyze the complexity of local broadcasting
in the physical interference model. We present two distrib-
uted randomized algorithms: one that assumes that each
node knows how many nodes there are in its geographical
proximity, and another, which makes no assumptions about
topology knowledge. We show that, if the transmission prob-
ability of each node meets certain characteristics, the analy-
sis can be decoupled from the global nature of the physical
interference model, and each node performs a successful lo-
cal broadcast in time proportional to the number of neigh-
bors in its physical proximity. We also provide worst-case
optimality guarantees for both algorithms and demonstrate
their behavior in average scenarios through simulations.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometri-
cal Problems and Computations, Sequencing and Scheduling

General Terms
Algorithms, Theory.

1. INTRODUCTION
Achieving efficient spatial reuse is a fundamental issue in

wireless networks. Spatial reuse can be investigated from dif-
ferent angles: communication theorists, for example, study
the capacity of a wireless network in fading channel mod-
els, such as the signal-to-interference-plus-noise ratio (SINR)
model; protocol engineers, on the other hand, design media
access protocols with high spatial reuse. In this paper we
study a fundamental problem of both theoretical and prac-
tical interest: the local broadcasting problem. Local broad-
casting is an operation used as a building block for many
higher-layer protocols (such as routing, synchronization, or
coordination protocols) in wireless ad-hoc and sensor net-
works. As a consequence, the time required to successfully
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transmit a message to all neighbors in the physical proximity
of a node frequently lower bounds and often dominates the
overall performance of such critical higher-layer protocols.

Local broadcasting is, in essence, the problem of schedul-
ing wireless requests. When analyzing the performance of
a scheduling algorithm, a key aspect is the modeling of in-
terference. While a plethora of different interference models
have been used in the literature, arguably the most widely
adopted interference models have been the protocol model
and the physical model [16] (and their numerous variations).

The protocol model is essentially a graph-based repre-
sentation of a wireless network, which defines a set of
Şinterference-edgesŤ, containing pairs of nodes within a cer-
tain distance to each other, thus modeling interference as a
binary and purely local measure. Scheduling algorithms de-
signed for the protocol model typically employ graph-based
techniques (usually an implicit or explicit coloring strategy),
which neglect the aggregated interference of faraway nodes.

In the physical model, a signal is received successfully if
the Signal-to-Interference-plus-Noise-Ratio (SINR)—the ra-
tio of the received signal strength and the sum of the interfer-
ence caused by nodes sending simultaneously, plus noise—is
above a hardware-defined threshold β. In the simplest in-
stantiation of the model, the signal fades with the distance
to the power of the path-loss exponent α. Analyzing the
performance of a scheduling protocol in the physical model
is much more intricate than in the protocol model, since the
notion of a conflict between transmissions cannot be mod-
eled as a binary relation between edges. Whether a certain
set of scheduled transmissions is feasible (i.e., can be suc-
cessfully scheduled simultaneously) can be determined only
by considering the SINR at all the receivers, and not by ana-
lyzing edge-to-edge mutual interference as was the case with
the protocol interference model.

In this work we analyze the complexity of local broad-
casting in the physical interference model. We present two
distributed randomized algorithms. To begin with, we study
a very simple Aloha-like algorithm that is based on the as-
sumption that each node knows the number of its neighbors,
i.e., the number of nodes in geographical proximity. Our sec-
ond algorithm and its analysis is significantly more involved
and constitutes the main contribution of this paper. This
algorithm makes no assumptions about topology knowledge,
and provably achieves close to optimal performance.

Our analysis reveals some important insight into the struc-
tural relationship between the protocol and physical model.
In particular, we prove that if the transmission probability
of each node meets certain characteristics, the performance



of our algorithms can be decoupled from the global nature of
the physical interference model, and each node is capable of
performing a successful local broadcast in time proportional
to the number of neighbors in its physical proximity. This
holds regardless of the density distribution of the nodes in
the network. Our analysis also establishes approximation
guarantees for both algorithms, showing that their perfor-
mance is close to optimal even in worst-case situations. We
demonstrate their average behavior through simulations.

In addition to the SINR-model, our analysis is based on
a particularly harsh model of communication. Specifically,
one main characteristics of the model is asynchronous wake-
up. That is, there is no pre-defined global start time of the
algorithm; instead, nodes can wake up (be switched on, etc)
at arbitrary times and new nodes can join the network while
other nodes have already started executing the algorithm.
Our model also assumes that nodes can be placed arbitrarily,
possibly even in a worst-case fashion.

The rest of the paper is organized as follows. Sections 2
and 3 describe related work and our communication model,
respectively. We begin the analysis by studying a simple al-
gorithm, referred to as Multi-Hop Aloha in Section 4. In Sec-
tion 5 we present our main algorithm, referred to as SSMA
(Slow-Start Media Access). In Section 6, we argue about
the approximation ratio of the proposed algorithms. In Sec-
tion 7 we simulate the algorithms’ performance in average
networks. Section 8 concludes the paper.

2. RELATED WORK
As already mentioned in the introduction, two impor-

tant models used to address interference in wireless net-
works are the (graph-based) protocol model and the physical
model [16].

