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Abstract. Recent models have introduced the notion of dimensions and
hierarchies in social networks. These models motivate the mining of small
world graphs under a new perspective. We exemplary base our work on
a conference graph, which is constructed from the DBLP publication
records. We show that this graph indeed exhibits a layered structure as
the models suggest. We then introduce a subtraction approach that al-
lows to segregate layers. Using this technique we separate the conference
graph into a thematic and a quality layer. As concrete applications of
the discussed methods we present a novel rating method as well as a
conference search tool that bases on our graph and its layer separation.

1 Introduction

Imagine your research has drifted into a field unfamiliar to you, and you do
not know where to publish. In such situations it is helpful to have a better
understanding of the world of computer science conferences. Throughout this
paper we will explore this world and present an application that bases on this
exploration and seeks to assist people that are in situations as described before.

The starting point of our research are recent findings in the context of social
networks. These findings emphasize the fact that nodes in natural graphs are
interconnected for different reasons, such as common interests, close geographic
distances, or family relations in case of friendship networks. Based on the re-
searchers’ social network we will introduce a similarity measure for conferences
and setup a conference graph. Similar as in friendship networks or the world-
wide-web, edges in this graph are caused by different reasons—we will refer to
them as the layers of our graph. Such reasons surely are area of research, but
maybe also the quality, geographic location, or the community behind the con-
ference. Throughout this paper, we demonstrate that and how it is possible to
isolate some of these layers in the case of the conference graph. In particular, we
will show that:

– The social network behind conferences provides a good measure to relate
conferences to each other.

– This measure consists of a thematic as well as a quality component—the
major layers of our graph.

– The thematic layer can be identified by a mere analysis of publication titles.
– The quality layer can be partly isolated by subtracting the thematic compo-

nent from the overall relationship.



As a result of the layer separation, it becomes possible to explore the con-
ference graph under different points of view. We introduce a novel idea for con-
ference rating based on the quality layer of the graph. Afterwards, we present
a collaborative conference search website that demonstrates the advantages of
having independent notions of the thematic scope and the quality of a confer-
ence. It offers different ways to search for conferences and can be fine-tuned to
match the quality and deadline restrictions of an author and thus greatly assists
researchers finding themselves in situations as described in the very beginning
of this paper.

2 Related Work

This section briefly reviews relevant literature in the context of our work, namely
the mining of bibliometric data and social networks.

The analysis of publication records has been an active field of research for
a long time. Clearly, one of the most attractive goals for publication database
mining is automated conference and journal rating. Garfield’s pioneering work in
1972 [1], which describes the use of citation analysis for this purpose, initiated a
long—and still ongoing—controversy. On one hand, many authors point out the
wide variety of problems of the citation indexing approach [2–4]. On the other
hand, citation analysis is presumably still the best method to automatically rate
scientific conferences and journals. Other measures that are used to indicate a
venue’s relevance are the acceptance rate as well as time delays, such as turn-
around time, end-to-end time, or reference age [5]. It seems that the community
behind a conference has so far not been taken into account for automated rating.
We believe that this criterion should not be neglected and provide an idea to fill
this gap.

The rating of venues is not the only motivation for research on bibliometric
data. Other insights have been gained from publication databases. One closely
related aspect is the characterization of authors (rather than venues). Various
measures, such as closeness [6–10], betweenness [6, 8, 9], or AuthorRank [9] have
been evaluated in this context. Also, many studies analyze the evolution of differ-
ent properties [6, 7, 10–12]. For us, the publications of Lee et al. [12] and Smeaton
et al. [10] are of particular interest, as they study the topical changes within a
single conference over the years. Thereby they show that the analysis of publi-
cation titles, keywords, and abstracts is sufficient to extract the thematic scope
of a venue—a fact that we will take advantage of.

Another perspective to looking at the thematic scope of venues is presented
in [6]. By considering a common author of two venues an indicator for thematic
similarity, a weighted graph is constructed that interrelates the most important
conferences in the field of database research. We improve on this measure by in-
corporating some means of normalization and show that the thematic proximity
is only one aspect contained in this weight.