Graph-based scheduling algorithms usually employ some
sort of matching [17, 30] or coloring strategy [22, 23, 26, 32],
which neglects the aggregated interference of nodes located
farther away. A variety of centralized [17, 26, 30] and de-
centralized [22, 23, 27] algorithms have been proposed for
such models, many presenting approximation guarantees for
special-case geometric graphs, such as unit disk graphs or
planar graphs [22, 23, 26, 30, 32]. The complexity of many of
these problems has been established in [9]. Although these
algorithms present extensive theoretical analysis, they are
constrained to the limitations of a model that ultimately
abstracts away the accumulated interference of a (possibly)
large number of distant nodes.

The inefficiency of graph-based scheduling protocols in the
physical interference (or SINR) model is well documented
and has been shown theoretically [20, 24], through simu-
lations [3, 13, 14], and experimentally [25]. Consequently,
the question of how to design good protocols specifically
designed for the physical communication model has been
studied, leading to a large and rich body of literature. For
instance, in [4, 7, 8, 34] optimization models and heuristics
for the problem of joint scheduling and power control in the
SINR model are proposed. A profound discussion of these
and other works can be found in [13].

More recently, algorithmic questions in SINR-models have
attracted a tremendous amount of attention. In [24], an
efficient power-assignment algorithm, which schedules a
strongly connected set of links in poly-logarithmic time is
presented. In [5], a greedy centralized scheduling algorithm
is presented for links with fixed power levels, and an ap-

proximation bound is given for the case where nodes are
distributed uniformly at random in the plane. There is also
very recent work on routing [6], topology control [11], and
dominating sets [28] in SINR-based models. To the best
of our knowledge, no existing work has studied the time-
complexity of local broadcasting in SINR-based models.

Aloha-based MAC schemes have also been analyzed in the
SINR model [1, 10, 33]. In contrast to our work, the analysis
presented in these papers is primarily based on the assump-
tions of homogenous and uniformly random node distribu-
tions that do not provide any strong worst-case bounds.

Communication models similar to the one used in this
work have been studied in the context of multi-hop broad-
casting [2], single-hop wake-up problem [12], and clustering
[21] in radio networks. As opposed to our work, in [2] all
nodes have access to a global clock and start the algorithm
simultaneously, whereas in [12] nodes can wake up asyn-
chronously, but only upon successful reception of a message.
Moreover, all these models are graph-based.

3. MODEL
The problem can be formulated as follows. Given a set

of nodes V , such that each one wishes to locally broadcast
a message to all its neighbors within a certain broadcasting
range, the objective is to schedule all these requests in as
few time-slots as possible.

We adopt the signal-to-interference-plus-noise ratio
(SINR)-based physical model [16]. In this model, a node
y successfully receives a message from a sender x if and only
if the following condition holds:

Px
dα

xy

N + Iy
≥ β, (1)

where Px is the power level of the transmission, dxy is the
distance between nodes x and y, 2 < α ≤ 6 is the path-
loss exponent, which depends on external conditions of the
medium, β ≥ 1 denotes the minimum signal to interference
ratio required for a message to be successfully received, N is
the ambient noise, and Iy is the total amount of interference
experienced by receiver y. This interference, which is caused
by all simultaneously transmitting nodes in the network can
be expressed as follows:

Iy =
X

v∈V \{x}

Pv

dα
vy

. (2)

In this work we assume that all nodes transmit with the
same power level. This assumption is also referred to as
uniform power assignment scheme [15]. This kind of power
assignment has been widely adopted in practical systems
and in the literature [31].

An important aspect of our model the placement of nodes.
We assume that nodes can be placed arbitrarily in the plane,
possibly in a worst-case fashion (as opposed to uniform ran-
dom distribution assumption). In practice, networks with
heterogenous, non-uniform topologies are quite typical, and
protocols should be designed such that they are capable of
coping well with such heterogeneous topologies.

In order to reason about our algorithms, we now intro-
duce several new definitions and notation. We define terms
broadcasting range, proximity range, and transmission range
of a node, all of which are important in the context of our
work.



Definition 3.1. The local broadcasting range RB of a
node x is the distance up to which x intends to broadcast
its messages. We refer to the region within this range as
broadcasting region Bx and to the number of nodes in it as
∆B

x . A local broadcast is complete if every node x in the
network has transmitted a message to every node in Bx.

Definition 3.2. The transmission range RT of a node x
is the maximum distance from which it can receive a clear
transmission (SINR ≥ β), assuming no other transmission
occurs simultaneously in the network. We refer to the region
within this range as Tx and to the number of nodes in it as
∆T

x . Given fixed power level P and ambient noise N , and
assuming zero interference in Equation 1, the transmission

range RT is RT ≤
�

P
β·N

�1/α

.

In addition to these two definitions, we will make use of
the novel notion of a proximity range RA, which is a range
between the broadcast and transmission range of a node.
Intuitively, it describes the distance within which nodes re-
sponsible for the most significant part of interference experi-
enced by x are located. The exact definition of the proxim-
ity range is determined by parameters α and β of the SINR
model, and changes for each of the algorithms (see Equations
(4) and (6) for the precise definitions), but in all cases, it is
at least twice as big as the broadcasting range (RA ≥ 2RB).
We call the region covered by this radius proximity region
Ax and refer to the number of nodes in it as ∆A

x .
Finally, we define a successful local broadcast.

Definition 3.3. Consider a transmitter x and a power
level P . We define a successful local broadcast to be a trans-
mission of a message, such that it is successfully received by
all receivers y located in the local broadcasting region Bx.
The successful reception condition is defined in (1).

The ideas behind the proximity and transmission ranges
are reminiscent to those in the protocol interference model,
where an interference (or carrier sensing) range (maximum
distance up to which a node sensing the channel detects an
ongoing transmission) and a transmission range (maximum
distance up to which a packet can be received) are defined.
The proximity range RA can be viewed as a separator of
the deployment area into a “close-in” region (from where the
most significant share of interference comes from) and a “far
away” region (from where the incoming interference is still
significant, but can often be treated as a constant).

In the analysis we show that when the proximity range
RA is carefully chosen, a node can perform a successful lo-
cal broadcast with high probability whenever it is the only
transmitting node in its proximity range. Therefore, in spite
of the global nature of the SINR interference model, con-
current local broadcasts are possible when enough spatial
separation exists, i.e., the local broadcasting range RB is
sufficiently smaller than the proximity range RA.

We analyze two topology awareness scenarios:

• Known competition: The nodes know the number ∆A
x

of nodes in their proximity range Ax.

• Unknown competition: In this more realistic scenario,
nodes are clueless about the current number of nodes
in close proximity with which they have to compete
for the shared medium. However, we assume that all

nodes have the same estimate on the total number of
nodes in the network n̂ = |V |.1 In other words, each
node may have between 0 and n nodes in its proximity
range, but it does not know how many.

We assume that nodes wake up asynchronously at any
time, and new nodes can join at any time during the ex-
ecution of the protocol. For the sake of the analysis, we
assume that time is divided into time-slots. Note that our
algorithm does not rely on synchronized time-slots in any
way. This would be too unrealistic an assumption, given
that nodes do not have access to a global clock and synchro-
nizing time-slots is an expensive task. Assuming a slotted
channel in the analysis is justified due to the standard trick
which has been introduced in the analysis of slotted vs. un-
slotted Aloha [29], where it is shown that the two scenarios
differ only by a factor of 2.

We conclude the section with some useful facts.

Fact 3.1. Given a set of probabilities p1...pn with ∀i :
pi ∈ [0, 1

2
], the following inequalities hold:

(1/4)
Pn

k=1 pk ≤
nY

k=1

(1− pk) ≤ (1/e)
Pn

k=1 pk .

Fact 3.2. For all n, t, such that n ≥ 1 and |t| ≤ n,

et

�
1− t2

n

�
≤
�

1 +
t

n

�n

≤ et.

Fact 3.3. Consider two disks D1 and D2 of radii R1 and
R2, R1 > R2, we define χR1,R2 to be the smallest number
of disks D2 needed to cover the larger disk D1. Because the
limit of the ratio of the area of D1 to the area of smaller
disks D2 is 2π/3

√
3 [19], and because all small disks D2

intersecting D1 are completely inside the area of radius R′ =
R1 + 2R2, it holds that

χR1,R2 ≤ 2π

3
√

3
· (R1 + 2R2)

2

R2
2

.

Remark 3.4. We assume that the ambient noise level N
is upper bounded by a fraction of the maximum tolerable
interference level for a successful broadcast ((Iy + N) �
P/β(RB)α), such that spatial reuse is achievable by concur-
rent local broadcasts:

N ≤ P

2β(2RB)α
. (3)

Note that the exact value of the maximum ambient noise
level does not influence our analysis in any significant way,
the upper bound in (3) is set for the sake of simplicity.

4. KNOWN COMPETITION

4.1 Algorithm
We start the technical part of the paper by analyzing the

performance of a simple algorithm, which we call Multi-Hop
Aloha. Multi-Hop Aloha assumes that each node knows the
number of nodes ∆A

x in its proximity range RA. Then, after

1Notice that without this minimal assumption and in ab-
sence of a global counter, every algorithm requires at
least time Ω(n/ logn) until a single successful broadcast is
achieved, even in a single hop network [18].



waking up, each node x simply transmits with probability
p := 1/∆A

x and remains silent with probability 1− p. Node
x repeats this random choice for η∆A

x logn time-slots, where
η is a constant to be defined subsequently.

Our goal is to show that, although the SINR model is
intrinsically global and the interferences of distant nodes
can accumulate and cause collisions, it is possible to guar-
antee efficient medium access (in particular, local broad-
casts) using this simple and completely distributed algo-
rithm. Specifically, in the analysis we prove that with high
probability, every node x performs at least one successful
local broadcast after O(∆A

x logn) time-slots.

4.2 Analysis
For the purpose of our analysis, we introduce the concept

of probabilistic interference, which is the expected value of
total interference experienced by a node.

Definition 4.1. Consider a node x ∈ V . The probabilis-
tic interference at x, ψx, is defined as the expected value of
interference experienced by x in a certain time-slot.