Newer studies on social networks emphasize that many of these graphs ex-
hibit some sort of social dimensions [13–16]. They state that there exist different



catalysts for friendships, such as geography, family ties, or occupation. An obser-
vation that Killworth and Bernard [17] already made in 1978, when examining
the different reasons by which a starter in a Milgram-like experiment would
choose the next hop. Their findings show that most decisions are based on the
geographic location and the occupation of the target. This result agrees with the
findings of Dodds et al. [13] in a recent Internet-based small-world experiment.
Based on this evidence, Watts et al. [16] developed a graph model based on dif-
ferent social dimensions. We will show that similar dimensions can also be found
in our conference graph and refer to them as layers.

3 The Conference Graph

This section describes how the publication records of DBLP1 can be used to
generate a graph that interconnects scientific conferences. The graph construc-
tion bases on the social network behind these conferences. We basically assume,
that the more common authors two conferences have, the more related they are.
To avoid overestimating the similarity of massive events—they naturally have
a large number of common authors—we improve on this idea by incorporating
a normalization method: Consider two conferences, C1 and C2, that contain a
total of s1 and s2 publications, respectively. Further, assume that there are k
authors Ai (i = 1, ..., k) that have published in both places and that author Ai

has pi,1 publications in conference C1 and pi,2 publications in conference C2. We
can now define the similarity S(C1, C2) between C1 and C2 as follows:

S(C1, C2) =
k∑

i=1

min
(

pi,1

s1
,
pi,2

s2

)
Applying this similarity measure to all pairs of conferences results in the

desired graph. The required information for this graph was extracted from the
DBLP bibliographic repository. Any publications that appeared in a scientific
conference between 1996 and 2006 have been taken into account. To reduce
the amount of data, edges of extremely low weight that do not significantly
contribute to the connectivity have been removed. To give a more concrete idea
of the structure of this graph, Table 1 lists the 10 top edges for some sample
conferences.

4 The Layers

This section introduces the idea of layers as the building blocks of our graph.
These layers reflect, as we will see, different catalysts for edges. We will have
a closer look at two of these layers, namely the thematic and the quality layer,
throughout this section.

1 http://dblp.uni-trier.de



KDD AAAI ECAI

ICDM 0.69 IJCAI 0.76 IJCAI 0.53
SDM 0.58 ATAL 0.37 KR 0.29
PKDD 0.45 ICML 0.33 ATAL 0.27
PAKDD 0.40 AGENTS 0.32 AAAI 0.26
ICML 0.37 AIPS 0.31 AI*IA 0.24
DMKD 0.37 ECAI 0.26 JELIA 0.22
CIKM 0.36 KR 0.25 ECSQARU 0.21
SIGMOD 0.36 UAI 0.25 CP 0.19
ICDE 0.35 CP 0.23 IEA/AIE 0.19
VLDB 0.33 FLAIRS 0.20 KI 0.19

Table 1. The 10 strongest links to the conferences KDD, AAAI and ECAI

Proximity in the conference graph is not purely defined by the thematic sim-
ilarity of venues as a careful look at Table 1 reveals. ECAI is, for example, typ-
ically said to be thematically closer to AAAI than ATAL, ICML, or AGENTS,
which appear earlier in the AAAI top-10 list. We conclude that authors choose
conferences not only because of the topic it covers. Other properties, such as
quality, geographic location, or the community behind a venue also influence the
author’s decision. In fact, we believe that it is a weighted combination of all these
factors that leads to a submission at a certain place. Exactly this combination is
reflected by the conference graph presented in the previous section. The graph
consists of different layers, where each layer represents one of these factors. This
idea is illustrated in Figure 1.

Fig. 1. The total graph can be seen as the sum of its layers.

4.1 The Thematic Layer

Clearly, the thematic scope of a venue has a significant impact on its relationship
to other venues. In the following, we present a technique that bases on publication
title analysis and measures the thematic similarity of conferences. It thus allows



KDD AAAI ECAI

mining 0.051 learning 0.013 reasoning 0.011
data 0.013 planning 0.012 learning 0.010
discovery 0.013 robot 0.010 qualitative 0.009
clustering 0.013 reasoning 0.008 planning 0.008
association 0.010 knowledge 0.007 knowledge 0.008
sigkdd 0.010 search 0.007 logics 0.008
kdd 0.009 agent 0.006 logic 0.008
frequent 0.009 constraint 0.006 ecai 0.008
rules 0.009 ai 0.006 constraint 0.007
discovering 0.009 reinforcement 0.006 diagnosis 0.007

Table 2. The 10 best matching keywords to KDD, AAAI and ECAI together with
their TF-IDF score.

to define the thematic layer, which is surely an ingredient of the social similarity
measure, as a majority of authors mostly work in only one area and therefore
submit papers to thematically similar venues.