ψx = P
X

v∈V \{x}

pv

dα
vx

,

where P is the transmission power, pv is the sending proba-
bility of node v in time-slot t, and dvx is the distance between
x and the interfering node v.

In the following lemma we show that, given an upper
bound on the sum of sending probabilities inside each broad-
casting region Bv, v ∈ V , the probabilistic interference
caused by nodes located outside the proximity region Ax

of a node x can be bounded by a constant. Given an up-
per bound on the expected interference coming outside the
region Ax, it becomes possible, in a way, to abstract away
this interference and to reason mainly about the interference
caused by nodes within the proximity range RA. The analy-
sis in the physical interference model then becomes similar
to the analysis used in the protocol interference model.

Lemma 4.1. Consider a node x and its proximity region
Ax, of radius RA. If in a time-slot t, the sum of transmission
probabilities inside all broadcasting regions can be bounded by
a constant, i.e., if

P
w∈Bv

pw ≤ c,∀v ∈ V , then the proba-
bilistic interference experienced by x, caused by nodes outside
region Ax, can be bounded by

ψv /∈Ax
x = P

X
v /∈Ax

pv

dα
vx

≤ c · P
�
α− 1

α− 2

�
332(α−2)R

(2−α)
A R−2

B .

Proof. Consider rings Ringl of width RA around x, con-
taining all nodes v, for which lRA ≤ dvx ≤ (l + 1)RA. The
first such layer Ring0 is the proximity region Ax. Consider
all nodes v ∈ Ringl for some integer l > 0. All correspond-
ing broadcasting regions Bv must be located entirely in an
extended ring Ringl

+ of area

A(Ringl
+) =

�
((l + 1)RA +RB)2 − (lRA −RB)2

�
π

= (2l + 1)(R2
A + 2RARB)π

< (2l + 1)(R2
A + 2RARB +R2

B)π

= (2l + 1)(RA +RB)2π

≤ (2l + 1)(3/2RA)2π.

Each transmitter v in Ringl, l ≥ 1 has distance at least lRA

from x, each transmitter w ∈ Bv has distance d(w, x) ≥
(lRA−RB) from x. Since RB ≤ 1/2RA and l ≥ 1, d(w, x) ≥
lRA/2. By applying a standard geometric area argument,

we can bound the probabilistic interference ψRingl

x incurred
by nodes located in ring Ringl, l ≥ 1 as

ψRingl

x =
X

v∈Ringl

ψv
x

≤ A(Ringl
+)

A(Bv)
· P

X
w∈Bv,

v∈Ringl

pw

(lRA/2)α

≤ (2l + 1)

lα
· P · c · 322α−2R

(2−α)
A R−2

B

≤ 1

l(α−1)
· P · c · 332α−2R

(2−α)
A R−2

B .

Summing up the interferences over all rings yields

ψv /∈Ax
x <

∞X
l=1

ψRingl

x

≤ c · P ·
∞X

l=1

1

lα−1
· 332α−2R

(2−α)
A R−2

B

< c · P · α− 1

α− 2
332α−2R

(2−α)
A R−2

B ,

which concludes the proof of the lemma.

In the following theorem we prove that the algorithm is cor-
rect and efficient.

Theorem 4.2. After O(∆A
x logn) time-slots, each node

x performs a local broadcast successfully, with probability at
least 1− 1/n2. The claim also holds for all nodes with prob-
ability at least 1− 1/n.

Proof. Given the user-defined broadcasting range RB ,
we define the proximity rangeRA of a node x to be a function
of RB , α and β:

RA = RB

�
332αβ ·

�
α− 1

α− 2

�� 1
(α−2)

. (4)

Note that RA > 2RB , since β ≥ 1 and 2 < α ≤ 6. It
follows that if a node y is located inside the broadcasting
region of x, then

Bx ⊂ Ay∈Bx ⇒ ∆B
x ≤ ∆A

y ⇒

py =
1

∆A
y

≤ 1

∆B
x

⇒
X

y∈Bx

py ≤ 1. (5)

The main goal is to bound the expected SINRy∈Bx of
the intended receiver of x. Consider the proximity region
Ay of the receiver y. Using (4), (5) and Lemma 4.1 (c = 1),
we can bound the probabilistic interference experienced by
y caused by nodes located outside Ay:

ψ
v /∈Ay
y < 1 · P · α− 1

α− 2
332α−2R

(2−α)
A R−2

B

=
P

4βRα
B

.

Given the expected value of interference at the intended
receiver y, caused by transmissions outside Ay, we can use



Markov inequality to claim that the probability that the in-
terference at y caused by transmissions outside its proximity

region exceeds 2 ·ψv /∈Ay
y is less than 1/2. Consequently, pro-

vided that x is the only node transmitting in Ay, with prob-
ability PSINR≥β ≥ 1/2, the SINR at the intended receiver
y ∈ Bx can be lower bounded by

SINRy∈Bx ≥
P

dα
x,y

2 · ψv /∈Ay
y +N

> β,

which holds since dx,y ≤ RB and ambient noise N is upper
bounded by (3).