For each conference, we have extracted all the titles from DBLP and applied
the well-known term frequency - inverse document frequency (TF-IDF) method
(see [18] for some theoretic background) to identify the most relevant keywords.
The TF-IDF score for a document increases proportionally to the number of
occurrences of the keyword in the document (TF). However, words that have a
high overall frequency are penalized (IDF). In our context, a document corre-
sponds to a venue and the words stem from publication titles. Consequently, a
document consists of all titles in a venue and the complete corpus consists of all
venues in DBLP.

Once a score has been applied to all the keywords that appear in the confer-
ence’s collection of titles, the scope of the conference can easily be estimated by
looking at the most relevant terms. Table 2 shows some examples.

Using the keyword-lists seen before, we have implemented a simple algorithm
that estimates the thematic relationship between two venues. It takes the top-50
keywords of each conference, and counts the number of keywords appearing in
both lists, resulting in a score from 0 to 50 for each pair of conferences.2

Applying the thematic similarity function to each pair of venues results in a
weighted undirected graph—the thematic layer of our graph. The corresponding
neighborhood lists for our sample conferences are shown in Table 3.

4.2 The Quality Layer: Filtering by Subtraction

Section 2 briefly discussed the problem of conference rating and its difficulties.
For computer sciences, the Citeseer Impact List tries to estimate the impact

2 Surprisingly, this simple comparison function achieved slightly better results than
the more commonly used cosine similarity approach.



KDD AAAI ECAI

ICDM 26 IJCAI 37 IJCAI 29
PKDD 23 ECAI 27 AAAI 27
PAKDD 21 FLAIRS 22 ICTAI 22
SDM 20 ICTAI 21 KI 21
Dis. Science 20 AIPS 17 FLAIRS 20
DMKD 18 Can-AI 16 Can-AI 19
ADMA 17 IEA/AIE 16 IEA/AIE 18
ISMIS 17 PRICAI 15 PRICAI 18
IDA 15 Aus-AI 15 KR 16
IDEAL 15 KI 14 Aus-AI 16

Table 3. The 10 closest neighbors to KDD, AAAI and ECAI in the thematic layer,
together with their thematic score.

of venues based on citation analysis. Further, many researchers maintain hand-
made lists that distinguish between tier-1, tier-2, and tier-3 conferences. Even
though hand-made lists suffer from a subjective bias and citation analysis from
other weaknesses (recall Section 2), tier-1 conferences typically have a high im-
pact and, contrariwise, tier-3 conferences get low scores in the Citeseer list. We
will refer to similarly classified conferences as conferences of similar quality.

Comparing the neighborhood tables for the total graph (Table 1) and the
thematic layer (Table 3) shows, that the total graph is not purely defined by the
thematic correlation of conferences. Looking at the total graph, an interesting
observation is that conferences often considered to be of high quality (such as
KDD and AAAI ) tend to have other high quality conferences in their proximity.
In contrast, the number of lower-tier conferences in the proximity of ECAI, which
is mostly classified as tier-2, is significantly higher. This observation is illustrated
in Table 4 that uses the impact value of the Citeseer Impact List3 to classify the
conferences.

We conclude that a single author tends to publish not only in venues of similar
topic, but also in venues of similar quality, meaning that our graph contains a
second major layer—the quality layer.