The probability P
Ay
none that no node attempts to transmit

in the proximity region Ay of y is at least

P
Ay
none ≥

Y
w∈Ay

(1− pw)

≥
Fact 3.1

�
1

4

�P
w∈Ay

pw

≥
�

1

4

�P
v∈Ay

P
w∈Bv

pw

≥
Eq.(5)

�
1

4

�P
v∈Ay

≥
�

1

4

�χRA,RB

.

Putting everything together, we define the probability
that node x performs a local broadcast successfully at a
time-slot as

P send
success

≥ PSINR≥β · P
Ay
none

≥
�

1

2

��
1

4

�χRA,RB

.

Since at each time slot each node locally broadcasts suc-
cessfully with constant probability, the probability Pfail that
a node does not transmit successfully after λdlogne time-

slots, where λ = 4∆A
x · 4χRA,RB

, is

Pfail
send

≤

 
1− 1

2∆A
x

�
1

4

�χRA,RB
!λdlog ne

<
1

n2
.

Because there are n nodes to be scheduled, the proba-
bility that the claim holds for all nodes is at least Pall ≥�
1− 1

n2

�n ≥ �1− 1
n

�
.

Note that Theorem 4.2 proves that Multi-Hop Aloha is not
only efficient and provides fast media access, but is also fair,
given that each node’s schedule depends only on the local
parameter ∆A

x , allowing fast scheduling in low-density areas,
regardless of the existence of highly dense regions somewhere
else in the network.

5. UNKNOWN COMPETITION
The simple protocol in the previous section crucially de-

pends on nodes knowing the number of neighbors in their
proximity. If nodes do not have this information, design-
ing an efficient algorithm becomes substantially more diffi-
cult, because nodes do not know at what probability they
should transmit. In this section we describe and analyze
the SSMA (Slow-Start Media Access) protocol. Since nodes
do not know with how many nodes they have to compete
for the medium, we use a technique that allows each node
to start with a very low sending probability and exponen-
tially increase it until they make an attempt to transmit or
hear a successful broadcast on the channel. The idea is to

eliminate conflicts through randomization, but still guaran-
tee fast medium access for all nodes. The only assumption
here is that each node has a rough estimate n̂ of the total
number of nodes in the network. From now on, we will refer
to the estimate n̂ as n.2

The SSMA protocol (Algorithm 1) works in rounds, each
of which contains δdlogne time-slots. In every time-slot, a
node sends with probability p. Starting from a very small
value, this sending probability p is doubled in the beginning
of every round. For the algorithm to work properly, we must
prevent the noise floor (i.e., the sum of sending probabili-
ties) from reaching too high values. Otherwise, too many
collisions will occur. Hence, upon making an attempt to
send or upon receiving a message (i.e., when SINR ≥ β),
a node resets the value of p and starts the incrementing
process again. Once a node makes an attempt to broadcast
(without knowing whether it was successful or not), it incre-
ments a counter. After a node has made λdlogne attempts,
it stops executing the algorithm.

Consider the broadcasting region Bx of a node x. Let t be
a time-slot in which a message is sent by a node y ∈ Bx and
received (without collision) by all other nodes z ∈ Bx, z 6= y.
We say that a Drastic Interference Reduction (DIR) occurs
in the broadcasting region Bx in time-slot t, since all nodes
decide to reset their sending probability.

Algorithm 1 SSMA: Slow-Start Media Access

1: count := 0;

2: λ := 4 · 4(3/2)χRA,RB
;

3: δ := 12 · 4(3/2)(1+χRA,RB );
4: loop
5: p := 1

4n
;

6: for i := 0 to dlogne do
7: p := 2p;
8: for j := 0 to δdlogne do
9: if (SINR ≥ β) then

10: goto line 5; (reset)
11: end if

12: s :=

�
1 with probability p
0 with probability (1− p)

13: if (s = 1) then
14: transmit();
15: count = count+ 1;
16: goto line 5; (reset)
17: end if
18: end for
19: end for
20: if (count > λdlogne) then halt; fi
21: end loop

The parameters δ and λ are chosen as to optimize the
results and guarantee that all claims hold with high prob-
ability. Parameter δ is chosen large enough to ensure that,
with high probability, there is a round in which a DIR oc-
curs. Parameter λ is chosen large enough to ensure that
each node performs a local broadcast successfully in at least
one round with high probability.

2Notice that the algorithm’s running time depends only
poly-logarithmically on the estimate of n. Hence, it degrades
only marginally even if the estimate is very inaccurate.



5.1 Analysis
We begin the analysis by defining the proximity range RA:

RA = RB

�
342(2α−1)β

�
α− 1

α− 2

�� 1
(α−2)

(6)

We proceed in the following manner. In Lemma 5.1, we
prove that, during the entire execution of the algorithm,
the sum of sending probabilities in every broadcasting re-
gion Bx is bounded by a constant. In Lemma 5.2, we show
that every node x makes (λ logn) attempts to transmit and
stops executing the algorithm after O(∆T

x log3 n) time-slots,
where ∆T

x is the number of nodes in its transmission region
(Def. 3.2). Finally, in Theorem 5.3, we prove that Algo-
rithm 1 is correct and efficient, i. e., after O(∆T

x log3 n)
time-slots, every node is scheduled successfully, i.e, every
node performs a successful local broadcast. All claims hold
with high probability.

Lemma 5.1. Consider the execution of Algorithm 1. The
sum of sending probabilities of nodes in any broadcasting
region Bx, x ∈ V at any time-slot t is upper bounded byX

y∈Bx

py ≤
3

2
, (7)

with probability at least (1− 1/n).

Proof. The claim holds in the beginning of execution,
since all nodes start with sending probability 1/4n. Con-
sider a time slot t1, in which for the first time the sum
of sending probabilities exceeds 1/2 in one of the broad-
casting regions, say Bx. We now consider the time interval
τ = [t1 · · · t1+δdlogne]. We first claim that the sum of send-
ing probabilities in the considered interval is at most 3/2.
The claim holds since (1) by choice of t1, at the beginning of
the interval the sum of sending probabilities is at most 1/2;
(2) by definition of Algorithm 1, during the specified inter-
val each node can at most double its sending probability;
and (3) there can be only less than n newly awaken nodes,
which in δdlogne time slots can achieve sending probability
at most 1/2n each, yieldingX

v∈Bx

pt
v ≤ 2 · 1

2
+ n · 1

2n
≤ 3

2
, ∀t ∈ τ.

Therefore, the following bounds hold for the entire time
interval τ :

1

2
≤

X
v∈Bx

pt
v ≤

3

2
∀t ∈ τ (8)

0 ≤
X

v∈By
y 6=x

pt
v ≤

3

2
∀t ∈ τ. (9)

The second inequality holds because t1 is the very first
time slot in which the sum of sending probabilities exceeds
1/2. Hence, in each By, y 6= x, the sum of sending proba-
bilities is at most 3/2 in the considered time interval. (Oth-
erwise, one of By would have reached 1/2 before Bx and t1
would not be the first time slot considered).

The proof proceeds by showing that, before the claimed
bound is surpassed, the sum of sending probabilities in Bx

falls back to less than 1/2, since, with high probability, a
DIR occurs in Bx in the considered interval. Record that a

Drastic Interference Reduction (DIR) occurs in the broad-
casting region Bx in time-slot t when all nodes in Bx decide
to reset their sending probability, which happens if every
node in Bx either makes an attempt to transmit or receives
a clear message (SINR ≥ β).

We proceed by bounding the probabilistic interference ex-
perienced by a node z ∈ Bx, caused by nodes located outside
its proximity region Az, in interval τ . Using (6), (9), and
Lemma 4.1 (c = 3/2), we have

ψw/∈Az
z <

3

2
· P
�
α− 1

α− 2

�
332(α−2)R

(2−α)
A R−2

B

=
P

4β(2RB)α
.

By Markov inequality, the probability that the interference
at z ∈ Bx, caused by transmissions outside its proximity
range, exceeds 2 · ψw/∈Az

z is less than 1/2. Therefore, with
probability PSINR≥β ≥ 1/2, the signal received by z from
transmitter v ∈ Bx can be lower bounded by

SINRz∈Bx >

P
(dv,z)α

2 · ψw/∈Az
z +N

> β,

which holds since dv,z ≤ 2RB and ambient noise N is upper
bounded by (3).

We proceed by calculating the probability that exactly
one transmission (v, z) ∈ Bx occurs:

PBx
one ≥

X
v∈Bx

0
BB@pv ·

Y
w∈Bx
w 6=v

(1− pw)

1
CCA

≥
X

v∈Bx

pv ·
Y

w∈Bx

(1− pw)

≥
Fact 3.1

X
v∈Bx

pv ·
�

1

4

�P
w∈Bx

pw

≥
Eq.(8)

1

2

�
1

4

� 3
2

.

Furthermore, we define the probability that no other node
transmits in Az:

PAz
none ≥

Y
w∈Az
w 6=z

Y
k∈Bw

(1− pk) ≥
Fact 3.1

Y
w∈Az
w 6=z

�
1

4

�P
k∈Bw

pk

≥
Eq.(9)

Y
w∈Bx
w 6=v

�
1

4

� 3
2

≥
Fact 3.3

�
1

4

� 3
2 χRA,RB

. (10)

Hence, the probability that a DIR occurs in one time slot
is

PDIR ≥ PBx
one · PAz

none · PSINR≥β

≥ 1

2
· 1

2

�
1

4

� 3
2 (1+χRA,RB )

.

The probability that a DIR does not occur in the whole
interval τ is

PDIR ≤

 
1− 1

4

�
1

4

� 3
2 (1+χRA,RB )

!δ log n

<
1

n3
,



where δ = 12 · 43/2(1+χRA,RB ).
The argument that a DIR occurs with probability (1 −

n−3) in the critical interval τ is not sufficient, since the num-
ber of such intervals could be infinitely large. However, we
can bound the total number of intervals using the fact that
each node maintains a counter and makes at most (λ logn)
attempts to transmit, stopping the execution of the algo-
rithm afterwards. Since there are n nodes, there can be at
most (n ·λ logn) critical intervals τ during the entire execu-
tion of the algorithm. The probability that a DIR occurs
in all such intervals is therefore

PDIR(all τ ’s) ≥
�

1− 1

n3

�nλ log n

≥
�

1− 1

n

�
.