The observation that thematically weaker related nodes in a conference’s
proximity tend to be closer in quality suggests that the quality layer can be
extracted using the information about the total graph and the thematic layer.
In the following we will introduce a layer subtraction approach to demonstrate
that such a layer separation can indeed be achieved. The approach bases on the
assumption that the total graph is a linear combination of the single layers. As
a result of the observations in the previous section we assume that the major
layers of the conference graph are the thematic layer t and the quality layer q.
This also matches our experience when selecting a conference: We make sure the
publication matches the call for papers and we try to submit at a conference
of reasonable quality. Other factors, such as geographic location, play a minor
3 http://citeseer.ist.psu.edu/impact.html



AAAI Total AAAI Thematic ECAI Total ECAI Thematic

IJCAI 1.10 IJCAI 1.10 IJCAI 1.10 IJCAI 1.10
ATAL 1.51 ECAI 0.69 KR 1.76 AAAI 1.49
ICML 2.12 FLAIRS N/A ATAL 1.51 ICTAI 0.25
AGENTS 1.00 ICTAI 0.25 AAAI 1.49 KI 0.41
AIPS 1.53 AIPS 1.53 AI*IA 0.26 FLAIRS N/A
ECAI 0.69 Can-AI 0.26 JELIA 0.72 Can-AI 0.26
KR 1.76 IEA/AIE 0.09 ECSQUARU 0.38 IEA/AIE 0.09
UAI N/A PRICAI 0.19 CP 1.04 PRICAI 0.19
CP 1.04 Aus-AI 0.16 IEA/AIE 0.09 KR 1.76
FLAIRS N/A KI 0.41 KI 0.41 Aus-AI 0.16

Table 4. The 10 closest neighbors to AAAI (left) and ECAI (right) in the total graph
and the thematic layer, together with the Citeseer impact value. Note that for AAAI,
conferences in the total graph neighborhood that are not present in the thematic layer
list (italic) all have relatively high impact value. The impact value of such conferences
in the neighborhood of ECAI is considerably lower.

role in the decision. These factors (including noise) are thus subsumed into a
remainder layer r. Consequently the total edge weight S becomes to S = α1 · t+
α2 · q + α3 · r, for some weights αi, with α1, α2 � α3. Neglecting α3 and setting
α2 = 1 (α2 can be chosen arbitrarily as it only results in a scaling of q) allows
to extract the quality layer q as

q ≈ S − α1 · t,

Note that the validity of the linear combination assumption greatly depends
on the characteristics of the weight functions in the different layers. In [19]
Fernandez et al. presented the idea of score distribution normalization for ag-
gregation purposes. They suggest to shape the histograms of the independent
score functions to match the “ideal” distribution prior to merging them by linear
combination. For simplicity we assume a uniform weight distribution for both,
the total as well as the thematic scores.

Observe that the subtraction approach generally allows to extract one out
of L layers of a graph, if the remaining L − 1 layers are known. It seems that
such a layered structure can often be observed—recall Section 2 and also think
of recommendation systems that often build on similar co-occurrence structures
as our graph. We thus believe that the layer-subtraction approach might be a
valuable preprocessing step in various data-mining settings.

The next sections discuss how the quality of the filtering can be estimated by
producing a conference rating and thereby show some evidence of the correctness
of the proposed subtraction approach.

4.3 Interpolation Based Conference Rating

The proximity of a conference in the quality layer is supposed to contain mostly
conferences of similar quality. This observation immediately leads to the idea



of conference rating by interpolation: Provided some initial ratings are known,
the tier of a conference can be estimated by looking at its proximity in the
quality layer. Initial ratings can be retrieved from manually created lists (we use
the one found at www.ntu.edu.sg/home/assourav/crank.htm and refer to it as CS
Rating List) as well as from Citeseer’s impact list. We have further introduced
the Citeseer Tier List, which assigns a tier (1, 2, or 3) to each conference in
the Citeseer Impact List. The borders between tiers have been chosen such that
the number of incorrectly rated conferences with respect to the CS Rating List
becomes minimal. The best that can be achieved is an error rate of 38.8%, which
indicates how difficult the task of conference rating is.

We have then defined a heuristic to rate a conference C0 as follows:

1. For all conferences in the CS Rating List or the Citeseer Tier List, set the
initial rating to the value found in the lists. In case of conflicts, the CS
Rating List is treated with priority. For any conference not in the lists, set
the initial rating to unrated.

2. Overwrite the initial rating of C0 with unrated. This step avoids that the
rating function is biased towards the initial value.