In the following lemma we prove that the sending probabil-
ity, although bounded from above as shown in Lemma 5.1,
grows quickly enough, allowing each node x to make λdlogne
transmission attempts in time O(∆T

x log3 n).

Lemma 5.2. Given the number of nodes ∆T
x in the trans-

mission region Tx of a node x, every node x makes λdlogne
attempts to transmit and stops executing Algorithm 1 after
O(∆T

x log3 n) time-slots.

Proof. The first observation is that, since a node x can
only reset its sending probability upon reception of a clear
transmission (SINR ≥ β), the reset can only be caused by
nodes within its transmission range RT . Given that there
are at most (∆T

x −1) nodes in the transmission region Tx and
that each of these nodes makes at most λdlogne attempts
to transmit, node x can reset its sending probability at most
(∆T

x − 1)λdlogne times.
On the other hand, according to the definition of Algo-

rithm 1, every node starts with sending probability p0 =
1/(4n) and doubles its sending probability after δdlogne con-
secutive time-slots without resets. Assuming that x does not
reset its sending probability, after δdlogne(dlogne+ 2) time
slots, x transmits with probability p = 1.

Putting everything together, after at most (∆T
x −

1)λδdlogne2(dlogne + 1) + δdlogne(dlogne + 2) =
O(∆T

x log3 n) time slots, every node makes λdlogne attempts
to transmit and halts the execution of the algorithm.

Using Lemmas 5.1 and 5.2, we can now prove that Algo-
rithm 1 is correct and efficient.

Theorem 5.3. Given the number of nodes ∆T
x in the

transmission region Tx of a node x, every node x performs
a local broadcast successfully after O(∆T

x log3 n) time-slots
with probability at least 1 − 1/n2. The bound holds for all
nodes with probability at least 1− 1/n.

Proof. The high probability result is based on the fact
that each attempt to transmit has a constant probability of
success, i.e., once a node x attempts to transmit, all intended
receivers y ∈ Bx in its broadcasting region will receive the
message successfully (SINRy ≥ β) with constant probabil-
ity. Since each node makes λdlogne attempts to transmit,
setting λ to high enough a value gives the high probability
result.

In Lemma 5.1 we proved that the sum of sending proba-
bilities in every broadcasting region Bx is bounded by 3/2
during the entire execution of Algorithm 1 w.h.p. Using

this fact we can apply Lemma 4.1 to bound the probabilistic
interference experienced by a receiver y ∈ Bx, caused by
nodes located outside its proximity range by

ψ
w/∈Ay
y <

P

4β(2RB)α
.

As argued earlier, with probability PSINR≥β ≥ 1/2, the
SINR at the intended receiver y ∈ Bx can be lower bounded
by

SINRy∈Bx ≥
P

(dx,y)α

2 · ψw/∈Ay
y +N

> 2αβ > β.

Using the result of Lemma 5.1, the probability that the
transmission (x, y) is the only one in the proximity range of
y can be calculated in the same way as in (10).

Putting everything together, the probability that trans-
mission attempt is successful can be lower bounded by

P send
success

≥ PSINR≥β · P
Ay
none ≥ 1

2

�
1

4

� 3
2 χRA,RB

.

Applying Lemma 5.2, which states that after time
O(∆T

x log3 n) node x makes λ logn attempts to transmit and
the fact that each attempt has constant probability of suc-
cess, the probability that node x does not broadcast success-
fully during the entire execution of Algorithm 1 is

Pfail
send

≤

 
1− 1

2

�
1

4

� 3
2 χRA,RB

!λdlog ne

<
1

n2
,

where λ = 4 · 4(3/2)χRA,RB
. Because there are at most n

nodes, the probability that the claim holds for all nodes is
at least P all

success
≥
�
1− 1

n2

�n ≥ �1− 1
n

�
.

The upper bound on the execution time of the algorithm is
proportional to the number of nodes ∆T

x in the transmission
range RT of each node, which depends on the transmission
power level P . Note that, since nodes aim to broadcast
messages only to those receivers located within their broad-
casting region Bx, and since high power levels require higher
energy spending, the power level P should be chosen some-
how proportional to the maximum sender-receiver distance,
which is RB . Therefore, RT /RB is typically bounded by a
constant, and ∆T

x remains a local property.

6. LOWER BOUND
The algorithms presented in the previous sections achieve

local broadcasts in time O(∆A
max logn) and O(∆T

max log3 n),
respectively. We now show that this is close to optimal.

Theorem 6.1. Both algorithms schedule all local broad-
casts in time at most a poly-logarithmic factor away from
the optimum.

Proof. Consider a broadcasting region Bx and the num-
ber of nodes in it ∆B

x . A successful broadcast corresponds
to a local broadcast within radius RB around a sender x.
Since the receivers inside this area can decode the signal of
only one sender at a time, the transmission can succeed only
if no other node sends within this area simultaneously. This
means that disks of radius RB do not overlap in the opti-
mum. Therefore, the optimum can schedule only one node in



each broadcasting region at a time and, therefore, needs at
least ∆B

max time-slots to schedule all nodes, TOPT ≥ ∆B
max.