3. Take the 30 shortest edges ei adjacent to C0 in the total graph, together
with their values Si and ti. For all these edges, calculate qi = Si−α1 · ti (for
some value of α1) and sort by qi. We will call the resulting list the filtered
neighborhood list of C0: Nf (C0).

4. For the first 5 entries Cj (j = 1..5) in Nf (C0), calculate Nf (Cj).
5. Return the median of all the rated conferences found within the first 5 entries

in all the lists Nf (Cj) (j = 0..5) as the rating of C0.

Note that this conference rating method is in some sense natural. Many
people would judge a venue based on people participating in it (or leading it).
This information is implicitly contained in the total graph which forms the basis
of the rating heuristic.

The quality of the heuristic can be estimated by comparing the calculated
ratings to those found in the CS Rating List (which is presumably the most
accurate list we dispose of). The optimal value of α1 was scanned for by exhaus-
tive search over some reasonable interval.4 This is illustrated in Figure 2 which
plots the error rate of the rating function with respect to the CS Rating List for
different values of α1. The figure clearly shows that the subtraction approach
reduces the number of incorrect ratings and suggests that the optimal value of
α1 is somewhere between 0.5 and 1.

Arguing with error rates beyond 40% might at the first glance seem sus-
picious. However, the fact that approximately 75% of the input values (namely
those that originate from the Citeseer Tier List) exhibit an error rate of approxi-
mately 40% themselves relativizes the high error rate produced by our algorithm.

4 Note that optimizing for α1 using regression by comparing to a “quality relationship”
between two conferences is likely to fail, as this quality relationship is very vague
(i.e. can take only the values 0, 1, and 2).
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Fig. 2. The fraction of incorrectly rated conferences using our rating function versus
the value of α1. The dotted lines indicate the error rates for a random guess (0.667)
and for the Citeseer Tier List (0.388), which is in about the best we can expect to
reach as most of the initial rating values stem from this list.

Ignoring all the conferences rated as tier-2 either by the algorithm or the
CS Rating List shows that the errors are not random. Dividing the number
of conferences rated as tier-1 instead of tier-3 (and vice versa) by the number
of conferences the algorithm rates as tier-1 or tier-3 results in an error rate of
around 6.4% without thematic filtering and of 2.6% for the optimal value of α1.
(Note that dividing by the number of tier-1 and tier-3 conferences in the list
would overestimate an algorithm that tends to rate conferences as tier-2.)

These low values show three things:

1. The total edge weight is clearly influenced by the quality of conferences. This
supports the assumption that the thematic and the quality layer are the two
main layers of the graph.

2. The success of extracting the quality layer by subtraction of the thematic
layer as shown in Figure 2 is confirmed.

3. Most of the around 43% of errors are minor errors. That is, they are wrong
by only one tier. Severe errors are rare,they make up less than 3%.

Remark: The rating heuristic was developed for two reasons: To provide a
complete rating list for the conference search application presented next, and to
demonstrate the effect of subtraction filtering. It is thought as a proof-of-concept
algorithm that neither has a strong mathematical foundation nor provides any
guarantees on the results.

5 ConfSearch

In this section we will show that the previously discussed conference graph
and its separation into different layers can directly be applied for confer-



βq = 0.0 βq = 0.5 βq = 1.0

PKDD KDD KDD
KDD ICDE ICDE
INFOVIS PKDD ICDM
ICDM ICDM VLDB
Web Intelligence Web Intelligence Web Intelligence
PAKDD INFOVIS PKDD
ICDE VLDB DMKD
ICDM DMKD SDM
JSAI Workshops SDM INFOVIS
DaWaK PAKDD DASFAA

Table 5. The results for the search query “social graphs data mining” for different
quality weights (controlled by the parameter βq).

ence search. For this purpose we have developed a website that is able to
suggest conferences together with their most important attributes (try it
at http://www.confsearch.org). The application offers four different search
types:

– Keyword Search: Search by keywords provided.
– Related Conference Search: Explore the proximity of a given conference in

the conference graph and return the closest neighbors.
– Author Search: Search for the places a given author publishes most often.
– General Search: A weighted combination of the above search methods.

For all search types the application allows to sort the results by deadline, a
criteria that has a considerable impact when deciding for one or the other venue.
Motivated by the success of Wikipedia-like services, we follow a collaborative
approach to gather conference deadlines as well as locations and website URLs.
Our application can be seen as an improvement on the many lists with conference
deadlines found in the Internet today: We basically cover the whole area of
computer science and augment the typically static lists with sophisticated search
options.

The keyword search bases on a score sij for each keyword-conference pair
(where only keywords appearing in the query are considered), which is a slightly
modified variant of the TF-IDF value presented in Section 4.1. Next, the scores
sij of the conference-keyword pairs are combined to a single value S∗

i per con-
ference Ci using the p-norm method introduced by Salton et al. [20]. The final
score Si results from the quality adjustment of S∗

i controlled by a user-settable
parameter βq: Si = S∗

i ·f(Q)βq . The function f(Q) is defined on a per query basis
to smoothly adapt to the different score distributions for different queries. The
quality part Q is estimated using the heuristic presented in Section 4.3. Table 5
presents a keyword search example and the effect of quality filtering.

The related conference search operates directly on the conference graph. We
simply return the closest nodes around a conference in terms of path-length.
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Fig. 3. The minimum spanning tree around AAAI in the thematic layer (left), and the
quality layer (right). Darker nodes refer to higher tier venues.

Again, a user settable parameter allows to control whether the thematic or the
quality aspect should be emphasized. A visualization of the AAAI neighborhood
in the thematic and the quality layer can be found in Figure 3. The increased
amount of high quality nodes (dark) in the AAAI ’s “qualitative proximity”
indicates that AAAI itself is also likely to be of high quality. The search option
on one hand allows to browse the conference graph and on the other hand might
prove extremely helpful if you look for alternative places to submit, after a reject,
for example, or because a deadline does not fit.

6 Conclusion

Throughout this paper we have provided evidence for recent small-world models
using the real-world data of a scientific conference graph. We have shown that
this graph indeed consists of layers and demonstrated that these layers can be
effectively combined. The combination assumption has led to the subtraction
approach for layer segregation which provides an attractive preprocessing step
when mining graphs. In our setting it was used to accentuate the different aspects
of conference relations.

We have seen that the conference graph consists of two major layers—the
thematic layer and the quality layer. We have then presented a novel rating
method for scientific conferences that operates on the quality layer of the graph.

The separation of the two layers further builds the basis of the conference
search application presented in the last section. Exploring the thematic layer
allows to retrieve venues matching a user query. The sorting of the retrieved
venues can then be adjusted using the information gained from the quality layer
and thereby effectively fitted to the user’s needs.



References

1. Garfield, E.: Citation Analysis as a Tool in Journal Evaluation. Science (178)
(1972) 471–479

2. Linde, A.: On the pitfalls of journal ranking by impact factor. Eur J Oral Sci
106(1) (1998) 525–526

3. MacRoberts, M.H., MacRoberts, B.R.: Problems of citation analysis: A critical
review. JASIS 40(5) (1989) 342–349

4. Scharnhorst, A., Thelwall, M.: Citation and hyperlink networks. Current Science
89(9) (2005)

5. Snodgrass, R.: Journal relevance. SIGMOD Rec. 32(3) (2003) 11–15
6. Elmacioglu, E., Lee, D.: On Six Degrees of Separation in DBLP-DB and More.

SIGMOD Rec. 34(2) (2005) 33–40
7. Nascimento, M.A., Sander, J., Pound, J.: Analysis of SIGMOD’s Co-Authorship

Graph. SIGMOD Rec. 32(3) (2003) 8–10
8. Newman, M.E.J.: Who is the best connected scientist? A study of scientific coau-

thorship networks. Physical Review E 64(1) (2001) 016132–1–016132–7 Scientific
collaboration networks. Part II. Shortest paths, weighted networks, and centrality.

9. Liu, X., Bollen, J., Nelson, M.L., de Sompel, H.V.: Co-authorship networks in the
digital library research community. Inf. Process. Manage. 41(6) (2005) 1462–1480

10. Smeaton, A., Sodring, T., McDonald, K., Keogh, G., Gurrin, C.: Analysis of Papers
from Twenty-Five Years of SIGIR Conferences: What Have We Been Doing for the
Last Quarter of a Century? SIGIR Forum 36(2) (2002)
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