Multi-Hop Aloha and SSMA, on the other hand, need at
most O(∆A

max logn) and O(∆T
max log3 n) time-slots to sched-

ule all broadcasts successfully with high probability. Given
that ∆A

max ≤ ∆B
max · χRA,RB and ∆M

max ≤ ∆B
max · χRT ,RB ,

where χRA,RB and χRT ,RB are constants defined in Fact 3.3,
we have

TAloha ≤ TOPT · χRA,RB ·O(logn), and

TSSMA ≤ TOPT · χRT ,RB ·O(log3 n),

i.e., our algorithms are only a poly-logarithmic factor away
from the optimum.

7. SIMULATION RESULTS
Our analytical studies show that both algorithms for local

broadcasting perform provably well in worst-case scenarios.
In this section we use simulations to investigate the perfor-
mance in the average case, when nodes are distributed uni-
formly at random in the plane. Our simulations are coded in
the Sinalgo 3 simulation framework, which is a packet-level
wireless network simulator. The Sinalgo framework can be
tuned to model a wide variety of wireless communication
models, including the physical and the protocol models. For
our purposes, we used a communication model that accu-
rately captures SINR-based signal propagation in a wire-
less communication environment, modeling the reception of
packets as in Equations 1 and 2. The simulations were set
up on a square of area 1000 × 1000; the number of simula-
tions was chosen in order to reduce the confidence interval
to a meaningful value. Due to lack of space, we can only
present a small set of simulations in this section.

In Figures 1(a) and 1(b), we evaluate the average and
maximum time needed for all nodes to perform a successful
local broadcast. The broadcasting range was set toRB = 25,
and the total number of nodes was varied from n = 1000 to
n = 5000. The average number of neighbors in a broad-
casting region Bx ranged from ∆B

x = 2 (for n = 1000) to
∆B

x = 10 (for n = 5000). The SINR parameters used in
the simulations were α = 6 and β = 1, but as we show
in Figures 1(c) and 1(d), SSMA is robust to changes in
these parameters. In Figure 1(a), it can be seen that the
number of time slots needed for a successful broadcast in-
creases with increasing density. In Figure 1(b), we com-
pare the average execution time to the asymptotic bounds
presented in the analysis sections. Recall that Multi-hop
Aloha and SSMA have time complexity O(∆A logn) and
O(∆T log3 n), respectively. The plotted lines show the hid-
den constants in the asymptotic bounds, i.e., the ratio of
the maximum execution time Tmax and ∆A · logn (in the
simulation of SSMA, the transmission range is equal to the
proximity range (∆T = ∆A)). The simulations suggest that,
when nodes are distributed uniformly on the plane, the hid-
den constants are actually very small. Moreover, SSMA has
similar performance to Multi-hop Aloha, even though it uses
no information about network topology. Interestingly, the
performance of SSMA approaches that of the simple Multi-
hop Aloha more closely as the number of nodes in the system
(and hence the density) increases.

In Figures 1(c) and 1(d), we analyze the influence of SINR
parameters α and β on the average broadcasting time. In

3http://dcg.ethz.ch/projects/sinalgo
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Figure 1: Simulation Results.

Figure 1(c), we use β = 1 and α ∈ {3, 4, 5, 6}. In Fig-
ure 1(d), we use α = 6 and β ∈ {1, 1.5, 2, 2.5, 3}. The simu-
lations were performed on n = 1000 nodes, and the broad-
casting range was set to RB = 25. In Figure 1(c), it can be
seen that the performance of Multi-hop Aloha strongly de-
pends on the path-loss exponent α. This is due to the fact
that the transmission probability is inversely proportional
to the number of nodes within proximity range RA, which
decreases with higher path-loss (see Eq. 4). SSMA, on the
other hand, is less sensitive to the path-loss, given that its
transmission probability is not dependent on the topology
of the network. In Figure 1(d), it can be seen that, due
to the dependency of Aloha’s sending probability on β (see
Eq. 4), the execution time slightly increases with increasing
β. Once again, the influence of β on the performance of
SSMA is less explicit. Overall, on average, the performance
of the SSMA protocol was comparable to the performance of
Multi-hop Aloha, even though the former operates without
having topology knowledge.

8. CONCLUSION
In this work we aim to shed new insight into the com-

plexity of a wireless communication primitive such as local
broadcasting in the physical interference model. We ana-
lyze the performance of two distributed randomized algo-
rithms and prove that, even when limited knowledge about
the topology is provided, close to optimum performance can
be achieved. Our analysis greatly relies on the observation
that, if the transmission probabilities of nodes are carefully
set, the global nature of interference in the physical interfer-
ence model can be separated into “close-in” and “far-away”
regions, which allows the analysis to proceed similarly to
analysis in graph-based models, such as the protocol model.



We would like to point out that the analysis presented
in this work determines asymptotic bounds. However, an
accurate modeling of far-away interference is more involved
and will significantly impact practical performance of any
MAC protocol.
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